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Human IRGM gene “to be or not to be”
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Abstract The immunity-related GTPases (IRG proteins) are
one of the strongest early resistance systems against intracel-
lular pathogens. The IRG gene family contains 21 copies
arranged as tandem gene clusters on two chromosomes in the
C57BL/6 mouse genome but has been reduced to only two
copies in humans: IRGC and IRGM. IRGC is not involved in
immunity, but the human IRGM gene plays a role in
autophagy-targeted destruction of Mycobacterium tuberculosis
(BCG) and Salmonella typhimurium. Variant IRGM haplo-
types have been associated with increased risk for Crohn’s
disease and correlated with differential expression of IRGM

transcripts. This article reviews in detail the studies performed
on human samples, in vitro, and in sequence analyses that
provide evidence for the unusual evolutionary history of the
IRGM locus and the important role of the IRGM gene in
autophagy and Crohn’s disease in response to pathogenesis.
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Introduction

Immunity-related GTPases (IRG) are one of the strongest
pathogen-resistance systems in mouse, but they can be
found as multiple tandem copies in the genomes of most
mammalian species. The gene family is induced by
interferons in mouse and dog cells and has been implicated
in innate resistance against a wide variety of intracellular
pathogens including Listeria monocytogenes, Toxoplasma
gondii [1, 2], Mycobacterium tuberculosis [3], Salmonella
typhimurium [4], and Chlamydia trachomatis [4–9].

In the C57BL/6 mouse genome, IRG genes are
organized as tandem gene clusters mapping to chromo-
some 11 and 18. Irgc, which is likely not associated with
immune resistance, is found on chromosome 7. The IRG
family consists of a total of 21 IRG genes in mouse, a few
of which are probably or certainly pseudogenes [10, 11].
The IRG proteins have an N-terminal GTP-binding
domain (G-domain) and a highly variable C-terminal
region. The G-domain of the IRG family comprises all five
classical GTP-binding motifs (Fig. 1) [12]. IRG genes
have no homology to other GTPases except for the
conserved G-domain. Both N- and C-terminal regions
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have characteristic features that distinguish this family
from other P-loop GTPases [13]. The IRG proteins can be
grouped into two structural subfamilies, named GMS and
GKS, based on an unusual amino acid substitution in the
G1 motif (GX4GK/MS) [14]. The GMS proteins, Irgm1,

Irgm2, and Irgm3 (GMS subfamily), carry a methionine
(M) instead of lysine (K) in their G1 motif (Fig. 1). This
amino acid replacement (GKS to GMS) is a unique feature
of the GMS type proteins [10]. All other P-loop GTPases
have a canonical lysine (K) residue, which is important

Fig. 1 Multiple sequence alignments of the GTPase domains of IRG
proteins. Sequences of GTPase domains of IRG proteins, Irga6
(AJ007971), Irgb6 (L38444), Irgb10 (M63630), Irgm1 (U19119),
Irgm2 (AJ007972), Irgm3 (U53219), human IRGM (ACF21844), and
H-Ras-1 (P01112), showing close homology, aligned on the known
secondary structures of Irga6 (IIGP1) [12]. Canonical GTPase motifs

are indicated in red boxes. IRGM (a–e) splicing isoforms are presented
after the splice region, and highlighted sequences in green in the G1
motif of GMS proteins indicate the unusual methionine residue that is
unique for the IRG proteins. Multiple alignments are calculated using
the server Clustal-W (EBI) and manually edited. The alignment is
highlighted with boxshade server using the default options
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for the coordination of the phosphates in bound GTP
[13].

Interestingly, the family of IRG genes has been reduced
to only two copies in the human genome and only the
IRGC gene on chromosome 19 appears to be complete.
IRGC is 89% identical at the protein level to mouse Irgc,
the isolated member of the mouse GKS subfamily on
chromosome 7, and is syntenic between the two species
[10] (Rohde et al., manuscript in preparation). Neither
murine Irgc nor human IRGC is induced by interferon, and
mRNA expression is restricted to the testes in both species
(Rohde et al., manuscript in preparation). The second
human IRG gene, IRGM, is a fragment on human
chromosome 5 in a region syntenic to both mouse
chromosomes 18 and 11. IRGM encodes an N- and C-
terminally truncated G-domain that is homologous to the
mouse Irgm genes in the GMS subfamily and also carries
the characteristic methionine in the G1 motif (see above
and Fig. 1) [10].

The human IRGM gene

Human IRGM mRNA transcripts can be found in five
different 3′-splicing isoforms (IRGM a–e), extending more
than 30 kb 3′ of the long coding exon. By a combination of
genomic and expressed sequence tag database analysis, in
conjunction with 5′- and 3′-rapid amplification of cDNA
ends (RACE) analysis from cultured human cell lines

(HeLa and HEK 293), it was possible to clone different
transcripts containing the G-domain of IRGM [10, 15]
(Figs. 1 and 2). Yet none of the spliced transcripts extended
beyond the G-domain of classical IRG proteins. Attempts
to identify other splicing isoforms failed, perhaps due to the
low level of IRGM mRNA expression in cultured cell lines.
Therefore, it might be possible to find additional spliced
forms of IRGM, especially if different human tissues are
used. However, the protein products of the splice variants
have predicted molecular weights of between 19 and
24 kD, and their expression at the protein level has not
been documented. In most cell types studied to date,
expression of IRGM transcripts is very low and detection
of the endogenous protein has been difficult.

The shortest of the identified transcripts, IRGM (a),
consists of two exons encoding 181 amino acids. IRGM (a)
neglects a splice site immediately downstream of the open
reading frame (ORF) and terminates at a polyadenylation
signal sequence at the beginning of the second intron
(Fig. 2). The longer transcripts, IRGM (b)–(e), include this
splice site and splice the first exon to two or more
downstream exons. IRGM transcripts have a highly unusual
structure with an extended 5′-untranslated region (UTR),
which contains Alu sequence (AluSc), endogenous retrovi-
ral nine (ERV9), and a 3′-UTR that includes alternatively
spliced intronic sequence and exon–intron boundaries
downstream of the putative termination codon in three of
the four spliced forms IRGM (c)–(e). These latter would be
expected to lead to rapid RNA degradation via nonsense-

Fig. 2 A schematic summarizing the location of a sequenced
structural variation and SNP polymorphisms with respect to the IRGM
gene. Associations of the most significant SNPs at the IRGM locus are
depicted. Deletion polymorphism (AC207974 from NA18956
[ABC9]) [15, 26], rs13361189 [19], −1644(TGGG)ins [29],
rs60800371(−308(GTTT)n) [28, 29], rs9637876 [28], rs10065172

[26], rs4958847 [19], rs1000113 [29], and rs11747270 [68] are
included. The positions of the IRGM variants [] are shown starting
from the start codon (build 36/Hg18). The orange-colored SNPs
indicate the variants that are shown to be associated with altered
IRGM expression. The figure is scaled except for the genomic region
(gray)
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mediated decay (reviewed in detail in [16] and [17]; Fig. 2).
However, polyadenylated mature mRNAs from all spliced
isoforms were easily detectable by classical RT-PCR. This
suggests that some other type of regulation might play a
role in controlling the level of IRGM mRNA expression.

In contrast to mouse IRG genes, our experiments failed
to show the induction of the human IRGM gene by
interferons [10] (Bekpen, unpublished results). Therefore,
although IRGM is very similar to the G-domains of the
three mouse Irgm genes, it must be functionally different
from all classical IRG genes by having truncations both in
the N- and C-terminal regions and not being induced by
interferons. This was one of the reasons why IRGM was
initially thought to be pseudogene [10].

IRGM function in infection and association
with pathogenicity

The first evidence indicating that IRGM might be a
functional gene came from the Singh group [18], showing
that IRGM is associated with the autophagy-targeted
destruction of Mycobacterium bovis, BCG [18]. Genome-
wide association scan studies showing a contribution of
IRGM variants (rs13361189 and rs4958847) to Crohn’s
disease (CD) susceptibility followed this remarkable find-
ing [19]. Furthermore, non-coding single nucleotide poly-
morphism (SNP) variants in the IRGM locus were shown to
be associated with an increased risk for CD in different
populations such as British [19, 20], German [21], New
Zealander [22], Italian [23], Dutch, Belgian [24], and
Spanish [25] (Fig. 2). Yet, the question of “how IRGM
variants contribute to CD pathogenesis” remains unre-
solved. Interestingly, McCarroll and colleagues [26]
showed that the IRGM SNP variant (rs13361189) was
perfectly correlated (r2=1.0) with a structural polymor-
phism 20.1 kb upstream of the human IRGM gene (Fig. 2).
The structural variant deletion polymorphism was signifi-
cantly associated with CD (172 cases and 344 controls, p<
0.01) and the deletion allele was shown to be correlated
with differential expression of IRGM in culture cells [15,
26]. They [26] also confirmed that reduction in the IRGM
mRNA expression in culture cells was associated with an
impairment of induction of autophagy and the clearance of
intracellular pathogens (S. typhimurium) [27]. Most recent
evidence indicates that the other variants of the IRGM locus
and especially variations in the promoter region maybe
correlated with differential expression (Fig. 2) [28, 29]. For
example, in another study [28], IRGM variant rs9637876
(−261 T), which lies within the AluSc region, was
significantly associated with increased levels of expression
and contributes to protection from intracellular pathogen M.
tuberculosis but not Mycobacterium africanum strains that

are the cause of tuberculous disease. It is therefore
reasonable to assume that the function of the IRGM gene
might be directly or partially related to the level of IRGM
mRNA expression. Furthermore, of most significant SNPs
associated with CD, rs11747270 is located 280 bp upstream
from the beginning of the fourth exon of IRGM (position
150.239.060 (build 36/hg18); Fig. 2). Given that this is
very close to the splice-acceptor region and strongly
associated with CD, it might be critical for spliceosome
assembly and therefore determine the type of the spliced
isoforms that are expressed. Additionally, one CD associ-
ated variant, which is a deletion allele upstream of IRGM
[26], was shown to be correlated with altered expression of
spliced isoforms of IRGM (Fig. 2) [15]. Thus, we can also
suggest that alternative splicing of IRGM may be a
mechanism critical for regulating the level of IRGM
transcripts and thereby controlling pathogen loads. Howev-
er, the role of IRGM variants associated with altered
expression of IRGM in CD pathogenesis remains to be
explained. Direct functional and molecular analyses are
required to resolve the contribution of the IRGM variants to
CD pathogenesis. Examples of such analyses have been
performed for other immunity-related genes (e.g., NOD2
[30, 31], IL-10 [32], CYLD [33, 34], and ATG16L1 [35]),
and the associated genetic variations were indeed shown to
contribute to the development of intestinal diseases such as
CD and ulcerative colitis. This contribution of IRGM genetic
variants to CD or ulcerative colitis pathogenesis may be due
to aberrant immune reactions or partial loss of immune
tolerance to the intestinal commensal bacteria, but at present,
there is no mechanistic insight into the basis of such effects.

Evolution of IRGM

Recently, we have shown that IRGM has had an unusual
evolutionary history (Fig. 3) [15]. Briefly, our analyses
suggest that the human IRGM gene was pseudogenized
approximately 50 million years ago (mya) as a result of an
Alu insertion event that disrupted its ORF. In all Old World
and New World monkeys, the gene is non-functional.
However, in the ancestor of apes and humans, function of
IRGM was restored, presumably by the integration of an
ERV9 element at a region 5′ upstream of the IRGM locus
[15]. This is a rare case in primate evolution where a
functional gene has been pseudogenized for millions of
years and then brought back to function. In some species,
such as the gibbon, evidence for both the functional and
non-functional state exists [15, 36]. Nonetheless, it is still
unclear when IRGM was truncated and lost its ability to be
stimulated by interferon in the common ancestor of
anthropoids in the primate lineage. Having a start codon
at the very beginning of the long exon, a few bases
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downstream from the splice acceptor are typical of the IRG
genes [10]. The ORF of IRGM is disrupted by the same
AluSc sequence insertion in all anthropoids tested. Alu
elements are the most abundant mobile elements in the
human genome. Most Alu repeats in the primate lineage
were duplicated more than 40 mya, with a rate of
approximately one new Alu insertion in every primate birth
during early evolution [37]. According to latest evidence
from Price and colleagues [38], the main AluSc expansion
in primate genome was observed between 32 and 40 mya,
which is somewhat later event than the split of the
anthropoids from prosimians. It is perhaps the AluSc

insertion event at the early period of primate phylogeny
that may be the reason why IRGM is truncated and has lost
interferon stimulation.

As mentioned above, the beginning of the 5′-UTR of the
IRGM transcript is similar to the U5 region of an ERV9
element. The promoter region corresponds to the ERV9 U3
long terminal repeats without interferon response elements
[10, 15]. It is surprising to see that the ERV9 insertion event
at 5′ region of the IRGM gene coincided with its
resurrection [15]. ERV9 elements have been shown to play
a role in regulating transcription, and ERV9-driven expres-
sion is very efficient in embryonic and hematopoietic cells

Fig. 3 The evolutionary history of the IRGM [15]. Approximately
50–60 mya the IRG family existed as a tandem gene family that is
contracted to a single copy within the catarrhine lineage where the
gene was pseudogenized in Old World (OWM) and New World
monkey (NWM) species but then restored its open reading frame
(ORF) in the human/ape lineage (with the exception of the orangutan
species, which is polymorphic for both functional and pseudogenized
versions of IRGM). Evolutionary and phylogenetic analyses support a
model where the gene has been “dead” for at least 25 Ma of human

primate evolution. This rebirth or restoration of the gene coincided
with the insertion of an endogenous retrovirus that now serves as the
functional promoter driving human gene expression. Asterisk of the
five gibbon species analyzed, H. gabriellae shows a heterozygote stop
codon. In human and African great ape, the functional copy becomes
fixed. Frameshift mutation (Fs) and stop codons are indicated. The
genomic loci are not drawn to scale with the exception of the full-
length sequence of the IRGM ORF
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[39–41]. The function of ERVs in humans is not known.
However, some data suggest that human ERVs may be
involved in the prevention of infections with related
exogenous retroviruses or act as pathological agents in
certain autoimmune disorders [40, 42]. ERV9 is an
endogenous retroviral element belonging to a family
containing at least 14 different subfamilies and is specific
to primates. The appearance of ERV9 was calculated to be
as early as 40 mya. The main expansion in primates was
observed at approximately 10–20 mya [43, 44]. Interest-
ingly, the promoter and transcriptional structure of the
IRGM gene is very similar to the ZNF80 gene [45, 46].
Thus, it can be assumed that the ERV9 integration to the
promoter region of human IRGM in the hominoid lineage
happened during the expansion period of the retroviral
element within the primate lineages.

Of note, there is a long-term (TGA/CGA) polymorphism
in six out of 12 orangutan individuals that were studied and
in one out of five gibbon species (Hylobates gabriellae).
The polymorphism generates functional (CGA) and non-
functional (TGA-stop) codons in IRGM gene copies in
Pongo pygmaeus (Fig. 3). However, it should be noted that
of the 12 orangutan individuals analyzed, none carried
homozygous non-functional (TGA) alleles. This unusual
situation might be explained by long-term balancing
selection maintaining polymorphisms in the IRGM gene.
For example, in Arabidopsis thaliana [47, 48], the plasma
membrane protein, RPM1, is responsible for recognition of
Pseudomonas syringae (pathogen for plants). Susceptible
individuals do not have the coding region of RPM1, and
both susceptibility (RPMI-) and resistance alleles (RPM1+)
are present together worldwide within natural populations.
Tian and colleagues generated independent transgenic lines
expressing RPM1 and showed that all the transgenic plants
have fitness a loss of about 9% reduction in total seed
production [49]. Similarly, Mx1 is a resistance factor
against a variety of viruses in mouse, and mice lacking
the entire Mx1 gene are susceptible to influenza viruses. Of
all the standard laboratory mouse strains, only A2G and SL/
NiA carry the Mx1− allele. However, wild mice possess the
Mx+ and Mx− alleles at roughly equal frequencies [50–52].
The present/absent polymorphism of Mx1 suggests that
expression of Mx1, like RPM1, might have high fitness
cost. However, as with the IRGM gene, there is as yet no
direct evidence for a fitness cost of the Mx1 gene in mice.

Conclusion and perspective

The IRG family has periodically expanded to multiple
members by segmental duplications, yet reduced to very
few genes during the course of primate evolution [10]. It is
very hard to prove whether the AluSc insertion or the

fitness cost of IRG proteins was primarily responsible for
the disappearance of the family. However, the three GMS
proteins, Irgm1, Irgm2 and Irgm3, are shown to be essential
regulators of the GTPase cycle of the GKS proteins [53].
Regulator effects of GMS proteins are so important that if
one of the three GMS regulator proteins is absent, the GKS
effector proteins form GTP-bound aggregates so that they
can no longer perform their function of relocating to the T.
gondii vacuole and initiating vacuolar disruption [54, 55]. It
seems that all three GMS proteins must be present for
normal functional behavior of the other 18 members of the
IRG family (GKS proteins) [53]. Even more strikingly, loss
of Irgm1 results in an interferon-dependent collapse of the
lymphomyeloid system during infection, causing general-
ized immunoincompetence and an early death [56–58].
Thus, it is reasonable to suggest that the disruption of one
of the GMS proteins (Irgm1, Irgm2, or Irgm3) by AluSc
insertion was perhaps responsible for the extinction of the
entire family of IRG proteins from anthropoids leading to
human lineage at primate phylogeny.

Yet, the question of “How is the function of the IRG
gene family replaced in humans?” remains to be explained.
All the innate immune mechanisms, such as nitric oxide
and oxygen radicals [59, 60], tryptophan depletion [61, 62],
cation depletion [63], autophagy [64], and TLRs [65], are
present in the mouse as well as in human. It is conceivable
that one or more of the mechanisms listed above may fill
the gap left by the loss of the IRG genes in man [66].
However, there are a variety of other gene families that are
specifically expanded by segmental duplication in the
primate lineage ([67] and Bekpen unpublished results).
One may hypothesize that one of these primate or
hominoid-specific gene families might replace the mecha-
nism of IRG family in man. Future functional and
evolutionary analyses are required to determine whether
such an event arose during primate evolution.
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