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Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for

causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at

least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of

17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, micro-

cephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 30 AUTS2 deletions.

This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain.

Consistent with our genetic data, suppression of auts2 in zebrafish embryos causedmicrocephaly that could be rescued by either the full-

length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish

a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology.

The zebrafishmodel provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in

the future.
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Introduction

Neurodevelopmental disorders, including intellectual

disability (ID) and autism, have a strong genetic compo-

nent, but only a few of the underlying genes have been

identified. Candidate-gene discovery has accelerated in

recent years by the implementation of high-resolution

genomic arrays. However, detected copy-number variants

(CNVs) often either encompass multiple genes or are too

rare to provide causal evidence for a particular candidate

transcript. Autism susceptibility candidate 2 (AUTS2),

located on 7q11.22 (MIM 607270), represents such an ID

candidate with inconclusive evidence for causality.

AUTS2 was first identified as a candidate for neurocogni-

tive defects because a translocation-breakpoint analysis in

twins with autism, developmental delay, and epilepsy

showed that one of the breakpoints disrupted AUTS2.1

Besides the twins, seven additional cases have now been re-

ported to have a disrupted AUTS2 coding region: four indi-

viduals with a translocation breakpoint,2,3 one with an

inversion breakpoint disrupting AUTS2,2–4 and two with

intragenic deletions.2,5 These individuals manifested ID

and developmental delay (all nine), dysmorphic features

(six), autism (four), and skeletal abnormalities (three).

This overview does not include persons with intronic dele-

tions in AUTS2 because the functional significance of such

intronic variation is unclear.6

Complicating the candidacy of this locus, some of the

genomic rearrangements affecting AUTS2 disrupt other

genes as well. A combination of cytogenetic and

sequencing studies suggested that CNTNAP2 (7q35) might

be causal in an individual with a 7q inversion disrupting

AUTS2 and CNTNAP2 (MIM 604569);4 likewise, for three

larger multigenic de novo deletions (in the DECIPHER

database) encompassing AUTS2, it is unclear whether the

disruption of AUTS2 alone drives the phenotype.7 The

data presented by Nagamani et al.5 on two individuals

with intragenic deletions suggest that deletions in AUTS2

alone might be pathogenic. However, the number of

affected individuals was too small to exclude the role of

other genes or to delineate a phenotype.5 Here, we present

direct evidence from both clinical and genetic data and

animal studies for the causal relation of AUTS2 with an

ID syndrome and delineate the associated phenotype.

Furthermore, we provide evidence that functional

elements in the C terminus of AUTS2 are major contribu-

tors to both the neurodevelopmental and craniofacial

phenotypes of individuals with C-terminal deletions or re-

arrangements at this locus.
Subjects and Methods

Subjects
Routine diagnostic array comparative genomic hybridization

(CGH) was performed for ID and/ormultiple congenital anomalies

(MCAs) for a total of 49,684 individuals across ten diagnostic
The Americ
centers in The Netherlands, Belgium, Great Britain, the United

States, and Canada (each center used their standard diagnostic

platform; in total, six analogous platforms were used). In some

of these individuals, karyotyping was also performed. From this

cohort, we selected all individuals with a deletion involving

AUTS2, as well as one person with a translocation and another

person with an inversion in which one of the breakpoints was

in AUTS2. To map the region further and to delineate the associ-

ated phenotypes, we obtained peripheral-blood samples and

collected clinical information through either medical letters or

a data sheet filled in by the referring physicians with approval of

the local medical ethical committee. Results were confirmed

with different methods (high-density array, multiplex ligation-

dependent probe amplification [MLPA], and fluorescence in situ

hybridization [FISH]) depending on the laboratory (see Tables S1,

S2, and S3, available online). Exact breakpoint delineation of the

translocation with one breakpoint in 7q11.22 was performed

with FISH, and the inversion was characterized with whole-

genome sequencing, as previously described.8–10 Informed

consent was obtained from parents or caregivers as appropriate,

and specific consent for publishing photographs was obtained

from all individuals whose photographs are shown here. Institu-

tional approval of the local medical ethical committee was ob-

tained as well. Individuals with a confirmed exonic deletion or

a genomic rearrangement involving AUTS2 and available clinical

data were included for phenotypic studies.
Controls
To assess the frequency of AUTS2 deletions within a large general

population, we analyzed CNV data of 16,784 subjects from several

control groups. A total of 4,783 DNA samples from the Wellcome

Trust Case Control Consortium 2 (WTCCC2) were analyzed with

a SNP array. This control group included individuals who had

been nationally ascertained and regarded as healthy from the

1958 Birth Cohort and the UK Blood Service collection (October

26, 2011).11 Further control CNV data from 8,329 cell-line- and

blood-derived controls were obtained primarily from genome-

wide association studies of nonneurological phenotypes. Because

these included 2,090 controls from the UK Blood Service collec-

tion, this set added only 6,239 unique controls. Although these

data were not ascertained specifically for neurological disorders,

they consist of adult individuals who provided informed consent

as described previously.12 In addition, publicly available data from

HapMap phase 3 (October 26, 2011), which consists of 1,056

healthy controls from 11 different populations, were checked for

deletions involving AUTS2.13 CNV data were available from the

following four control sets: The Ottawa Heart Institute (OHI)

controls (n ¼ 1,234) from Canada, POPGEN controls (n ¼ 1,123)

from Germany, SAGE controls (n ¼ 1,287) from the United States,

and the Low-Lands-Consortium controls (n ¼ 981) from The

Netherlands.13–15 See Table S4 for details on all cohorts and the

array platforms used. The array platforms used for controls have

the same or a comparable resolution as the platforms used for

cases. The number of deletions found in the cases was compared

to that in the controls with a Fisher’s exact test.
Genotype-Phenotype Correlations
We received clinical data from 17 individuals and 4 family

members carrying an exonic AUTS2 disruption. We used these

individuals to identify features that occurred in at least two unre-

lated individuals, i.e., features with a minimal frequency of 10%.
an Journal of Human Genetics 92, 210–220, February 7, 2013 211



A recent systematic review of Oeseburg et al.16 showed that in

a general ID cohort, the most frequent additional health condi-

tions (epilepsy and cerebral palsy) are as frequent as 20%, but

the remainder of the comorbid clinical features (including autism

and a congenital malformation in general) are seen in less than

10%.16 Therefore, a frequency of 10% for a specific feature in

this AUTS2 cohort is an enrichment compared to ID cases in

general. These recurrent features were scored for all individuals

and family members carrying the familial deletion, and asymmet-

rically occurring features were counted as positive. The sum of

positive features was counted for each individual and was defined

as his or her individual AUTS2 syndrome severity score.

Becausedeletionsorgenomic rearrangements affecting the30 end
of the AUTS2 coding sequence seem to be associated with a more

severe phenotype, persons with exonic deletions were categorized

in two groups depending on whether the deletion disrupted the

highly conserved AUTS2 segment (containing exons 9–19) that is

also encoded by the alternative 30 transcript (see Alternative Tran-

scription Start Sites below and the Results). We used a Kolmo-

gorov-Smirnov test to test whether the corresponding AUTS2

syndrome severity scores for these twogroups differed significantly.
Alternative Transcription Start Sites
To search for an explanation for the observed genotype-pheno-

type trend, we first determined the evolutionary conservation of

human AUTS2 exonic sequences. We used the following species

for comparison: gorilla (Gorilla gorilla; gorGor3), macaque (Macaca

mulatta; Mmul_1), dog (Canis familiaris; Broadd2), cow (Bos taurus;

Btau_4.0), pig (Sus scrofa; Sscrofa9), mouse (Mus musculus;

NCBIM37), chicken (Gallus gallus; Washuc2), clawed frog (Xenopus

tropicalis; JGI_4.2), and zebrafish (Danio rerio; Zf9). Accession

numbers of protein sequences are ENSGGOP00000011519,

ENSMMUP00000023254, ENSBTAP00000002697, ENSSSCP0000

0008253, ENSCAFP00000016549, ENSMUSP00000062515, ENSG

ALP00000001729, ENSXETP00000007747, and ENSDARP00000

073379. Two different methods were used. We first aligned the

predicted protein of the longest isoform in humans to the pre-

dicted amino acid sequences of the orthologous species by using

MUSCLE v.3.8 software.17 For that purpose, we downloaded

sequences from the latest builds from Ensembl. Then, to detect

similarity in nonannotated or noncoding genomic DNA, we

used the tblastn algorithm (see Web Resources) with the human

amino acid sequence as query.18 The degree of homology was

calculated as the percentage of identical amino acids.

Second, we searched for putative alternative transcription start

sites (TSSs) that were associated with a shorter 30 isoform in the

human brain. We used mRNA from the caudate nucleus and the

medial frontal gyrus from one donor provided by the Dutch Brain

Bank and performed a replication experiment by the same proce-

dure on a mRNA sample from the medial frontal gyrus of a second

donor. Rapid amplification of 50 cDNA ends (50 RACE) was per-

formed with the Ambion FirstChoice RLM-RACE kit according to

the manufacturer’s instructions. Nested PCR amplification was

performed with 50-ATGTCTTCGGCTGAAATGCT-30 as the outer

AUTS2-specific reverse primer and 50-GGAAGAGACTGTGCCGG

TAG-30 as the inner primer (Figures S1A and S1B).
Knockdown and Rescue Experiments in Zebrafish

Embryos
To investigate the role of AUTS2 in the regulation of head size,

neuronal development, andmorphology in general, we performed
212 The American Journal of Human Genetics 92, 210–220, February
zebrafish knockdown experiments. Zebrafish (Danio rerio) embryos

were raised andmaintained as described.19 Splice-blocker morpho-

linos (MOs) against the AUTS2 ortholog auts2 were designed and

obtained from Gene Tools (Table S5). We injected 1 nl of diluted

MOs (4.5 ng for the 50 MO targeting the exon 2 donor splice and

6 ng for the 30 MO targeting the exon 10 donor splice) and/or

100 pg of mRNA into wild-type zebrafish embryos at the 1- to

2-cell stage (n ¼ 50–100 embryos per injection dose) and per-

formed RT-PCR to measure efficiency of the splice blocking. In-

jected embryos were scored visually at 3 days postfertilization

(dpf) and classified as normal or microcephalic on the basis of

the relative head size compared with that of age-matched controls

from the same clutch. For rescue experiments, the human wild-

type mRNAs (full-length or short transcript [GenBank accession

numbers JQ670866 and JQ670867, respectively]) were cloned

into the pCS2 vector and transcribed in vitro with the SP6Message

Machine kit (Ambion); 100 pg of the human wild-type mRNAs

were coinjected with the MOs. All experiments were repeated

three times and evaluated statistically with a Student’s t test.

Alcian-blue staining of cartilaginous structures was performed

for investigating the morphology of the head. Zebrafish embryos

were fixed with 4% paraformaldehyde (PFA), and the cartilage

structures were visualized by Alcian-blue staining according to

an established protocol.20 Further, whole-mount immunostain-

ings with either HuC/D (postmitotic neurons) or phosphohistone

H3 (proliferating cells) were performed for investigating neuronal

development and head-size regulation at a cellular level. Embryos

were fixed in 4% PFA overnight and stored in 100% methanol at

�20�C. After rehydration in PBS, PFA-fixed embryos were washed

in immunofluorescence (IF) buffer (0.1% Tween-20 and 1% BSA in

PBS 13) for 10 min at room temperature. The embryos were incu-

bated in the blocking buffer (10% FBS and 1% BSA in PBS 13) for

1 hr at room temperature. After two washes in IF buffer for 10 min

each, embryos were incubated in the first antibody solution, 1:750

anti-histone H3 (ser10)-R (sc-8656-R, Santa Cruz) or 1:1,000 anti-

HuC/D (A21271, Invitrogen), in blocking solution overnight at

4�C. After two washes in IF buffer for 10 min each, embryos

were incubated in the secondary antibody solution, 1:1,000 Alexa

Fluor donkey anti-rabbit IgG and Alexa Fluor goat anti-mouse IgG

(A21207, A11001, Invitrogen), in blocking solution for 1 hr at

room temperature. Staining was quantified by the counting of

positive cells in defined regions of the head and with ImageJ

software.
Results

Genotypes

To assess the candidacy of AUTS2 in cognitive impairment

in humans, we examined the AUTS2 region in 49,684 indi-

viduals with ID and/or MCAs by using array CGH and/or

karyotyping. We identified 44 deletions encompassing at

least part of AUTS2 and a maximum of two other genes

(WBSCR17 and CALN1 [MIM 607176]), and conventional

karyotyping revealed one translocation and one inversion

each with one breakpoint in AUTS2 (Table S1). AUTS2-en-

compassing duplications found in this cohort were not

included in this study because the functional relevance

of these lesions is unclear. Twenty-four deletions were

found to include at least one AUTS2 exon, whereas another

17 did not. For the remaining three deletions, it was
7, 2013



Figure 1. Overview of AUTS2 Aberrations in the Probands
The location of the deletions is indicated by the red bars, the inversion breakpoint is indicated by an arrowhead, and the translocation
breakpoint area is indicated by the red horizontal bracket. CNVs extracted from the Database of Genomic Variants are in purple (CNVs
found in bacterial-artificial-chromosome studies are not included). The AUTS2 syndrome severity score of the probands is shown on the
right. Darker shades indicate a more severe and/or more specific phenotype. Color coding of AUTS2 syndrome severity scores is as
follows: white, <7; light gray, 7–12; gray, 13–18; and dark gray, >18. See also Figure S2 and Table S7.
unclear whether they included an exon because of the

limited resolution of the array. For these three individuals,

we had no consent to perform further studies.

Overall, in our cohort of 49,684 affected individuals, we

identified 24 persons (0.05%) harboring deletions disrupt-

ing the coding sequence. To assess the significance of this

observation, we analyzed 16,784 controls from 12 cohorts

by using arrays with high-density coverage of the AUTS2

locus (Table S4). Although nine deletions were found,

none of them disrupted an AUTS2 exon (Table S6). The

difference between exonic deletions in the cases (24/

49,651) and those in controls (0/16,784) was highly signif-

icant (p ¼ 0.00092), suggesting that exonic disruptions of

AUTS2 give rise to a highly penetrant phenotype in hu-

mans. This is supported by CNV data from the latest

version of the Database of Genomic Variants (August 25,

2012), wherein none of the array-based studies show

CNVs that disrupt an exon, and by the fact that none of

the 24 probands with an exonic AUTS2 deletion had

a rare de novo CNV at another locus (Table S1).

We were able to obtain phenotypic data from 15 out of

24 probands with an exonic AUTS2 deletion (cases 1–15),

from the inversion case (16) and the translocation case

(17) with one breakpoint in AUTS2, as well as from four

family members carrying the familial AUTS2 deletion. In

these 17 probands, MLPA, FISH, high-density array CGH,

and breakpoint sequencing confirmed the aberrations

and further delineated the breakpoints. (Figure 1 and

Table S1).
The Americ
In total, 21 individuals from 17 families were included in

our genotype-phenotype study (Table S7). In 8 (cases 5, 8,

10, 12, 14, 15, 16, and 17) out of 11 probands in which

both parents were available for genetic testing, the

AUTS2 aberrations occurred de novo; the other three

probands inherited the AUTS2 deletion from an unaffected

parent (case 1) or an affected parent (cases 4 and 6). In six

probands (cases 2, 3, 7, 9, 11, and 13), the inheritance

status of the AUTS2 deletion could not be fully resolved

because one or both parents were unavailable for testing.

Of the ten individuals with an intragenic deletion (not

including the first and last exon), four probands (cases 6,

7, 8, and 11) carried a deletion predicted to cause a frame-

shift, whereas the other six individuals (cases 1, 2, 3, 4, 9,

and 10) carried in-frame deletions. Finally, in case 14, the

deletion also included one downstream gene (WBSCR17),

and in cases 13 and 15, the deletions also affected two

downstream genes (WBSCR17 and CALN1) (Figure 1, Table

S7, and Figure S2).

Phenotypes

Next, we asked whether there were any recurrent pheno-

typic features associated with AUTS2 disruptions. All 17

probands from whom detailed clinical data were available

had ID and/or developmental delay; this had been the

reason for diagnostic testing. One of the parents (the

mother of case 4) carrying an AUTS2 deletion had learning

difficulties, one (the mother of case 6) had mild ID, and

one (the father of case 1) had normal intelligence. Seven
an Journal of Human Genetics 92, 210–220, February 7, 2013 213



Figure 2. Facial Characteristics of Cases with an AUTS2 Aberration
(A) Case 1 at age 3 years shows no dysmorphic features.
(B and L) Front (B) and side (L) views of case 4 at age 2.5 years show a repaired cleft lip, mild proptosis, and short and mild upslanting
palpebral fissures.
(C) The mother of case 4 shows a repaired cleft lip, ptosis, and retrognathia.
(D) Case 5 at age 3 years shows highly arched eyebrows, mild downslanting palpebral fissures, epicanthal folds, and a short philtrum.
(E, F, M, and N) Front (E) and side (M) views of case 6 at age 6 years. She is hyperteloric and has ptosis and downslanting palpebral
fissures, a short philtrum, and a narrow mouth similarly to her brother, shown in (F) and (N) at the age of 10 years.
(G and O) Front (G) and side (O) views of case 9 at age 32 years show hypertelorism, proptosis, upslanting palpebral fissures, a short
upturned philtrum, and a narrow mouth.
(H) Case 10 at age 2 years shows a prominent nasal tip, anteverted nares, and a short philtrum.
(I and P) Front (I) and side (P) views of case 13 at age 5.5 years show hypertelorism, ptosis, a broad nasal bridge, a short and upturned
philtrum, and a narrow mouth.
(J, K, andQ) Case 15 at age 1 year (J) and 4.8 years (K andQ) shows a broad nasal bridge, short palpebral fissures and a short philtrum, and
a narrow mouth. See also Table 1 and Table S7.
probands (cases 2, 5, 9, 12, 13, 16, and 17) were diagnosed

with autism spectrum disorder or showed autistic behavior.

In addition to the expected neurocognitive defects, we also

observed a constellation of other recurrent clinical features

in individuals with exonic deletions. These included

microcephaly (14 individuals), short stature (12), feeding

difficulties (10), hypotonia (8), and cerebral palsy (9). We

also found recurrent dysmorphic features: hypertelorism

(10), proptosis (6), ptosis (8), short palpebral fissures (8),

epicanthal folds (7), a short and/or upturned philtrum

(8), micrognathia (7), and a narrow mouth (12). Less

frequent features were skeletal abnormalities including

(signs of) arthrogryposis (3), umbilical or inguinal hernia

(2), and heart defects (3) (Figure 2 and Table 1). The striking

phenotypic complexity and variable size and position of
214 The American Journal of Human Genetics 92, 210–220, February
the CNVs prompted us to evaluate the clinical information

from the 17 probands and 4 family members carrying the

familial AUTS2 deletion included in this study to derive

pathology scores on the basis of simple, objective criteria;

we summarized these as the ‘‘AUTS2 syndrome severity

score’’ (the maximum score is 32). Even though this para-

digm is a crude approximation of the phenotypic diversity

at this locus, we nonetheless observed dichotomization of

phenotypes. Cases and family members 1–4, (all with 50 in-
frame deletions) scored significantly lower (median AUTS2

syndrome severity score ¼ 5) than did cases (5–17) and

family members with deletions of downstream exons,

whole-gene deletions, or exons 1–4 deletions including

the initiation codon (median AUTS2 syndrome severity

score ¼ 12) (Figures 1 and 3 and Table S7). This difference
7, 2013



Table 1. Clinical Features Characterizing the Individuals with
AUTS2 Syndrome

Clinical Features

Cases

This Study
(n/total)

Published
(n/total)

General

Age at examination 11 months
to 32 years

3–16 years

Sex 13 female
and 8 male

5 female
and 4 male

De novo occurrence 9/13 (69%) 8/9 (89%)

Growth and Feeding

Low birth weight 7/17 (41%) 2/8 (25%)

Short staturea 12/20 (60%) 4/9 (44%)

Microcephalyb 14/20 (70%) 1/6 (17%)

Feeding difficulties 10/21 (48%) 4/5 (80%)

Neurodevelopmental Features

Intellectual disability and/or
development delay

20/21 (95%) 9/9 (100%)

Autism or autistic behavior 7/21 (33%) 4/6 (67%)

Sound sensitivity 2/8 (25%) 2/4 (50%)

Hyperactivity and/or ADHD 3/21 (14%) 1/4 (25%)

Neurological Disorders

Generalized hypotonia 8/21 (38%) 4/7 (57%)

Structural brain anomaly 3/11 (27%) 4/9 (44%)

Cerebral palsy and/or spasticity 9/21 (43%) 1/4 (25%)

Dysmorphic Features

Highly arched eyebrows 8/21 (38%) 1/5 (20%)

Hypertelorism 10/21 (48%) 0/5 (0%)

Proptosis 6/21 (29%) 2/5 (40%)

Short palpebral fissures 8/21 (38%) 2/5 (40%)

Upslanting palpebral fissures 4/21 (19%) 1/5 (20%)

Ptosis 8/21 (38%) 2/5 (40%)

Epicanthal fold 7/21 (33%) 1/5 (20%)

Strabismus 5/21 (24%) 3/6 (50%)

Prominent nasal tip 5/21 (24%) 2/5 (40%)

Anteverted nares 3/21 (14%) 2/5 (40%)

Deep and/or broad nasal bridge 7/21 (33%) 1/5 (20%)

Short and/or upturned philtrum 8/21 (38%) 5/7 (71%)

Micrognathia and retrognatia 7/20 (35%) 2/5 (40%)

Low-set ears 6/20 (30%) 2/5 (40%)

Ear pit 2/20 (10%) 0/5 (0%)

Narrow mouth 12/21 (57%) 3/5 (60%)

Table 1. Continued

Clinical Features

Cases

This Study
(n/total)

Published
(n/total)

Skeletal Abnormalities

Kyphosis and/or scoliosis 2/9 (22%) 3/5 (60%)

Arthrogryposis and/or shallow palmar
creases

3/20 (15%) 1/3 (33%)

Tight heel cords 5/8 (62%) 1/1 (100%)

Congenital Malformations

Hernia umbilicalis and/or inguinalis 2/21 (9%) 1/9 (11%)

Patent foramen ovale and/or atrial
septum defect

3/21 (14%) 1/9 (11%)

This table shows the frequency of clinical features in AUTS2 syndrome as the
number of affected individuals with this feature (n) in relation to the total
number of individuals for whom information was available for each feature
(total). For a more detailed overview, see Table S7, which also includes an over-
view of cases described in the literature.2–5
aShort stature is defined as height below the tenth percentile.
bMicrocephaly is defined as skull size below the second percentile.

The Americ
was significant regardless of the inclusion or exclusion of

affected family members (p ¼ 0.001 or p ¼ 0.011, respec-

tively).

Detection of a C-Terminal AUTS2 Isoform

The apparent dependence of severity scores on CNV loca-

tion prompted us to evaluate the evolutionary conserva-

tion of each AUTS2 exon (Figures S3 and S4); conservation

was especially high in the 30 gene region. Given the fact

that the ENSEMBL annotation of the AUTS2 sequences

predicts the presence of several splice isoforms, we next

looked for the presence of alternative isoforms in human

brain mRNA. Using 50 RACE, we identified a short 30

AUTS2 mRNA variant starting in the middle of exon 9,

depicted in Figure 4. All transcripts detected employed

the same start site (see also Figures S1C and S1D). The

reading frame of the short transcript is identical to that

of the full-length AUTS2 transcript and is predicted to

encode a polypeptide of 697 amino acids instead of the

1,259 amino acids of the full-length protein. The evolu-

tionary conservation from humans to zebrafish suggests

an important biological function for AUTS2 and, together

with the shorter transcript, gave us the opportunity to

analyze the function of the C terminus of AUTS2 in a zebra-

fish model.

In Vivo Analysis of AUTS2 in Zebrafish Embryos

Taken together, our CNV mapping data, our RACE anal-

yses, and the strong correlation between phenotypic

severity and position of the deletion suggest that the 30

end of the AUTS2 locus contains major functional

elements that are encoded by both the full-length tran-

script and the shorter C-terminal isoform. Microcephaly

is one of the most consistent clinical features in our cases

(14/20; Table 1). We therefore asked whether AUTS2,
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Figure 3. Scatter Plot of the AUTS2 Syndrome Severity Score for
Disruptions Affecting the N or C Terminus of AUTS2
Scatter plot of the AUTS2 syndrome severity score for disruptions
that affect the highly conserved amino acid sequence block en-
coded by exons 9–19 (yes) and the deletions not affecting this
amino acid sequence (no) (see also Table S7 and Figure 4). The
numbers refer to case numbers. The following abbreviations are
used: f, father of patient x; m, mother of patient x; and s, sibling
of patient x (see Table S7). The AUTS2 syndrome severity scores
between these groups of cases differ significantly (p ¼ 0.001, Kol-
mogorov-Smirnov Z test).
particularly the shorter C-terminal isoform, might be

involved in the regulation of head size. Given that we

have shown recently how head-size evaluations in zebra-

fish embryos can serve as a surrogate for the evaluation

of candidate genes for neurocognitive traits,21 we decided

to create a zebrafish morphant for auts2. Using reciprocal

BLAST, we identified a single Danio rerio AUTS2 ortholog

(auts2 on chromosome 10; 62% amino acid identity and

72% similarity with the long isoform of AUTS2)

(Figure 4A). We were able to detect endogenous auts2

message by RT-PCR as early as embryonic 5-somite stage

by using both 50 and 30 primer sets (data not shown).

Next, we designed two splice-blocking morpholinos (sb-

MOs): a 50 MO targeting the splice donor site of exon 2

and a 30 MO targeting the splice donor site of exon 10

(the 50 and 30 MOs were chosen to suppress the full-length

transcript only and both auts2 transcripts [if present],

respectively; see Figure 4A and Figure S5). RT experiments

demonstrated that both sb-MOs affected correct splicing

of the auts2 transcript (Figure S5). Masked scoring of

embryos at 3 dpf showed a reproducible microcephaly

phenotype—53% and 48% for 50 and 30 sb-MOs, respec-

tively (Figures 5A and 5B)—that was concomitant with

the efficiency of splice blocking of the two sb-MOs, as es-

tablished by RT-PCR (Figure S5). The phenotype was
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unlikely to be driven by overall developmental delay;

morphants had a normal appearance with regard to their

pigment cells, there was no apparent pathology in other

internal organs, such as the heart or the swim bladder,

and their body length was indistinguishable from that

of control embryos from the same clutch (Figure 5C).

The phenotype was specific; the observed microcephaly

caused by the two sb-MOs could be rescued efficiently

with coinjection of wild-type human full-length mRNA

(GenBank JQ670866) (Figures 5A and 5B). Strikingly,

microcephalic embryos could also be rescued with the

human short AUTS2 isoform (GenBank JQ670867) in

a manner indistinguishable from that with the full-length

form, indicating that the observed phenotype is driven by

sequences in exons 9–19. We also observed another recur-

rent dysmorphic feature in knockdown zebrafish mor-

phants: micrognathia and retrognathia. To quantify this

defect, we stained embryos injected with either a 50 or 30

sb-MO at 5 dpf with Alcian blue and performed quantita-

tive morphometric analysis of the lower jaw. We observed

a significant reduction of the distance between the Meckel

and ceratohyal cartilages, indicating a reduced lower-jaw

size comparable to the micrognathia and retrognathia

seen in individuals with an AUTS2 disruption (Figures

5D and 5E).

To probe the underlying cause(s) of the microcephalic

phenotype further, we stained embryos at 2 dpf with anti-

bodies against phosphohistone H3, an M phase marker,

and HuC/D, a marker of postmitotic neurons.22 This time

point was selected because it precedes the development

of microcephaly and, as such, allowed us to evaluate the

forebrain prior to gross anatomical defects. We observed

a striking reduction in phosphohistone-H3- and HuC/D-

positive cells in embryos injected with either the 50 or

the 30 MO, as well as loss of bilateral symmetry in HuC/D

protein levels, indicating that the microcephaly pheno-

type is caused by disturbed neuronal proliferation. Both

phenotypes could be rescued with the 30 human mRNA

(Figure 6).
Discussion

Our studies of 49,684 individuals with ID and/or MCAs re-

vealed deletions in AUTS2 in 44 individuals; at least 24 of

these deletions involved exons. In contrast, we only found

nine AUTS2 deletions, none of which were exonic, in

16,784 controls, strongly indicating that intragenic

AUTS2 deletions that disrupt at least a portion of the

coding sequence are a recurrent cause of neurodevelop-

mental defects in humans. The frequency of exonic dele-

tions that we found was 1 in 2,000 cases, comparable

with some of the recurrent deletions described by Cooper

et al.,12 such as the 10q23 deletion (NRG3 [MIM 605533]

and GRID1 [MIM 610659]) and deletions causing Sotos

syndrome (MIM 117550) or Rubinstein-Taybi syndrome

(MIM 180849). This observed frequency is likely to be an
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Figure 4. Exon Organization of AUTS2
and Its Zebrafish Ortholog and Identifica-
tion of a Novel Transcriptional Start Site in
Exon 9 of Full-Length Human AUTS2
(A) Exon organization of AUTS2 orthologs
in humans and zebrafish. Arrows indicate
two TSSs used in human brain mRNA.
The alternative novel TSS is located 1.17
Mb downstream of the standard TSS
in the cluster containing exons 7–19.
Exons 1–6 (zebrafish) represent conserved
sequences that are not annotated in the
current zebrafish genome (for details, see
Figure S4).
(B) Identification of an alternative AUTS2
transcript detected in human brain
mRNA by 50 RACE. The alternative tran-
script starts in the center of exon 9
(asterisk) and contains the indicated
cDNA sequence (in italics). The mRNA
was spliced to exon 10 with the second of
two known splice donor sites in exon 9,
resulting in the incorporation of seven

alternatively spliced amino acids (rectangle). The alternativemRNA uses the same reading frame as the conventional transcript. Conven-
tional exons are in uppercase, and introns are in lowercase. See also Figures S1 and S3.
underestimate because smaller deletions (single-exon dele-

tions and small indels within exons) and nonsense muta-

tions are likely to cause AUTS2 syndrome and are missed

with the techniques used here.

The individuals (cases 1–17) with an AUTS2 aberration

affecting the coding sequence studied here, together with

previously reported cases, allowed us to delineate recurrent

phenotypic features (ID, autism, microcephaly, mild short

stature, feeding difficulties, hypotonia, cerebral palsy, and

dysmorphic features) of the AUTS2 syndrome. Only 1 (the

father of case 1) of the 21 persons studied in detail did not

have any features of the AUTS2 syndrome, indicating

a penetrance of around 95%. Although the phenotype of

the AUTS2 syndrome is variable and the features are some-

times subtle, there are other examples where reverse geno-

mics have shown variable phenotypes associated with the

same locus.23,24 Several lines of evidence support the

causality of AUTS2 deletions for this broad phenotypic

spectrum; these are (1) the significant enrichment of

exonic deletions in cases, (2) the fact that auts2 zebrafish

morphants show microcephaly and smaller lower-jaw

size comparable to the human phenotype (these aberrant

phenotypes can be fully rescued by both full-length and

short 30 human AUTS2 transcript), (3) the fact that no indi-

viduals with an exonic deletion had a second rare de novo

CNV, and (4) the fact that all exonic deletions were de novo

or inherited from an affected parent except for the in-

frame exon 2 deletion of case 1.

Individuals with in-frame exonic deletions in the 50

part of the gene (exons 1–5) showed a milder phenotype

mainly restricted to neurocognitive defects with no or

limited dysmorphology or were normal, like the father

of case 1. In contrast, deletions of the C-terminal part, en-

coded by both the short and full-length transcripts, cause

a more severe phenotype including dysmorphology. This
The Americ
could potentially be related to the gene structure: because

exons 7–19 are closely packed, deletions in this part of the

gene often result in larger disruptions of the coding

sequence. However, we also observed severe phenotypes

in cases with small in-frame 30 deletions, as well as in 30

MO zebrafish, where the shorter 30 transcript was suffi-

cient to rescue the dysmorphology (microcephaly and

smaller jaw size). This might suggest that the C-terminal

part of the protein contains the crucial region for the

observed dysmorphology. It is uncertain whether the

shorter 30 transcript is expressed at sufficiently high levels

to explain the milder phenotype in humans with in-

frame 50 deletions. The milder phenotype might well be

explained by the fact that AUTS2 alleles with these dele-

tions can still be transcribed and can thus result in

a protein that contains the important C-terminal

sequences.

In aggregate, our data indicate that AUTS2 deletions,

particularly when they involve the C terminus, give rise

to a highly penetrant syndrome that includes neurocogni-

tive defects. Our data highlight transcriptional complexity

at the AUTS2 locus and show that careful genomic,

genetic, and functional dissection of such complexity

can offer both clinical and mechanistic insights. Although

little is known about the function(s) of AUTS2 or its iso-

forms, a role in neurodevelopment is suggested by the

reduction of postmitotic neurons and loss of bilateral

symmetry, which both might be driven by neurogenesis

and/or migration defects in the zebrafish auts2 mor-

phants. The zebrafish model can be of great value for

further studies of AUTS2 function and can be helpful for

defining the pathogenicity of specific genomic disrup-

tions.

In conclusion, detailed analysis of the AUTS2 locus al-

lowed us to delineate a hitherto undescribedmicrodeletion
an Journal of Human Genetics 92, 210–220, February 7, 2013 217



Figure 5. Suppression of auts2 in Zebrafish Leads to Small Head Size and Craniofacial Defects
(A) Lateral views of representative control embryos and embryos injected with auts2 MOs.
(B) Quantification of microcephaly was performed in embryo batches injected with 4.5 ng 50 MO (targeting exon 2 donor splice) or 6 ng
30 MO (targeting exon 10 donor splice) plus 100 pg wild-type human AUTS2 full-length (FL) or short isoform (30) mRNAs (n ¼ 56–91
embryos per injection). p values are denoted on the bar graph. The following abbreviation is used: NS, nonsignificant.
(C) No significant difference in body length was observed in auts2 morphants and rescued embryos at 2 dpf. Bars represent the average
length of 30 embryos, which were scored blindly to injection cocktail. Data are shown as the mean 5 SD.
(D) Ventral views of representative control embryos and those injected with auts2MOs (either a 30 or 50 MO) at 5 dpf. Cartilage structures
were visualized by whole-mount Alcian-blue staining at 5 dpf, allowing measurement of the distance between ceratohyal and Meckel’s
cartilages (red lines).
(E) Averaged distance measurements are presented as the mean 5 SEM. The corresponding p values are denoted on the bar graph (two-
tailed t test comparisons). The following abbreviations are used: ch, ceratohyal cartilage; and Mk, Meckel’s cartilage.
syndrome occurring with a frequency that approximates

the frequency of deletions causing Sotos syndrome or Ru-

binstein-Taby syndrome.12 This AUTS2 syndrome has

presumably remained undescribed because (1) the specific
218 The American Journal of Human Genetics 92, 210–220, February
characteristics of the resulting phenotype are subtle,

(2) the severity of the syndrome is highly variable, and

(3) the penetrance is dependent on location and type of

deletion.
7, 2013



Figure 6. Suppression of auts2 Leads to Reduced HuC/D Protein Levels and Fewer Proliferating Cells
(A) Suppressionofauts2 leads to adecreaseofHuC/D levels at 2dpf.Representativephotographs (withHuC/D-antibody staining) showthe
ventral views of a control, an embryo injected with an auts2MO, and a rescued embryo injected with an auts2MOplus 30 human AUTS2
mRNA at 2 dpf. HuC/D levels in the anterior forebrain of the embryo injected with the auts2MOare considerably lower than those of the
control embryo. This defect was rescued significantly by coinjection of full-length (FL) or short isoform (30) human AUTS2mRNAs.
(B) Percentage of embryos with normal, bilateral HuC/D protein levels in the anterior forebrain (blue) or decreased and/or unilateral
HuC/D protein levels (red) in embryo batches injected with auts2 MOs alone or MOs plus human AUTS2 FL or 30 mRNA (MO þ 30

mRNA). p values are denoted on the bar graph.
(C) Phosphohistone-H3 staining for proliferating cells in the zebrafish brain at 2 dpf.
(D) Quantification of phosphohistone-H3-staining intensities from 20 embryos each (control embryos or embryos injected with MOs
alone or MOs plus 30 or 50 human AUTS2 mRNA). Data are represented as the mean 5 SEM. The corresponding p values are denoted
on the bar graph (two-tailed t test comparisons between MO-injected and rescued embryos).
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Accession Numbers

The Gene Expression Omnibus accession numbers for the micro-

array data, the nucleotide sequence of the full-length human

AUTS2 transcript, and the nucleotide sequence of the shorter 30

alternative human AUTS2 transcript reported in this paper are

GSE37657, JQ670866, and JQ670867, respectively.
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