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Supplementary Methods 
1. Sample collection and data generation 
1.1 Data generation and preprocessing 
Cell lines 

Transformed lymphoblast cell lines from three parent-child trios (Supplementary Figure 23) belonging to 
the 1000 Genomes Project were obtained from the Coriell Cell Repository as part of the NHGRI catalog 
(https://catalog.coriell.org/1/NHGRI ).  

PCR-free deep Illumina-sequencing 

Library preparation and sequencing (Contributors: Sau Peng Lee, Ching Lek Koh, Korlach, Munson, 
Eichler, Lee, JE and Lee, C): DNA was extracted and its’ OD260/280 ratio confirmed to be between 1.8 –
2.0. The quality of the DNA was further evaluated by using a PicoGreen® dsDNA Assay (Invitrogen).  DNA 
libraries were prepared according to the Illumina  TruSeq DNA PCR-Free Library prep protocol. For each 
DNA library preparation, 2 ug of high molecular weight genomic DNA was randomly sheared using the 
Covaris S2 system to 550 bp fragments. The fragments were blunt ended, phosphorylated, and a single 'A' 
nucleotide was added to the 3' ends of the fragments in preparation for ligation to an adapter that has a 
single-base 'T' overhang. Adapter ligation at both ends of the genomic DNA fragment conferred different 
sequences at the 5' and 3' ends of each strand in the genomic fragment.  The quality of the DNA libraries 
was verified by capillary electrophoresis (Bioanalyzer, Agilent), clustered on the Illumina cBOT station and 
paired-end sequenced for 125 cycles on the HiSeq 2500 sequencer according to the Illumina cluster and 
sequencing protocols. 

Sequence data processing (Contributors: Fairley, Clarke, Zheng, Lowy and Flicek): In addition to 
data coordination and distribution, the International Genome Sample Resource (IGSR)1 provided alignment 
of Illumina whole-genome sequence data (PCR-free high coverage[SF1] ) from the nine individual genomes. 
Data was aligned to the GRCh38 assembly in an alt-aware manner using bwa-mem2. Details of the pipeline 
are in this file: 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/README.Illumina_wgs.GRC
h38.alignment. The raw data and alignments are listed in the files Illumina_wgs.sequence.index and 
Illumina_wgs.GRCh38.alignment.index in the same directory. 

Further statistics from the alignments can be found in the .bas files that sit alongside the alignment files 
and Supplementary Data 45. 

3.5 Kb Long-insert whole genome sequencing  

Library preparation and sequencing (Contributors: Talkowski, Collins, Brand, Stone, Glessner): We 
generated long-insert whole-genome sequencing (liWGS) libraries for all nine individuals from the three 
HGSVC trios with a protocol that has been previously described3. In brief, 5.0 µg of genomic DNA from 
lymphoblastoid cell lines for each individual was sheared with a Covaris E220 sonicator and size selected 
to a target fragment size of 3,500bp (targeted range: 2,500-5,000 bp). These ~3.5 Kb fragments were 
circularized around a biotinylated adapter oligo and digested with EcoP15I restriction enzyme, followed by 
streptavidin bead-based capture of the biotinylated circularization junction and preparation of fragments for 
Illumina  TruSeq sequencing with paired-end 25bp reads per Illumina’s standard protocols. Sequencing 
was performed on an Illumina HiSeq2500 at The Broad Institute to a mean depth of 191.9 million read-
pairs per library. 

Sequence data processing (Contributors: Talkowski, Collins, Brand, Stone, Glessner): Quality of raw 
sequencing reads was evaluated using FastQC4 prior to alignment, then libraries were aligned against the 
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GRCh37 and hg38 primary assemblies with BWA-backtrack v0.7.10-r7895. Duplicates were marked with 
SAMBLASTER v0.1.16 and all subsequent alignment processing, including sorting and indexing, was 
performed with sambamba v0.4.67. Alignment quality was assessed with the Picard suite v1.115 
(https://broadinstitute.github.io/picard/), Samtools v1.0 8, and BamTools v2.2.29. Library production 
generated an average insert of 3,475bp, and a mean physical coverage of 158.8X per library. Insert size 
distributions and alignment statistics are provided in Supplementary Figure 24 and Supplementary Data 
46. 

7.5 Kb Mate-pair sequencing 

Library preparation and sequencing (Contributors: Stuetz): Long-range (or ‘Mate-pair’) DNA library 
preparation was carried out using the Nextera Mate Pair Sample Preparation Kit (Illumina). In brief, 5µg of 
high molecular weight genomic DNA were fragmented by the Tagmentation reaction in 400ul, followed by 
the strand displacement and AMPure XP (Agencourt) cleanup reaction. Samples were size selected to 6.5-
8.5 Kb with a gel step following the Gel-Plus path of the protocol. 350-500ng of size-selected DNA were 
circularized in 400ul for 16h at 30° C. The library was then constructed after an exonuclease digestion step 
to get rid of remaining linear DNA, fragmentation to 300-700bp with a Covaris S2 instrument (LGC 
Genomics), binding to streptavidin beads and Illumina  TruSeq adapter ligation. Final library was obtained 
after PCR for 1min @ 98°C, followed by 11 cycles of 30sec @ 98°C, 30sec @ 60°C, 1min @ 72°C and a 
final 5min @ 72°C step and another gel size selection step. Deep sequencing was carried out with the 
Illumina HiSeq2000 (2x101bp) instrument using v3 chemistry to reach an average physical coverage of 
30x. 

Data preprocessing of the 7.5 Kb library (Contributors: Meiers, Rausch): The Illumina Nextera Mate 
Pair protocol was used to generate a 7.5 Kb insert library for all 9 samples. Nextera Mate Pair data cannot 
be trimmed with standard adapter trimming tools because of the circularization-based library preparation 
but specialized tools such as nxTrim and NextClip exist. In this project we used NextClip with default 
parameters. All remaining read pairs were aligned using the EBI’s GRCh38 alignment pipeline detailed in 
this README 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/README.Illumina_wgs.GRC
h38.alignment). Briefly, reads were aligned using bwa mem, de-duplicated using BioBamBam and 
converted to CRAM format using Cramtools. The alignment index is available at 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/. 

PacBio SMRT Sequencing 

Library preparation and sequencing (Contributors: Korlach, Munson):  For the Puerto Rican trio 
(HG00731, HG00732, HG00733), high molecular weight DNA was prepared from cultured cells using the 
Gentra PureGene kit and a modified protocol (http://www.pacb.com/documentation/unsupported-protocol-
gentra-puregene-qiagen-dna-isolation/). DNA integrity was confirmed by visual inspection of 1% agarose 
gel and the appearance of a single HMW band. SMRTbell libraries were constructed using the SMRTbell 
Template Prep Kit 1.0, according to the protocol described in: “Procedure & Checklist – 20 Kb Template 
Preparation Using BluePippin Size-Selection System” (Pacific Biosciences, Menlo Park CA). The genomic 
DNA was mechanically sheared using the Megaruptor system (Diagenode, Denville NJ) to yield an average 
shear size distribution of 30-35 Kb for the Han Chinese & Puerto Rican trio samples, and gTubes (Covaris, 
Woburn MA) for the Yoruban trio samples (20-25 Kb average shear size distribution). The libraries were 
then subjected to a size-selection step using the BluePippin system (SageScience, Beverly MA) to remove 
shorter DNA inserts, with size cutoffs of 17 Kb (Han Chinese & Puerto Rican) and 10 Kb (Yoruban), 
respectively. Library quality and quantity were assessed using the Pippin Pulse field inversion gel 
electrophoresis system (SageScience), as well as the Qubit dsDNA Broad Range Assay kit and Qubit 
Fluorometer (Thermo Fisher).  An additional library was constructed for HG00733 at the University of 
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Washington: Isolated DNA was diluted to 50 ng/uL and sheared using Megaruptor (Diagenode) at 35 Kb 
(PacBio) or 40 Kb (UW) settings and SMRTbell libraries were generated as described above with a 
BluePippin size selection of 15 Kb. 

All SMRT sequencing was performed on the Pacific Biosciences RS II using on-plate concentrations of 
100-150 pM (PacBio libraries) or 250 pM (UW library). Data were generated using the P6-C4 sequencing 
chemistry, with magnetic bead loading and 240 or 360 minutes’ movie times. Sequencing was performed at 
4 centers: Jackson Laboratory (YRI trio), University of Washington and Ontario Institute for Cancer 
Research (PUR trio) and University of Malaya (CHS trio).  Children were targeted with a sequencing depth 
of ~40-fold coverage and parents for ~20-fold sequence coverage with the goal of providing 30-fold 
sequence coverage per haplotype (Supplementary Data 47; Supplementary Figure 25). Average 
mapped sequence read lengths varied between samples: HAN: 9,583 bp PUR: 9475bp, and YRI: 5,528 bp.  

Oxford Nanopore Sequencing 
Library Preparation and Sequencing (Contributors: Dai, Harrington, Juul):  The integrity of the gDNA 
sample of the Puerto Rican daughter (HG00733) was checked on a 0.8% agarose gel. A high molecular 
weight band was observed in addition to a visible smear ranging from as low as 1 Kb (data not shown). In 
order to optimize both yield and read length, 6 libraries were prepared using different combinations of 
shearing, size-selection and Oxford Nanopore Technologies sequencing kit. DNA was sheared by g-tube 
(Covaris, Woburn MA) at 3500 rpm for 1 minute. Size selection was carried out on a BluePippin system 
using the BLF7510 0.75% Agarose Gel cassette (SageScience, Beverly MA) using a cutoff of 10 Kb. All 
sequencing was performed on Oxford Nanopore Technologies' GridION X5 using FLO-MIN106 (R9.4) 
flowcells for 48 hours. Basecalling was carried out in realtime on the GridION X5 using the guppy 
basecaller (v.0.3.0). Reads were post-processed to remove those shorter than 2Kb and with a mean quality 
score of less than 7. 

Bionano Optical mapping 

Bionano DNA labeling (Contr ibutors: Hastie，Lee): High-molecular-weight DNA from fresh cell 
lines was labelled following the IrysPrep Reagent Kit protocol. For 2 hours at 37 °C, DNA was digested with 
nicking endonuclease Nb.BssSI (New England BioLabs). Nicked DNA was then incubated for 1 hour at 72 
°C with fluorescently labelled dUTP and Taq Polymerase (New England BioLabs). Taq ligase (New 
England BioLabs) was used in the presence of dNTPs for ligation of nicks. DNA was counterstained with 
YOYO-1 (Thermo Fisher Scientific).  All samples were also labeled with Nt.BspQI using optiDNA labeling 
kit. Cells are mixed with liquefied LMP agarose and deposited on a device for forming a thin layer of 
agarose/cell mixture. After solidification, the cells are lysed and proteins digested by protease K and lysis 
buffer. Following washes, DNA is nicked with Nt.BspQI at 37°C for 2 hours, labeled at 55°C for one hour 
using fluorescent nucleotide analogs and taq polymerase, DNA is then ligated with taq ligase, the thin layer 
is washed between steps.  The agarose is dissolved and the DNA is stained before data collection.  

Bionano data collection: DNA samples nicked with each nick endonucleases were loaded into IrysChips 
(Bionano Genomics) and run on the Irys (Bionano Genomics) system. Data were collected until 
approximately 100-fold coverage of long molecules (> 150 Kb) was achieved for both Nt.BspQI and 
Nb.BssSI samples.  

Bionano data preprocessing: The IrysView (Bionano Genomics) software was used to detect linearized 
DNA using the YOYO-1 counterstain, and to detect the labelled nick sites on the DNA. The length of each 
molecule and the position of each label is output in bnx files. Molecules were filtered above 150 Kb. Sets of 
single-molecules, equivalent to about 100 x haploid coverage, for each sample, was then used to construct 
a de novo genome assembly. 
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Strand-seq Methods 

Library preparation and sequencing (Contributors: Sanders, A.): EBV-transformed lymphoblastic cell 
lines were cultured in BrdU (40uM final concentration) for 36 hours and single cells sorted into 96-well 
plates based on Hoechst-quenching10. Library construction was performed on a Bravo liquid handler 
(Agilent technologies), to automate MNase digestion of nuclear DNA, ligation of indexed Illumina adapters, 
and Hoechst/UV treatment to remove BrdU strands and prepare samples for 17 rounds of PCR 
amplification, as described10.. Libraries from a single 96-well plate were pooled for post-PCR gel size 
selection, which enriched for the mononucleosomal fragment (~150bp + 120bp adapters) and 
dinucleosomal fragment (~320bp + 120bp adapters). For sequencing, 96 samples were from the 
mononucleosomal fragment was run on a single lane of an Illumina HiSeq (rapid-run mode), using a 76 bp 
paired-end protocol. 192 samples (two plates) of the dinucleosomal fragment were pooled and sequenced 
using a 151bp paired-end protocol. 

Sequence data processing (Contributors: Porubsky, D. Sanders, A.): The Strand-seq raw sequencing 
data were demultiplexed based on the library-specific barcodes and converted to FASTQ files using 
Illumina standard software (bcl2fastq, version 1.8.4). Reads were aligned to GRCh38 human reference 
genome assembly, which includes decoy and HLA sequences. The FASTQ files were mapped to the 
reference genome using bwa aligner (version 0.7.12-r1039) according to the HGSVC guidelines for 
Illumina sequencing. Following alignment, reads were sorted using SAMtools8 (version 1.2) and duplicate 
reads were marked using biobambam (version 0.0.191)11. Based on common library-specific barcodes, the 
separate BAM files for the mono- and di-nucleosome fraction of each cell were merged into a single BAM 
using SAMtools (version 1.2). Directional read distribution of each Strand-seq libraries was assessed using 
BAIT12 to preselect Strand-seq libraries based on read density, level of background reads and level of 
variability13. BAM files passing our quality criteria served as an input for inversion calling and haplotyping 
pipeline. 

10X Genomics 

Library preparation and Sequencing (Contributors:  Jabara C.): Cell lines were cultured and DNA 
extracted using the Qiagen MagAttract kit with modifications to enhance retention of long DNA molecules: 

https://assets.contentful.com/an68im79xiti/lCEjig84zQWoWiKaws8QY/d0872d726cc797579e4a8273e640b
35d/20160607_SamplePrepDemonstratedProtocol_-_DNAExtractionfromBlood_RevB.pdf   

1.25 ng of high molecular weight DNA was loaded onto the 10x Chromium Controller using Chromium 
Genome v1 reagents following the recommended protocol:  

https://assets.contentful.com/an68im79xiti/4z5JA3C67KOyCE2ucacCM6/d05ce5fa3dc4282f3da5ae7296f2
645b/CG00022_GenomeReagentKitUserGuide_RevC.pdf 

The initial part of the library construction takes place within droplets containing gel beads functionalized 
with barcodes that mark the droplet of origin (called GEMs). The library construction incorporates a 
barcode that is adjacent to read one. All molecules within a GEM get tagged with the same barcode, but 
because of the limiting dilution of the genome (roughly 300 haploid genome equivalents) the chance that 
two molecules from the same region of the genome are partitioned in the same GEM is very small. Thus, 
the barcodes can be used to statistically associate short reads with their source long molecule. The 
resulting library was sequenced on an Illumina X Ten sequencer to produce 2X150 paired-end sequences. 
The resulting data type is called ‘Linked-Reads’ (Zheng et al, 2016). 

Sequence data processing: Sequence data was analyzed using the Long Ranger v.2.1 analysis pipeline. 
Briefly, reads are aligned using Lariat (https://github.com/10XGenomics/lariat), a wrapper around BWA that 
uses molecule information to adjust alignment locations and MAPQ, using the RFA methods 14 . This allows 
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for more reads to be confidently mapped. In these cases, map quality scores are adjusted so that 
downstream analysis can take advantage of these reads.  

Single nucleotide variants (SNVs) and small indels are called using Freebayes (v0.9.21-7, default 
parameters (-0)).  

Each read covering a heterozygous variant is re-aligned to a ~100bp segment of the reference sequence, 
with and without the alt allele applied, to determine whether the read gives clear support for one allele over 
the other. Mapping each read to a molecule via the GEM-specific barcode produces the yield of the set of 
alleles observed on each molecule. We model the likelihood of the per-molecule allele observations given a 
phasing configuration. The model follows 15 with additional terms to account for the small probability that a 
barcode carries two molecules from opposite haplotypes, and for the chance that an input variant is non-
heterozygous. We search for the maximum likelihood phasing configuration by find near-optimal local 
configurations using beam-search over blocks of ~40 variants. Blocks are greedily joined to form a global 
solution, which we iteratively refine. The confidence of each phasing decision is the likelihood-ratio 
between optimal and next-best solutions. The phasing procedure solution implicitly produces a posterior 
distribution over haplotypes for each input molecule. Molecules covering >1 het are typically phased with 
very high confidence. We write this haplotype information to an auxiliary BAM tag on each read of a 
confidently phased molecule, which is used in downstream haplotype aware SV calling. 

Input variants determined to be non-heterozygous are switched to HOM REF or HOM ALT.Variant calls are 
then emitted as a VCF file.  

 TruSeq Synthetic Long Reads (TSLR) 

(Contr ibutors：Sebat, J.,  Gabriel Rosanio, Danny Antaki,  Masdhu Gujral,  Joey Flores， 
Karine Viaud Mart inez）  

The Illumina  TruSeq SLR platform developed is based on the isolation of single molecules followed by 
amplification, barcoding and conventional Illumina sequencing (http://bit.ly/2kFgQDc). This method 
generates “Synthetic long reads” which consist of contigs that are assembled from the short read 
sequences derived from of a single molecule. The Illumina  TruSeq SLR method is based on the same 
principle (http://bit.ly/2dmkEHK). A key advantage of this approach is the high sequencing accuracy 
afforded by the Illumina platform. 

gDNA purification. Lymphocytes from individuals in a Yoruban (NA19238, NA19239, NA19240), a Han 
Chinese (HG00512, HG00513, HG00514), and a Puerto Rican (HG00731, HG00732, HG00733) trio were 
used to acquire genomic DNA. The DNA was purified from each individual separately using the DNeasy 
Blood & Tissue Kit as previously reported (Qiagen). Concentrations for each individual were determined 
using Qubit BR and confirmed by agarose gel electrophoresis. 

Sample prep. Each individual’s gDNA was prepared for whole genome sequencing using the  TruSeq 
synthetic long read prep kit according to manufacturer’s protocols with the exception the template 
concentration for each Long Range PCR reaction was 0.9fg/µl rather than the prescribed 0.6fg/µl. A total of 
25 384-well plates were prepared for each sample. 

Sequencing. Moleculo sequencing of prepared libraries were performed by Illumina, Inc. Paired-end 
sequencing was performed (add coverage) using an Illumina HiSeq 2000 (Supplementary Data 48).  

Data Processing. Sequenced paired-end samples were separated by barcode identification into 384 
separate bins using  TruSeq Long-Read Assembly App (Illumina). Assembly of separated paired-end 
sequences with ≥Q30 into synthetic long read sequences was performed with the  TruSeq Long-Read 
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Assembly App. Full documentation on this software can be found at 
http://support.Illumina.com/help/BS_App_LongReads_help/ TruSeq_Long_Reads_Assembly_App.htm 

Data Repository Information. Resultant sequencing data (all separated paired-end sequences, synthetic 
long read assemblies, long read scaffold information, and a summary report) are available from the 
European Nucleotide Archive (https://www.ebi.ac.uk/ena/submit/sra/#home) 

The pooled data from all preparations for these individuals showed common long read signatures: a drop 
off of assemblies at the arbitrary 1499bp/1500bp boundary; a decrease in longer assemblies; a peak 
around the expected ~10 Kb selection length. The average assembled long read for NA19238, NA19239, 
and NA19240 are 3939bp, 4075bp, and 3834bp respectively. The N50 for each individual is 6877bp, 
7291bp, and 6723bp respectively. 

Alignment. Synthetic long reads greater than 1499bp in length were aligned to GRCh38 using the LAST 
aligner. LAST was selected over others, including BWA and BLAST, because of its speed and ability to 
align reads to multiple locations in the genome to optimize the alignment without any a priori information. 

Simulated long reads at a depth of 7.5X from GRCh38 were also aligned to GRCh38. This alignment was 
of high quality as expected. Only 7 breakpoints were detected indicating a low rate of misalignment by 
LAST. 

SV calling was performed by split read analysis of the multiple alignment files generated by LAST. 
Deletion, Tandem Duplication, Insertion and Inversion signatures were parsed out of the alignments. The 
final raw call set included all SVs that were 50 bp or greater in length for which at least 2 reads supported 
the identical call. 

Sequence data processing: Sequenced paired-end samples were separated by barcode identification 
into 384 separate bins using  TruSeq Long-Read Assembly App (Illumina). Assembly of separated paired-
end sequences with ≥Q30 into synthetic long read sequences was performed with the  TruSeq Long-Read 
Assembly App. Full documentation on this software can be found at: 

http://support.Illumina.com/help/BS_App_LongReads_help/ TruSeq_Long_Reads_Assembly_App.htm 

Resultant sequencing data (all separated paired-end sequences, synthetic long read assemblies, long read 
scaffold information, and a summary report) are available from the European Nucleotide Archive 
(https://www.ebi.ac.uk/ena/submit/sra/#home) 

Hi-C data generation 

Library preparation and Sequencing: Hi-C was performed according to established methods16,17, and 
using the restriction enzyme HindIII (NEB R3104) for digestion of chromatin prior to proximity ligation. 
Lymphoblastoid cell lines were obtained from Coriell Cell Repositories. Two independent biological 
replicates were performed for each cell line, using approximately 20 million cells per replicate. Cells for 
each replicate were cultured independently for at least 2 passages. Hi-C libraries were sequenced on an 
Illumina HiSeq (2000, 2500, or 4000), generating roughly 250 million reads per replicate. 

Hi-C data processing and phasing (Contributors: Yunjiang Qiu, David U Gorkin, and Bing Ren): Hi-C 
reads were aligned to the GRCh38 reference genome using BWA-MEM with default parameters2 . Hi-C 
reads are paired-ended, but we align each read end to the reference genome independently because 
standard paired-end mapping algorithms are not designed to handle the large distances that separate Hi-C 
read pairs. After mapping, we performed several filtering steps:  
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1) Hi-C reads may span a ligation junction, in which case two parts of the read may map to two 
different regions of the reference. BWA-MEM handles these “chimeric” reads by outputting two different 
alignments – one for each part of the read. For Hi-C data we are interested specifically in the alignment of 
the 5’ portion of the read (i.e. 5’ to the ligation junction), because the region 3’ to the ligation junction will be 
captured by the other read in the pair. Thus, we filtered the BWA-MEM output to keep only the 5’ alignment 
when split alignments were reported. For similar reasons, if the 5’ portion of a read did not align, that read 
was discarded.  

2) Low quality alignments were removed (MAPQ < 10).  

3) Read ends were re-paired, and any only pairs in which both read ends passed all filters were 
kept for downstream analysis.  

4) PCR duplicates were removed with Picard. Phasing was then performed using the Haploseq 
pipeline as previously reported 18.  

Briefly, aligned read pairs were realigned and recalibrated using GATK19. The badmate parameter was 
disabled to keep long range read pairs. Hapcut was then used to perform phasing20. Haploseq modifies 
Hapcut by calculating the probability that read pairs come from different chromosome homologs based on 
insert size, and then adjusting the base quality alignment scores to account for this probability. In almost all 
cases Hapcut generated one haplotype block per chromosome, spanning both arms of the chromosome. 
One exception is chromosome X in HG00513, for which Hapcut reported separate haplotype blocks for 
each arm of the chromosome, reflecting an inability to reliably phase the two arms relative to each other. 
For chromosome 1 and chromosome 9 in all individuals, each chromosome arm was phased separately. 
These two chromosomes have exceptionally large centromeric repeat arrays, and thus Haploseq cannot 
reliably phase the chromosome arms relative to each other at the sequencing depth obtained in this study. 

Transcriptome Sequencing  

Library preparation and Sequencing (Contributors: Talkowski, M): Total RNA was extracted from 
EBV-transformed lymphoblastoid cell lines (LCLs) using TRIzol® (15596026, Thermo Fisher Scientific 
Waltham, MA, USA) from cell pallets according to manufacturer’s instructions. In brief, cell pellets 
(containing between 1-5e6 cells) were homogenized in TRIzol® reagent, followed by chloroform addition 
and phase separation. RNA was precipitated from aqueous phase using isopropanol followed by washing 
the RNA pellet with 75% ethanol. RNA pellet was suspended in RNase-free water and stored at -80�C. All 
nine strand-specific RNAseq libraries were prepared using the Illumina  TruSeq kit (Illumina, San Diego, 
CA, USA) according to manufacturer’s instructions, as described21,22. One microliter of diluted (1:100) 
External RNA Controls Consortium (ERCC) Spike-in Mix (4456740, ThermoFisher) containing 92 synthetic 
RNA standards of known concentrations and sequence was added to each RNA-sequencing library 
alternating between mix1 and mix2 for each well in batch to estimate the detectable expression abundance 
thresholds. PolyA bead capture was used to enrich for mRNA, followed by stranded reverse transcription 
and chemical shearing to make appropriate stranded cDNA inserts for library. Libraries were completed by 
addition of sample specific barcodes and adapters for Illumina sequencing followed by 10 cycles of PCR 
amplification. Final concentration and size distribution of libraries were evaluated by Agilent 2200 
TapeStation (Agilent, Santa Clara, CA, USA) and/or qPCR, using Library Quantification Kit (KK4854, Kapa 
Biosystems, Wilmington, MA, USA), and multiplexed by pooling equimolar amounts of each library prior to 
sequencing. Libraries were multiplexed, pooled and sequenced on multiple lanes of an Illumina 
HiSeq2500, generating an average of 67.5 million paired-end reads of 51 bp per sample.  

Sequence data processing: Further quality control of sequence reads was assessed by fastQC4 
(v.0.10.1). Subsequently, sequence reads were aligned to human reference genome Ensembl GRCh38 
(v.81) using GSNAP23 (v. 06-23-2015) with options –N 1 –B 3 --quality-unk-mismatch=1. Further quality 
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control of alignments was assessed by a custom script utilizing Picard Tools (http://picard.sourceforge.net) 
RNASeQC 24, RSeQC 25 and SamTools 8 Gene level counts were tabulated using BedTools’s multibamcov 
algorithm 26 (v. 2.17.0) on unique alignments for each library relying on Ensembl gene annotation 27 
(GRCh38 v.81). Analysis of ERCC spike-ins as described in Blumenthal et al.21 estimated the expression 
threshold for detection to be at least three mapped reads. 

1.2 Data availability 
Data coordination and access (Contributors: Fairley, Clarke, Zheng, Lowy and Flicek): The 
International Genome Sample Resource (IGSR) is working with the HGSVC to assist with data 
coordination, analysis and distribution. The data collected by the HGSVC, including raw data and Illumina 
alignments, is available via an  FTP site 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/), can be browsed through 
the data portal (http://www.internationalgenome.org/data-portal/data-collection/structural-variation) 
(Supplementary Figure 26) and used under the Ft. Lauderdale principles for data reuse and publication 
https://github.com/igsr/1000Genomes_data_indexes/blob/master/data_collections/hgsv_sv_discovery/REA
DME_hgsvc_datareuse_statement.md. 

Data sets used by the HGSVC: As noted, data from the HGSVC can be found at this URL: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/. Raw data (and Illumina 
alignments) are listed in the .index files in this directory, with the exception of the Bionano data, which is at 
this location: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20160307_bionano_o
ptical_maps_90x/data/. In addition, reference files used more widely in IGSR, such as the reference 
genome, are also available from the wider IGSR FTP site. A summary table can be found in 
Supplementary Data 49. 

2. Chromosomal haplotype resolution and integration 
We first aimed to build dense and accurate chromosome-length haplotypes on single-nucleotide variants 
(SNVs). These haplotypes can then act as a backbone to add further variation to and facilitate a 
comprehensive comparison across platforms. To establish basic properties of the haplotype information 
delivered by different platforms, we first created haplotypes from each technology individually. To this end, 
we used high-coverage Illumina paired-end data and ran FreeBayes (v1.0.2) and the GATK 
HaplotypeCaller (v3.5-0-g36282e4). We filtered the calls (FreeBayes: QUAL>=30, GATK: QUAL>=200) 
and retained those bi-allelic SNV calls where the three genotypes for all samples from a family agree 
between the two callers. 

2.1 Mapping of meiotic recombination events 
(Contributors: David Porubsky) 

Global chromosome-length haplotypes assembled using Strand-seq can be used to map meiotic 
recombination events within a single family trio. We mapped all meiotic recombination events in every 
family trio solely based on Strand-seq (Supplementary Figure 27; Supplementary Data 50). As expected 
we observed higher number of meiotic recombination events occurring on the maternal homologues28–31. 
This difference was the most prominent in Yoruban trio and the least for the Puerto Rican trio 
(Supplementary Figure 27). Using Strand-seq data only we achieved high resolution maps of meiotic 
recombination with median resolution less than 25 Kb. We set to further refine these maps using PacBio 
reads and WhatsHap. The majority (~70%) of mapped meiotic breakpoints overlapped with breakpoint 
estimates obtained from PacBio reads and allowed us to further refine the mapped meiotic breakpoints 
(Supplementary Figure 28; Supplementary Data 50) Notably, with this approach we managed to map 
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meiotic recombination breakpoints with unprecedented resolution (median ~1.5 Kb). In addition, all but one 
PacBio refined breakpoints were mapped at maximal possible resolution between two heterozygous SNVs. 
The majority of Strand-seq mapped meiotic recombinations that were not refined by PacBio could be in 
theory refined further using residual SNVs present in such meiotic recombinations breakpoints.  

 We have further explored meiotic recombination breakpoints refined by PacBio reads (in total 162 
breakpoints from all trios) to search for enrichment of previously reported elements, such as Alu. L2, 
THE1A and THE1B at sites specific for human recombination hot spots39. In line with the previous 
research39, we have found significant enrichment of Alu (especially AluS) and L2 elements around our 
meiotic breakpoints (Supplementary Figure 29). However, enrichment for Alu and AluS elements was 
significant only when mere occurrence of these elements within a meiotic breakpoint was considered. This 
might be an artefact of our randomization process given the widespread distribution of Alu elements across 
the genome. (Supplementary Figure 29, a-c right column). 

2.2 Strand-seq phasing 
To assemble genome-wide haplotypes exclusively from Strand-seq data we have used R package called 
StrandPhaseR. StrandPhaseR takes as an input aligned BAM (binary alignment map) files from single cell 
libraries that were pre-selected based on the following quality criteria. BAM files were filtered for duplicate 
reads, alternative alignments and low mapping quality reads (mapq < 10). Haplotype informative WC 
(Watson-Crick) regions were localized in every single cell as was done previously13. To phase such WC 
regions across all single cells we used our latest phasing pipeline called StrandPhaseR32. List of single 
nucleotide heterozygous position suitable for phasing were obtained from 10x Genomics variant calls. 
Variable positions covered with bases of quality less than 20 were filtered out. For each individual, final 
haplotypes were exported as a single VCF file, separately for each chromosome. 

2.3 Mapping of meiotic recombination events using Strand-seq 
To map meiotic recombination event in each family trio we have first assemble genome-wide haplotypes 
independently for each individual in a trio using solely Strand-seq data13. Next we performed a pairwise 
comparison of each child's homologue to both, maternal and paternal homologues. This identified the 
heterozygous positions that distinguished the child from each parent and such positions were used to 
assign the parental identity to each child’s homologue. Every comparison was encoded as a vector of 
zeros and ones based on the parental homologue to which child's homologue correspond. (zero – parental 
homologue 1, one – parental homologue 2). Then a circular binary segmentation algorithm (R package 
fastseg, minSeg set to 100)33 was applied on such binary vectors. Segments smaller than 5 Mb and 
segments overlapping with homozygous inversions were filtered out. Meiotic breakpoints were localized as 
the end position of one segment and start position of the following segment. All localized meiotic 
breakpoints were further assessed and confirmed by eye. 

Meiotic recombination breakpoints were independently predicted using pedMEC algorithm implemented in 
the WhatsHap34. PacBio reads from the whole trio along with human meiotic recombination rates were 
used to estimate most likely point of meiotic recombination. Little number of overlapping breakpoints were 
merged together leaving us with a few hundreds of predicted breakpoints. To exclude false positives, we 
considered meiotic breakpoints mapped using Strand-seq as a gold-standard. Therefore, only PacBio 
predicted breakpoints that overlapped with or were in 50 Kb distance from Strand-seq meiotic breakpoint 
were considered for further analysis. For such ranges we reported refined breakpoint position using PacBio 
reads. Lastly we searched for meiotic breakpoints with a number of residual SNVs within the breakpoint. 
Then in turn we have established a theoretical resolution of such breakpoint as a maximal distance 
between subsequent residual SNVs within such breakpoint. 
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3. Full-spectrum variation detection 
3.1 Short insertion and deletion (<50bp) 

(Contributed by: Ye, Guo)  

Current methods for indel discovery using short-read sequence data are thought to underestimate by as 
much as 40% the true number of events 35,36. This effect is especially pronounced for events greater than 
10 bp in length. In order to provide a more comprehensive map of human genetic variation from SNVs to 
large complex SVs we therefore analyzed the three trios for the presence of indels define here as 
insertions and deletions ranging from 1bp to 49 bp.  

Merging of Illumina callsets 

Indels from three Illumina callsets: Pindel37, GATK38 and FreeBayes39 were merged. The merged region is 
between 1 and 49 bp. To create a deletion and insertion merged set, calls in each callset were separated 
into deletions and insertions. For CHS, Pindel, GATK and FreeBayes detect 551417, 305509, 160381 
deletions and 452390, 275998, 148707 insertions respectively. For PUR, Pindel, GATK and FreeBayes 
detect 562056, 312359, 169348 deletions and 459026, 282492, 154248 insertions respectively. For YRI, 
Pindel, GATK and FreeBayes detect 564226, 393464, 218569 deletions and 456768, 354097, 187615 
insertions respectively. A merged deletion and a merged insertion set were created by merging Pindel, 
GATK and FreeBayes tabix indexed set (tabix version 0.2.6) using vcf-merge function of vcftools 40, version 
0.1.13) with default options. The merged deletion and insertion Illumina set contain 1,166,979 and 
1,077,222 calls respectively. Size distribution of deletions and insertions in individual set and merged set is 
shown in Supplementary Figure 30A (Deletion) and Supplementary Figure 30B (Insertion). 

PacBio indels  

(Contributed by: Chaisson, M) 

To avoid artifacts of merging indels from multiple assemblies, we called indels from the Phased-SV 
haplotigs only. Indels were detected in the regions of haplotigs that were realigned during SV calling, and 
from the haplotig to reference alignments otherwise. We ignored all single base indels and homopolymer 
indels less than 6 bases. Indels were maximally left-aligned using vt normalize.  A final set of pacbio calls 
was generated by removing any call less than 10 bases if there are no Illumina reads with a similar sized 
(50%) indel within 50 bases. 
Platform comparisons 

(Contributed by: Ye, Guo)  

We next compared the merged Illumina callset with indel calls generated the unified PacBio callset and 
unified Phased-SV/MsPAC (PS/MP) call set (below). PacBio Phased-SV calls from HG00514 were used to 
compare with the merged Illumina callset up to 1 Kb. Similarly, PS/MP calls were also divided into deletions 
(449,146) and insertions (384,358). The size distribution of PS/MP PacBio and Illumina merged set was 
shown in Supplementary Figure 30A (Deletion) and B (Insertion). The contribution of three Illumina and 
the PacBio callsets to the Illumina-PacBio integrated set was shown in Venn diagrams (Supplementary 
Figure 30C) created by overlapping the four callsets using vcf-compare 40. Additionally, an overlap 
between Illumina merged set and UW-MSSM PacBio callset was conducted. BED files were created from 
VCF files of the three callsets by padding SV lengths to breakpoints and then compared using bedtools 
intersect (version 2.26.0), with a 50% reciprocal overlap. The results were shown in Supplementary 
Figure 30D On the size frequency plots of deletions and insertions, 2n peaks are clearly visible, probably 
due to the higher mutation rate in microsatellite repeats. The numbers of calls for indels smaller than 30bp 
are comparable between Illumina merged set and UW-MSSM PacBio callset while the sensitivity of the 
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latter remains after Illumina merged set lost detection power, especially for insertions.  The ratio of number 
of calls detected by the Illumina based methods relative to the number of calls by the PacBio based 
methods is given in Supplementary Figure 31.  

Repeat analysis 

The BED files of deletion and insertion calls in Illumina merged set, Phased-SV set, and HySA were 
overlapped with different repeatMask bed files using bedtools intersect (version 2.26.0), looking for 
deletions and insertions fully residing in a repeat (-f 1.0). The repeat overlapped calls , converted to 
frequencies, were summarized Supplementary Figure 30F, where each color bar represents a fraction of 
deletion/insertion calls overlapped with each repeat class. “Genome” represents the background fractions 
of each repeat class in human genome. Simple repeats are enriched for short indels and all three sets 
(Phased-SV callset, HySa and Illumina merged set) have alleviated proportion of simple repeats, even 
though the pacbio related sets have significantly higher percentages.  

In order to not inflate indel counts due to different alignment parameters, several steps were taken during 
merging the PacBio and Illumina calls. The PacBio and Illumina indel callsets were merged by selecting all 
Illumina calls, then any pacbio call not within 100bps of an Illumina call. Any PacBio calls within 100bps of 
an Illumina call are assigned the Illumina position, but retain the PacBio genotype. All remaining PacBio 
calls were added. 

3.2 Haplotype-resolved SV characterization and integration 
Comparison of alignment methods in tandem repeat loci 

The majority of SV clusters (95%) are within tandem repeat loci (Supplementary Data 51). The presence 
of multiple SVs at a tandem repeat locus may be due to either alignment fragmentation (false positive), or 
different domains of the tandem repeat expanding and contracting independently.  The latter is known to 
happen and is related to the purity of the tandem repeat monomer.  

To investigate the source of the clusters of SVs at tandem repeat loci, the loci were visualized by 
generating the dot plot of the haplotype sequence versus the reference. The BLASR alignments were 
plotted on top of each dot plot. For comparison, we additionally included the NGM-LR alignments for the 
same loci.  Roughly 4000 dot plots were generated per haplotype.  Because these images are useful for 
understanding the diversity of these tandem repeat sequences, we are distributing them through the 1000 
genomes file server at: 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20180515_Dotplots_
TandemRepeats/ 

Because the SVs detected in a tandem repeat region is dependent on the gap parameters used in the 
alignment, this analysis also enabled the comparison of the two different alignment methods: BLASR and 
NGM-LR. The BLASR method defines alignments based on sparse dynamic programming and thus favors 
alignments with exact matches.  The NGM-LR method incorporates a double-affine gap parameter that 
allows larger gaps and has been shown to increase sensitivity particularly with lower coverage sequencing 
projects.  Considering only calls within tandem repeat loci in HG00514 as an example, 54% lof loci have 
the same number of calls generated by each method (Supplementary Data 52).  A comparison of the two 
methods is shown in Supplementary Figure 32. There is an excess of loci at which BLASR generates 
more calls than NGM-LR (36% versus 9.5%).  Examples of these loci are given in Supplementary Figure 
33. 

Manually inspecting a set of the BLASR alignments revealed that many instances where there is an SV 
cluster, the alignment could be shuffled so that one SV could be replaced by an SNV with a mismatch 
between monomer sequences. However, the most likely mechanism of variation in tandem repeats is 
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through change in copy number of repeat monomers and is thought to happen orders of magnitude more 
frequently than SNV variation.  While we emphasize that it is a challenging problem to determine an 
alignment of large tandem repeat sequences that reflects the exact edits that have happened since the two 
genomes shared a common ancestor, we postulate that the more biologically accurate alignments favor 
insertions and deletions.  

The number of SNVs determined by each alignment method was compared at all SV loci. There is an 
increase in the number of loci where the NGM-LR method detects more SNVs than BLASR 
(Supplementary Figure 34). 

To investigate the relationship between SNV count and SVs, TR loci were partitioned according to which 
method detected more SNVs than the other, or when the number of SNVs was the same. When the 
number of SVs was the same, or when BLASR detected more SNVs than NGM-LR, there was generally 
greater agreement between the two for the number of SVs at the locus, with the exception of when there 
were a large number of SVs (> 5 SVs) at a locus (Supplementary Figure 35). Because of this, we opted to 
not encode the individual SVs at these loci, and instead represent the entire sequence of the tandem 
repeat locus as an alternate haplotype.  

Comparison of SV distribution and genomic regions 
Structural variation with respect to segmental duplications. To assess whether there was an increase 
of SV around regions of high segmental duplication content, we performed a simple visual comparison of 
SD content of the merged Phased-SV and MS-PAC callsets with segmental duplications. We calculated 
the number of segmentally duplicated bases and SV counts per 100 kbp. The largest spatial effect was an 
increase of SV near telomeres. Other regions of high segmental duplication were not associated with a 
large increase in SV, as shown in Supplementary Figure 36. 

Structural variation by genomic region. 
The variation in different types of the genome was counted for telomeric, tandem repeat, and not-repetitive 
DNA, as well as for general categories of mobile element and coding sequence. The results are 
summarized in Supplementary Data 53. 

Intersection with 1000 Genomes Phase 3 Callsets 

(Contributed by: Audano)  

We compared SVs to a previously published set by Sudmant et. al41 as part of the 1000 Genomes phase 3 
project. SVs were separated into insertions, deletions, and inversions. Copy-number variants (CNVs) other 
than deletions were removed. HGSVC SV calls were intersected with this set using a 50% reciprocal 
overlap for each variant type. For this analysis, variants were not filtered based on genomic regions. 

Proximity of Integrated PacBio calls to 1000 Genomes SV 

We counted HGSVC variants located distally from variants in the 1000 Genomes call set. Three sets of 
regions were computed taking the reference bases affected by each 1000 Genomes variant, adding 1 Kb, 
5 Kb, and 10 Kb upstream and downstream, and merging the regions. HGSVC SV calls that did not affect 
these reference bases were counted. This analysis was completed independently on insertions, deletions, 
and inversions so that only variants of the same type in the HGSVC calls and 1000 Genomes calls were 
compared. Approximately 80% of variants in this callset are not within 1 Kb of 1000 Genomes variants 
(81% HG00514/HG00733, 80% NA19240). 

Orthogonal support of PacBio variants 

Illumina genotyping (contributed by Audano): We used SMRT-SV Genotyper (Huddleston et al., 2017) 
to map Illumina WGS reads from the child genomes to the SV calls.  The SMRT-SV genotyper uses local 
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assembly contigs aligned to the reference, and this data was available for SVs called by Phased-SV. We 
genotyped these SVs against 24 population samples (1000 Genomes high-coverage, PCR-free samples) 
and against Illumina WGS data from the sample itself. We analyzed how well SV calls from a sample 
genotyped against Illumina data for itself. To restrict this analysis to SVs that are amenable to the 
genotyping approach, we restricted this analysis to SVs with a no-call rate of 80% or less over the 
population samples. For those variants, we determined what proportion of them support the SV call . 

For all variants with a no-call rate of 80% or less, 92% to 96% of the SV calls were supported by the 
genotyper. The genotyping approach relies on ALT-aware sequence read alignments to the reference and 
alternate contigs. Since short-read alignments are known to be unreliable in repetitive and duplicated 
sequence, we repeated this analysis outside of annotated tandem repeat and segmental duplication 
regions. In this set, we find support for 96% to 98% of the SV calls. 

Oxford Nanopore validation (contributed by Chaisson). As a second genome-wide approach, we 
generated 18.9 fold sequence coverage for one of the samples (HG00733)  using Oxford Nanopore 
Technologies' GridION X5 (ONT)using FLO-MIN106 (R9.4) flowcells for 48 hours.  The read length and 
coverage distributions are shown in Supplementary Figure 37. 

We opted to perform validation of SV calls by searching for support for individual SV calls within the ONT 
reads  rather than by creating a new SV callset from this data. The ONT reads were mapped using BLASR, 
merging gaps between matches under 100 bases until merged matches are at least 100 bases in order to 
reduce alignment based fragmentation of SVs during noisy read alignment.  For comparison, the support 
from PacBio reads was calculated in a similar manner. All support was stratified by insertion and deletion 
operations, and inside and outside of tandem repeat sequences in the genome (Supplementary Figure 
38). Because the overall validation rate depends on read-support cutoff parameters, we first show the 
distributions of support for each class of event and region for both the ONT and PacBio reads below, by 
length of SV, and the cumulative distribution of support from each sequencing type. Requiring at least three 
reads to support an event gives a 91% validation rate for SVs outside of tandem repeats, and between 81 
and 85% validation rate for SVs within tandem repeats. 

An important consideration with ONT data is that base calling is highly dependent on parameters especially 
within regions of tandem repeats.  Depending on parameters, certain sequences can be entirely absent 
from a nanopore read. For example, we examined a region (chr1:37442000-37447000) where there were 
two tandem repeats, one (5’) which the sample matched the reference, and another (3’) tandem repeat 
where our callset contains an insertion SV. With default basecalling with the ONT reads, most reads had a 
poorly defined deletion over the 5’ tandem repeat, and did not show the insertion in the 3’ tandem repeat. 
When different parameters are used for base calling the ONT reads (dna_r9.4_450bps.cfg -–chunk_size 
20000 —runners 3 –x ‘auto'), the sequences become consistent with our callset. An example of raw read 
alignments for different basecalling parameters and PB reads is shown in Supplementary Figure 39. 

Agreement of SV with BAC sequencing.  

There were 57 BACs that were sequenced in order to assess the base pair accuracy of our de novo 
assemblies. We looked for SVs that were in the BACs that overlapped with our callset.  There were 27 
homozygous calls that overlapped with the regions sequenced by BACs, of which 25 had overlapping calls 
in the BACs (92%). Of the two missed calls, one showed strong heterozygous support, and the other was 
in a 1500 base tandem repeat, and the BAC supported an SV 616 bases away.  Of the heterozygous calls, 
22 out of 39 overlap with an SV detected in the BACs (56%) show support, in agreement with the BACs 
only representing a single haplotype. When restricting to 50% reciprocal overlap, 22 out of the 27 
homozygous calls (81%) and 15 of 39 heterozygous calls (38%) match, although our experience merging 



18	

datasets shows that a 50% reciprocal is an under-estimate of the agreement between methods, particularly 
in tandem repeats.  

PacBio Inheritance (Contributed by: Chaisson): To determine inheritance status of each SV, we 
counted read support for the unified PacBio callset using the PBRC method with the PacBio parental 
genomes. A minimum of one read was required to consider a variant present in a parent. We confirmed on 
average 8,881 of 9,348 (95.0%) homozygous calls as present in both parents, and an average of 
15,278/15,890 (96.1%) heterozygous calls as present in one parent.  When considering only events that lie 
outside of tandem repeats, 95.0% of homozygous calls are confirmed in both parents, and 98.3% of 
heterozygous calls can be confirmed in at least one parent. 

In order to make this assessment independent, we regenerated Phased-SV assemblies without parental 
reads, and then checked for Mendelian concordance with the parental reads. The average assembly 
contiguity decreased dramatically, highlighting the need to use at least 30X coverage for the local 
assembly based approach.  Additionally, the number of SV calls decreased, indicating that the local 
assembly approach has decreased coverage over SVs.  The mendelian concordance based on this 
assessment, nevertheless, remained high between 84-88.3%. 

Bionano Genomics Support of Unified PacBio Calls (Contributed by: Chaisson): We surveyed the 
concordance between the Bionano Genomics (BNG) SV calls and the unified PacBio callset with less 
stringent filtering (fBN = 0.25) to allow for a greater number of overlaps. Because a BNG call may overlap 
multiple PacBio SVs, we selected the PacBio SV with the lowest fBN for an overlap. On average, 69.7% of 
PacBio SVs ≥ 1 Kb were validated by a BNG SV. 

GRAPHITE Illumina Assessment of PacBio SVs (Contributed by: Marth, Lee, D): Additional support 
for variants was detected using the GRAPHITE (https://github.com/dillonl/graphite) and which takes 
advantage of the alternate reference alleles provided in the integrated pacbio callset. In this approach, a 
local ‘variant graph’ in the region of one or more candidate variants is constructed by adding the candidate 
alleles as branches in a reference graph, initialized with the reference allele as its first branch. The primary 
sequencing reads are then aligned directly to this graph, using our implementation of the partial order 
alignment algorithm 42. This is able to recover previously poorly mapped or unmapped reads from a sample 
by mapping against a path including the alternate allele carried by that individual. With this approach, one 
can ‘adjudicate’ a candidate variant i.e. confirm or reject its presence in a given sample based on the 
presence/absence of read mappings supporting the candidate alternate allele. Here we applied GRAPHITE 
to cross-validate candidate variants called from PacBio long-reads with Illumina data. We accomplished 
this by constructing a local variant graph in each region where a PacBio candidate variant, or multiple 
overlapping variants, were called, and re-mapping all Illumina reads (including unmapped mates) from the 
same sample to this graph. PacBio variants were annotated according to the number of Illumina reads they 
received. Variants for which the number of confirmatory Illumina reads exceeded a threshold (5) were 
annotated as ‘adjudicated’.  

Orthogonal sequencing approaches 

Bionano Genomics Analysis (Contributed by: Pang & Hastie): Bionano Genomics optical mapping was 
used as an independent de novo assembly and SV calling approach that leverages extremely long (150 Kb 
to 2 Mb) single molecules for whole genome de novo assembly. De novo assemblies can be used to detect 
insertions, deletions, inversions, repeat expansions, translocations and transpositions. Bionano optical 
mapping produces assemblies that are sensitive to heterozygosity and are able to produce two alleles 
across the majority of the genome.  
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Automated insertion and deletion calling has been used here and has identified approximately 5000 SVs 
for each enzyme, counting homozygous SVs twice and calling the same SV with each enzyme in most 
cases. Generating de novo assemblies and SV calls with two enzymes is valuable in improving confidence 
in SVs called with both enzyme and by covering assembly gaps in one enzyme with the complementary 
enzyme. In order to reduce the redundancy, SVs that are homozygous are collapsed and SVs from two 
different enzymes that have the same reference position and have similar sizes are merged.  

Bionano de novo assembly: De Novo assembly was performed using Bionano’s custom assembler 
software. De Novo assemblies of all individuals in the CHS, PUR and YRI trios were performed with 
IrysSolve v2.3 software between February and March of 2016. For comprehensiveness, probands were re-
assembled with IrysSolve v2.5.1 between October and December of 2016. Pair-wise comparison of all 
DNA molecules was done to create a layout overlap graph, which was then used to create the initial 
consensus genome maps. By re-aligning molecules to the genome maps (P Value 10-11) and by using only 
the best match molecules, a refinement step was done to refine the label positions on the genome maps 
and to remove chimeric joins. Next, during an extension step, the software aligned molecules to genome 
maps (P Value 10-11), and extended the maps based on the molecules aligning beyond the ends. 
Overlapping genome maps were then merged using a P Value cutoff of 10-15. These extension and merge 
steps were repeated five times before a final refinement was applied to “finish” all genome maps (P Value 
10-11). Two assemblies were constructed, one for each nickase. 

Using IrysSolve v2.5.1, during the extension step, the software identifies clusters of molecules that aligned 
to genome maps with end alignment gaps of size > 30 Kb (i.e. over 30 Kb of one side of the molecules did 
not align), these molecules were split from the map and re-assembled. In addition, for both IrysSolve v2.3 
and IrysSolve v2.5.1, the final refinement step searched for clusters of molecules aligned to genome maps 
with internal alignment gap of size < 50 Kb, in which case, the genome maps were converted into two 
haplotype maps. The extend-and-split function is essential to identify large allelic differences and to 
assemble across loci with segmental duplications, whereas the refinement haplotype function can find 
smaller differences. 

Bionano structural variation: SV was called based on the alignment profiles between the de novo 
assembled genome maps against the public human reference assembly GRCh38. We required an 
alignment cutoff of P-Value of 10-12 to identify the best aligned locations for any given match group within a 
genome map. SV calling was done for the Nt.BspQI and Nb.BssSI assemblies independently. Significant 
discrepancies in the distance or the number of unaligned labels between adjacent aligned labels (outlier P-
Value 3x10-3) would indicate the presence of insertion and deletions. Genome maps whose alignments 
were in opposite orientations would indicate the presence of inversion breakpoints.  

Finally, insertions and deletions captured by each of the single-enzyme assemblies (Nt.BspQI and 
Nb.BssSI) were compared and merged into a final SV call set. Insertions and deletions that were within 10 
Kb and with over 80 % reciprocal size similarity were merged together, and the innermost breakpoints were 
recorded as the merged variant breakpoints. To minimize false positives, we removed calls whose size was 
less than 500 bp, calls found by single nickase assembly but with a variant confidence score of < 0.5, or 
calls found by both nickases but with a confidence of < 0.3. No merge was performed for inversion 
breakpoints. 

3.3 Variation detected by short-read sequencing 
SV Detection Methodologies on Illumina Genome Sequencing 

An ensemble of Illumina structural variant callers (Genome STRiP, GATK, Pindel, MELT, DELLY, LUMPY, 
WhamG, dCGH, SVelter, Manta, forestSV, Holmes, TARDIS) and PacBio/Illumina hybrid methods (HySA & 
cloudSV (unpublished)) were analyzed to complement the PacBio only SV calls.  Unlike previous efforts 
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(phase III), the false discovery rate was not strictly controlled for the Illumina callers allowing, for the first 
time, a broad comparison of SV callers, vs, a highly accurate PacBio callset.   

WHAMG (Contributed by: Kronenberg, Z): A sensitive and specific call set were generated for whamG43. 
In both datasets we jointly called the three trios and filtered with a modified version of “filtWhamG.pl”, 
removing events that have low support, low scoring “SVTYPE” classification and events with a high fraction 
of mate-pairs cross chromosome mapping.  All calls across the three trios were merged into a single VCF 
with "mergeSVcallers" (50% reciprocal overlap and same “SVTYPE”).  The merged calls were genotyped 
with SVTyper44. For the specific set we applied “annotate_hq.py” a script that requires no unknown 
genotypes, at least one heterozygous or homozygous alternative genotype call, a quality score above 100 
and a median genotype quality above 100. The filtering script are in the whamG repository and the FTP.   
The SV counts and types for both the sensitive and specific set are listed in Supplementary Data 54.  The 
sensitive set was used for Illumina integration.  

LUMPY (Contributed by: Kronenberg, Z): Split- and discordant- reads were extracted from the BAM files 
using a custom program (“filter.c”).  Each trio was jointly called with Lumpy 45.  BND/translocation events 
were filtered for all analyses.  The trios were merged and genotyped using the same methodology outlined 
in the WhamG section, with the exception of the whamG specific filtering procedure.  The number and type 
of SVs obtained are enumerated Supplementary Data 54. The sensitive callset set was used for Illumina 
integration.  

DELLY (Contributed by: Rausch, Korbel): The germline SV calling workflow of Delly v.0.7.546 was used 
to call large structural variants >500bp and small InDels in the size range of 15bp-500bp with default 
parameters in the deep coverage Illumina paired-end data. Candidate germline SV sites were called 
sample by sample and all identified SV sites were concatenated  into a single SV site list using delly merge 
with a reciprocal overlap of 0.5 and a maximum breakpoint offset of 500bp. All candidate SV sites were re-
genotyped using delly on all trio samples. The output BCF files were merged into a single BCF file that 
contained all candidate SVs and their respective genotypes across the 9 trio samples. Uncertain genotypes 
with phred-scaled genotype quality below 20 were set to missing using VCFaid 
(https://github.com/tobiasrausch/vcfaid) and sites with an overall genotype missing rate >25% in all 9 
samples were dropped. It was also required that at least one sample shows clear evidence for the SV with 
at least 20% of the reads confirming the alternative allele at a given SV locus. 

To ensure high specificity we further filter the remaining SVs using a machine learning approach that uses 
site and genotype properties collected from svprops (https://github.com/dellytools/svprops). The SV 
classifier was trained and validated on a subset of likely true and false SVs that was derived from three 
sources. The first source were SVs that could be re-genotyped by delly in the 1000 Genomes low coverage 
data and were the IRS method (Sudmant, 2015) could assign a p-value. This set was then stratified into 
likely true SVs (p-value < 0.5) and likely false SVs (p-value >= 0.5). The second training source were likely 
false SVs that showed Mendel transmission errors. The third training source was a set of 100 randomly 
picked SV sites that we manually inspected using IGV (http://software.broadinstitute.org/software/igv/) and 
then classified as likely true or false SVs. All training sites were split into a training and validation set and 
machine learning parameters were picked to derive a final SV site list of an estimated FDR of 5% using the 
validation set. In addition, Delly v0.7.5 was used to discover and genotype a small set of confident complex 
SVs as described previously 41. These complex SVs give rise to 2 overlapping paired-end clusters, which 
are then classified into simple inversions, inversion with an adjacent deletion and proximal inverted & non-
inverted duplications using the delly dpe (double paired-end signatures) subcommand. For inversions, we 
in addition screened the 7 Kb jumping libraries using delly v0.7.5 and also required double paired-end 
support for the filtered set. 
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Overall, Delly ascertained 11,823 deletions, 5,315 insertions, 173 tandem duplications, 16 inversions, 15 
inversions with an adjacent deletion, 40 proximal non-inverted duplications and 49 proximal inverted 
duplications in the 9 trio samples. Independent of the machine learning training and validation set we also 
applied IRS on the 9 trio samples using CytoScan Arrays.This analysis yielded an estimated FDR of the 
final deletion set of 2.8%. 

dCGH (Contributed by: Nelson, Kronenberg, Eichler): Illumina WGS sequence data were mapped to a 
repeat masked version of the human reference genome (GRCh38) using the mrsFAST sequence aligner 
as previously described 47 and variants were called using the digital comparative genomic hybridization 
(dCGH) method 48. Deletion and duplications (>1 Kb) were identified by comparison to a diversity panel of 
17 Simons Genome Diversity Panel (SGDP) human genomes (Supplementary Data 55). 

Genome STRiP (Contributed by: Handsaker, B): Genotyped copy number polymorphisms were called 
using Genome STRiP 49 version r2.00.1691, which contains support for bwa alt-aware alignments, and 
using the reference metadata for GRCh38 (12Oct2016 version). Calls were made using both the Genome 
STRiP deletion pipeline and CNV pipeline and then filtered and merged as described below. Genome 
STRiP is a population based calling method, designed to run on hundreds or thousands of samples. The 
small cohort size (9 individuals) necessitated atypically stringent filtering and resulted in decreased 
sensitivity. 

Deletion pipeline: Raw calls were generated using default settings with two exceptions: 

● The parity correction threshold was reduced (-P depth.parityCorrectionThreshold: 0.1) to accommodate 
the small number of related samples.	

● The default filtering on inbreeding coefficient in the genotyping step was disabled, to account for the 
small number of related samples.	

Raw calls from the deletion pipeline were filtered using the following criteria: 

● All default filters with the exception of INBREEDINGCOEFF (inbreeding coefficient).	

● Sites were retained if they had GSCNQUAL >= 1 and GSCLUSTERSEP >= 3.	

● Sites overlapping known VDJ recombination regions were excluded.	

● Sites were included for the autosome and chromosome X only.	

CNV pipeline: Raw calls were generated using default settings with two exceptions: 

● The parity correction threshold was reduced (-P depth.parityCorrectionThreshold: 0.25) during 
discovery.	

● The parity correction threshold was reduced (-P depth.parityCorrectionThreshold: 0.1) during 
subsequent genotyping and merging.	

Raw calls from the CNV pipeline were filtered using the following criteria: 

● Site call rate of 100%, with at least one sample called non-reference at 95% confidence.	

● Multi-allelic sites predicted to have more than 3 observed alleles were excluded.	

● Sites where any individual was called at copy number 9 or greater were excluded.	

● Sites with deletion alleles that were shorter than 1500bp were excluded.	

● Sites with only duplication alleles that were shorter than 4000bp were excluded.	
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● Sites were included for the autosome and chromosome X only.	

Merging: Redundant calls were removed using the Genome STRiP Redundancy annotator if they had no 
discordant genotypes and at least 50% reciprocal overlap. When redundant calls originated from both the 
deletion and CNV pipeline, calls from the deletion pipeline (which are expected to have more accurate 
boundaries) were retained. 

QC: To assess call quality, we evaluated all potential Mendelian violations (40) with calls in at least one 
child (Supplementary Data 56). This suggested an initial false discovery rate of 1.3%, predominantly from 
the CNV pipeline calls. To evaluate the impact of the small cohort, we re-genotyped the sites with potential 
Mendelian violations in a larger multi-ethnic cohort with 30x whole-genome sequencing data.  Manual 
review suggested that the majority of the potential Mendelian violations were either due to genotyping 
error, often caused by incorrect boundary determination (Genome STRiP genotyping and boundary 
assessment are both better-powered in larger cohorts), or were due to the presence of a multiallelic CNV, 
which can cause the appearance of a Mendelian violation if the full allelic spectrum is not observed. One 
deletion (chr13:105744780-105747104) appears to be a mosaic de novo deletion in the CHS child. 
Adjusting for these sites suggests a true site-level FDR of 0.4%. 

Holmes (Contributed by: Mike Talkowski, Ryan Collins, Harrison Brand, Matt Stone, Joseph 
Glessner):  

SV Discovery: The computational analysis pipeline for structural variation (SV) discovery from 3.5 Kb 
long-insert whole genome sequencing (liWGS) data has been previously described50,51. The pipeline, 
Holmes, requires a sufficiently large cohort of liWGS libraries for simultaneous joint-calling of SV 
breakpoints and CNV intervals, so we supplemented the nine HGSVC liWGS libraries generated as 
described above with 91 independent individuals for which we have previously generated liWGS libraries 
with the same protocol and data processing procedures for an unrelated study (Collins et al. 2017). These 
91 supplementary libraries were selected based on a balanced ratio of male and female subjects (50 males 
& 50 females in final analysis cohort, n=100) and on approximate library and sequencing quality (matched 
with HGSVC trio libraries on median and median absolute deviation of insert size, haploid physical 
coverage, chimera rate, and pairwise duplication rate) (Rodriguez, O. and Bashir, A). We subsequently 
performed SV analyses against the GRCh37 reference genome from these 100 individuals. All resulting SV 
calls were lifted over to hg38 coordinate space with the UCSC liftOver tool requiring a minimum of 50% of 
the original GRCh37 interval to remap to hg38 coordinates52. Based on previous validation experiments 
using PCR, targeted capture, comparison to chromosomal microarrays, and short-insert sequencing, we 
estimate an overall true positive rate to be approximately 0.894.  Validations were not performed on this 
call set in the HGSVC samples (Supplementary Data 57) 
Results: Using the median insert (~3.5 Kb) and the physical coverage obtained (mean: 163.9X, range: 
144.6X-193.8X), we resolved a mean of 530 large SV per subject (1,270 unique SV sites resolved across 
all nine subjects) at the resolution of liWGS (SV size ≥ ~5 Kb). We also identified a mean of 53 
incompletely resolved SV sites (IRS) and 143 low-confidence CNVs per subject; IRS and low-confidence 
CNVs were excluded from all subsequent analyses. The remaining high-confidence SV included canonical 
copy-number variants as well as balanced inversions, insertions, and cxSVs; collectively, complex and 
balanced SVs represented 25.5% (324/1,270) of all high-confidence SV sites identified in these nine 
subjects. Notably, we observed a median of 73 canonical inversion variants and nine complex inversions 
per subject at liWGS resolution. Principal component analysis of a genetic relatedness matrix constructed 
between these nine individuals showed that the first two principal components clearly cluster all three 
individuals from each trio. Transmission analysis yielded a mean of 97.1% inheritance across the SV call 
set.  Consistent with previous findings, we detected a mean of 11 large complex SVs per subject in this 
analysis. The SVs shared between families are given in Supplementary Data 58. 
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VariationHunter (Contributed by: Hormozdiari): Deletions: We applied an extension of VariationHunter 
for calling deletions (>50bp) in the three trios simultaneously53,54. Previous versions relied primarily on 
discordant read mappings for calling deletions. The new version of VariationHunter considers discordant 
reads, read-depth and split reads signatures from Illumina read-pair data. Split reads are identified from 
soft-clip data which are remapped as two segments during alignment.  For read-depth, we applied a 
likelihood ratio as metric to filter predicted deletions that resulted from low mapping quality. Finally, we 
used the tools SVtyper for genotyping all predicted SVs.  A total of 4,581 deletions passed genotyping with 
the calculated IRS FDR of less than 5%. 

Forest SV (Contributed by: Sebat, J): ForestSV55 was used to call deletions and duplications in each 
individual with the default parameters. Adjacent SV calls in the same sample were stitched together if the 
gap between two calls of the same type was less than 10 Kb. We applied this rule recursively ensuring 
events consisting of multiple calls were merged. Next, calls were collapsed within families if the reciprocal 
overlap was at least 90% resulting in 68,944 deletions and 84,281 tandem duplications. Genotypes were 
then estimated for each SV across all samples using a machine learning genotyper, 
SV2(https://github.com/dantaki/SV2).  

Manta (Contributed by: Sebat, J): For each trio Manta56 was applied with default parameters to predict 
deletions, tandem duplications, inversions, and insertions. Variants were removed if the length was greater 
than 15 Mb. Calls with at least 80% reciprocal overlap were merged while reporting the position with the 
smallest length, resulting in 14,840 deletions, 1,766 tandem duplications, 5,152 insertions, and 1,278 
inversions with passing genotyping.  

SVelter (Contributed by Mills, R,  Zhao, X) : We applied SVelter 57 individually to the aligned Illumina 
sequences for all 9 samples to call simple and complex structural variants >100bp in size. These samples 
were then merged into a single VCF formatted file. SVs are denoted as follows: DEL (deletion), INV 
(inversion), TANDUP (tandem duplication), DISDUP (dispersed duplication, includes insertion point in 
INFO field), DEL_DUP (complex deletion with duplication), DEL_INV (complex deletion with inversion), 
DUP_INV (complex duplication with inversion), DEL_DUP_INV (complex deletion with duplication and 
inversion), and OTHER (unclassified). Over the three trios, SVelter reports 13573 (DEL), 506 (INV), 9319 
(TANDUP), 3077 (DISDUP), 2165 (DEL_DUP), 369 (DEL_INV), 334 (DUP_INV), and 310 
(DEL_DUP_INV). 

We applied an in-house long-read validation tool, VaPoR58 to SVelter predictions using aligned PacBio 
sequence reads for the trio children and were able to find individual read support for 82% of deletions and 
60% of other SV types (both simple and complex). 

Novobreak (Contributed by: Chong, Chen): NovoBreak v1.1.359 was used to detect SVs (>100bp) on the 
high coverage PCR-free Illumina sequencing data of the three trios (nine samples). NovoBreak is a tool 
initially designed to discover somatic structural variation in cancer genomes. It applied a k-mer targeted 
local assembly method to detect structural variants in single base resolution. To detect germline SVs in the 
trios and to meet the interfaces of novoBreak pipeline, each sample in the trios was treated as a ‘tumor’ 
and a mock ‘normal’ sample without mutations and only allowing sequencing errors (error rate = 0.005) 
was simulated using wgsim v0.2.3 in SAMtools package8 from the human reference genome. For each 
sample, an initial call set was generated using the novoBreak pipeline under the default parameters. The 
initial call sets were further filtered using a customized script based on the alignment information (split 
reads, discordant read pairs and mapping qualities) and local assembly information around each SV event. 
For example, a minimum number of 5 reads for local assembly and a minimum quality of 50 (maximum is 
60) were required to generate a high-quality call set. In each trio, the unique calls in the child but not in 
either parent provided an estimation of the false positive rate (FDR). The estimated FDRs for YRI, CHS 
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and PUR were 8.8%, 10.7% and 10.3%, respectively. Note that these FDRs were potentially over-
estimated since the unique calls in the child may include de novo SVs. 

Deletions, Duplications and Inversions longer than 100bp were reported for each sample. The numbers of 
deletions range from 1,883 to 2,717; duplicates from 14 to 30; inversions from 58 to 112. As expected, the 
African trio YRI had the largest number of SVs due to genetic diversity (~1.4 fold more than those found in 
CHS or PUR). The diversities of CHS and PUR were at the similar level. The same trend held for all three 
types of SVs. Overall, the deletion size distribution in each trio followed geometric distribution except that in 
all trios there was a peak around 300bp, resulting from the Alu element insertions. 

retroCNV (Contributed by: Gerstein): An extended version of the retroCNV pipeline60 was used to detect 
presence/absence polymorphism of processed pseudogenes in all nine individuals independently. The 
retroCNV pipeline uses discordant read pairs to detect clusters of discordant read pairs evidencing the 
insertions of exonic or 3’UTR from parent genes. PCR-based validation studies have provided estimates 
for retroCNV FDRs at 0.1 and below. As an extension of previous version of the pipeline, solo 3’UTR 
retrotranspositions are also reported.  

MELT (Contributed by: Gardner, E, Devine, S): MELT Illumina call set: MELT identifies MEIs using 
signatures of discordant read pairs and split reads that are enriched at sites containing non-reference (non-
REF) Alu, L1, SVA, and HERV-K MEIs.  PCR-based validation studies and simulations have provided 
estimates for MELT FDRs less than 5%.  MELT detects a wide range of MEI-associated features, including 
target site duplications (TSDs), precise insertion junctions (where possible), 3’ transductions, 5’ inversions, 
size, orientation, interior mutations compared to consensus elements, family/subfamily status, and gene 
features affected (if any).  MELT also calls genotypes for both non-REF MEIs and REF MEIs, thus 
providing a comprehensive set of polymorphic MEIs in a given genome61.  MELT only identifies SVs that 
are precisely caused by mobile element insertion mechanisms, and it does not identify SVs that include 
MEIs are part of larger events.  MELT identified a total of 4,271 MEIs in the three trios, including 3,417 
Alus, 531 L1s, 306 SVAs, and 17 HERV-Ks.  99.35% of these calls were consistent with Mendelian 
inheritance in the trios.  

VariationHunter, Tardis (Contributed by: Hormozdiari, F): We used the annotated Alu and L1 locations 
in the human reference genome (GRCh38) to guide in the prediction of MEIs. We applied an extension of 
VariationHunter for MEI prediction62 called Tardis, which in addition of discordant reads also considers split 
reads of the reads with soft-clipping.  In the MEI call set one de novo Alu insertion was predicted with 
confidence in NA12940 (locus: chr10:128034796-128035846) . The de novo Alu insertion was validated as 
true de novo using PCR validation and PacBio reads.  

Location of VH MEI call sets: 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20160930_pre_ashg
_calls/20161011_Tardis_MEI_Calls/ 

3.4 Down - sample analysis of the HGSV Illumina callset 
(Contributed by: Zhao, Talkowski)  

Method: Illumina libraries were randomly sub-sampled to 10 iterations of 30X WGS depth, comparable to a 
standard Illumina genome used in population-based WGS studies, using samtools with a unique seed set 
for each iteration. As it was impractical for all developers to run all algorithms on each down-sampled 
dataset, a subset of the Illumina SV discovery algorithms that contributed to the largest fraction of calls in 
the full integration set and could be readily applied by a single naïve user with published documentation, 
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i.e., Delly, Lumpy, Manta, MELT, Wham, and SVelter, were applied to the sub-sampled libraries with 
default parameters. These call sets were then analyzed using the Illumina integration script. 

Results:  On average 7,520 SVs were detected in each genome with the selected algorithms on 30X 
sequences, representing a 34% decrease in sensitivity from a combination of a naïve user running a 
subset of algorithms and reduced coverage of the 30X genomes. We quantified the relative contribution of 
these factors and found that a 23% reduction was attributable to excluding a subset of algorithms, while the 
reduced coverage contributed to an 11% reduction in SV sensitivity compared to the 75X genomes. Among 
all down-sampled datasets, 78% of SVs overlapped with the full integration set (Supplementary Figure 
40). 

4. Integration of Illumina, PacBio, and Bionano callsets 
4.1 Comparison of read depth and de novo assembly methods 

Because a substantial fraction of human genetic variation occurs in regions of segmental duplication 63, 
and segmental duplications are often missing from de novo assemblies64, we compared the variation 
detected in regions of segmental duplication through read depth to the segmental duplications that were 
resolved in the MS-PAC de novo assemblies. Because both of the Phased-SV and MS-PAC haplotype 
partitioned assemblies are biased by the reference, we excluded these assemblies from analysis. The 
assemblies were mapped to GRCh38 using blasr (www.github.com/mchaisso/blasr ) with parameters “-
alignContigs -nproc 16 -minMapQV 30”. The UCSC genomicSuperDups annotations for GRCh38 were 
merged into nonredundant regions, annotating the percent identity of each merged region as the highest 
annotated identity from all corresponding composite duplications.  The boundaries of the alignments of 
contigs were compared to the boundaries of the merged segmental duplications.  All duplications that were 
covered by at least 50 Kb on both the 5’ and 3’ end were considered resolved (Supplementary Data 59).  

The dCGH and Genome STRiP methods both detect copy number variation using read depth, and are 
sensitive to copy number changes in highly duplicated regions. Between 91.4% and 99.5% of copy number 
variation detected by dCGH in segmental duplications were in duplications not resolved by de novo 
assembly (Supplementary Data 60). Similarly, using Genome STRiP, between 71.3 and 74.5% of copy 
number variation was in regions of segmental duplication not resolved by de novo assembly. These 
regions are gene rich; 49.2-60.7% of the dCGH and 14.3-15.9% Genome STRiP copy number variants not 
resolved by assembly overlapped exons. 

4.2 Genes affecting SVs 
Between 77 and 92 genes had at least one exon or UTR affected by a deletion SV, and between 316 and 
322 exons affected by insertion SVs. Between 37 and 41% of exon-overlapping deletion SVs were 
detected in the IL-SV dataset, and between 58 and 70% were detected in the PB-SV dataset. The average 
length of the PB-SV exclusive exonic SV was between 935 and 1,429 bp, whereas the average length of 
the IL-SV exon overlapping callset was between 13.2 and 24.7 Kb. This discrepancy indicates a loss of 
sensitivity in the IL-SV callset for smaller-scale deletion events, consistent with non-exonic SVs. The 
counts of SVs affecting genes by method and region of gene are shown in Supplementary Figure 41. 

Categories of SV only in PB callset. 
The categories of SVs only in the PB callset are shown in Supplementary Figure 42.  The genes affected 
by PB only SVs are given in Supplementary Data 61. 

SV overlapping noncoding functional elements  

(Chaisson, Wenger)	
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In addition to detecting exons that are disrupted by SV, we looked for potentially functional noncoding 
elements that overlap SV.  We defined 2,857,792 conserved noncoding elements  (CE) totalling 121.9 Mb 
from PhastCons Most Conserved Elements for the hg38-based 100-way multiple alignment from UCSC.  
Elements within 25bp were merged, and elements overlapping coding elements and UTRs were removed. 
To avoid spurious alignments in hyper variable regions, alignments were required in a net to chimp in 
addition to mouse, dog, or horse. We also defined 1,070,532 transcription factor binding sites by lifting over 
from the USSC HMR Conserved Transcription Factor Binding Sites (http://genome.ucsc.edu/cgi-
bin/hgTables?hgta_doMainPage=1&hgta_group=regulation&hgta_track=tfbsConsSites&hgta_table=tfbsCo
nsSites) (TFBS). Nearly half the SV that overlap a conserved element (40.2%) are in large (>2 Kb) SVs 
(average 15Kb). The SV calls that overlapped TFBS were similarly larger than the average call (37 Kb). 
This is primarily driven by large BNG events; the average SV excluding BNG was 7.3 kbp for CE 8.3 kbp 
for TFBS, and  The calls unique to PB-SV (3% of calls) were on average 2.2 kbps. While the number of 
TFBS deletion events unique to PB-SV (missed by IL-SV) was small (21 events/sample), the average size 
was small; on average 12.7 (~75%) sites per genome were less than 2 Kb (Supplementary Data 62). 

5. Resolving Inversion Sequence Errors in the Human Reference Genome 
(Contributors: Cantsilieris, Eichler) 

During the Strand-seq analysis, we observed 51 regions where the majority of individuals predicted a 
configuration different from the current human reference genome. We filtered for calls mapping to 
centromeric and satellite DNA sequences (n=21) and observed that a large fraction of the remaining calls 
(43%) were almost completely contained within segmental duplications and therefore interpretation was 
difficult. We specifically focused on regions where at least seven of the nine genomes assessed by strand-
seq predicted homozygous inversions and where there was evidence of unique intervening sequence.  
Such regions suggest that the configuration of the reference genome either represents a minor allele or 
that the reference (GRCh38) is in error.  We identified 17 such regions ranging in size from 3.4 Kb up to 2.9 
Mb in size. We selected large-insert clones from human hydatidiform mole source (CHORI-17) and 
sequence and assembled each region using Canu65 followed by consensus sequence calling using 
Quiver66 as previously described67. We identified 11 regions that could be spanned by a single BAC clone 
(Supplementary Data 63). High quality sequencing validated 9/11 inversion events with two regions 
(chr22:21,442,966-21,496,091 and chr17: 43,234,311 - 43,323,702) completed embedded within tandem 
duplications that could not be resolved at the level of clone based assembly. Of these 9 regions, 6 show 
evidence of an inverted orientation in all genomes analyzed indicative of misassembly in the GRCh38 
reference. For the remaining 3 events, strand seq analysis in one individual supports the existence of the 
reference orientation suggesting it reflects the minor allele. We next selected 10-20 Kb of flanking 
sequence surrounding each of the 9 inversion events and identified that they are enriched for common 
repeat sequences (average repeat content 67%). Notably, 5 of these events are flanked by inverted 
LINE/L1 repeat sequences (Supplementary Figure 43). 

Next, we identified 3 regions >1 Mb flanked by large highly identical segmental duplication blocks that 
showed evidence of inverted orientation >7 genomes. We selected two of these regions for a more detailed 
analysis by constructing alternate reference haplotypes using CHM1 BAC clones. At chromosome 16p12 
we generated a ~1.8 Mb alternate reference haplotype corresponding to chr16:21288212-22746306 in the 
GRCh38 reference assembly. The inversion maps to a previously identified assembly error in the human 
reference genome68 (Supplementary Figure 43B). Of the 9 human genomes analyzed here, a single 
individual is heterozygous for the event suggesting the reference may represent a very rare haplotype 
structure. At chromosome 2q13 we generated a ~843 Kb alternate reference haplotype spanning two large 
duplication blocks of ~358 Kb and >99% sequence identity (Supplementary Figure 43C). The duplication 
blocks map in inverted orientation and would likely predispose this region to inversion. Sequence analysis 
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shows that the CHM1 haplotype maps in direct orientation consistent with the GRCh38 reference 
assembly.        

6. Biological context 
6.1 Population genetics of SVs 
Population genetics of PacBio Integrated callset 

SVTyper genotyping: The deletion calls from the HAN, PUR, and YRI children were separately genotyped 
in the Simons Human Genome Diversity Panel (HGDP) (n=238 samples), genotyping 6036, 6218, and 
5865 SVs per sample.  After removing sites with LD> 0.2 and MAF < 0.10, 3,082, 3,074, and 2,582 sites 
remained. Similar to the PCAWG analysis, the PCA demonstrated population based clustering, as 
expected. 

We computed FST across genotypes for each sample, with the populations separated as 35 African, 16 
Amerindian, 41 East Asian, 21 Oceanic, 34 South Asian, 20 SIB, 72 West Eurasian. A total of 109, 109, 
and 112 sites were found to have FST > 0.20 from each sample, respectively, of which 33, 35, and 43 
intersected genes.  Of these, one event genotyped from HG00733 was found to be exonic (TUBA3E, 
chr2:130197357-130199831, FST=0.20), and one event genotyped in NA19240, PLIN4 (del chr19:4512828-
4513027, FST=0.22) were found to overlap exons. 

SMRT-Genotyper summary: With sequence-resolved structural variants from local assemblies, it is 
possible to genotype with more confidence. We used a version of the SMRT-SV genotyper adapted to 
handle larger contigs generated by this study. Since SMRT-SV requires an aligned contig with annotated 
breakpoints, we were only able to apply the SMRT-SV genotyper to Phased-SV variant calls. 

We selected 24 PCR-free population samples from the 1000 Genomes Project (phase 3, Supplementary 
Data 64) and short-read sequences for the 3 child samples in this study. The number of genotyped variants 
were summarized in Supplementary Data 65.	

Removing tandem-repeat variants 

Because tandem repeats represent a significant challenge for short-read alignments and inference drawn 
from them, we have omitted variants that affect tandem-repeat bases. Tandem-Repeat Finder (TRF) 
annotations were downloaded from UCSC for hg38. TRF annotations within 200 bp were merged into 
regions, and any variant with at least 10% of its reference bases in a region was excluded from analysis.	

Genotype Accuracy 

We consider a variant genotypable if it has a call in at least 20% of the 1000 Genomes samples. If these 
variant calls are assumed to be correctly genotyped, they can be used to estimate genotyper performance 
using Illumina sequence data from the same sample. Genotyping accuracy is defined as the proportion of 
variants where the genotype matches variant call zygosity, and it is calculated omitting variants with a no-
call genotype. See Supplementary Data 66 as the genotyper summary of call proportions by sample and 
type for non-tandem-repeat variants, and Mendelian inheritance were calculated for all trios and 
summarized in Supplementary Data 67.	

6.2 Functional analysis and annotations  
Functional enrichment analysis 

The SV calls from the integrated PB-SV set were compared with annotations of genes, exons, CDS, intron, 
transcribed processed pseudogenes, transcribed unprocessed pseudogenes, and transcripts were taken 
from Gencode v25, along with transcription factor binding site peaks (Gencode + funseq), ultra sensitive, 
and ultra conserved elements from funseq (Supplementary Figure 44). While there was a depletion of 
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deletion SVs in all categories of genes, there was an increase in insertions within genes including exons 
and CDS. 

Structural variants engulfing genes 

(Contributed by: Nodzak, Wen, Shi) 

The variants in the pan-technology integrated set harbor regions that completely overlap with protein 
coding genes. In the IL-SV set, 573 SVs engulfed whole genes including 183 deletions, 182 inversions, and 
208 duplications, while in the PB-SV set, 21 deletions were found to completely engulf genes 
(Supplementary Data 68). To assess the gene expression impact of the SVs that engulf genes, group t-
tests were performed between the RPKM (Reads Per Kilobase Million) normalized expression values of 
real SV-engulfed genes and genes engulfed by analogous sets of randomly permuted regions using 
Strand-Specific RNA-seq data. To this end, we devised a method that found protein coding genes that 
were overlapped 100% by deletions, duplications and large inversions. This step was completed using 
BEDtools intersect with complete fractional overlap of sample-specific integrated Illumina SVs (filtered on a 
QUAL value of PASS and non-missing genotypes) on protein coding genes from gencode.v25.gtf, using 
the -f 1.0 command option (Williams 1989).  The process was then repeated for deletions from the PB-SV 
deletion calls. Next, controlling for the size and chromosome of the SVs that engulf genes, 10,000 
permutations were performed to create a set of random genomic regions with BEDtools shuffle. These 
permuted sets of regions were then used to identify sets of engulfed genes in the same manner described 
above. Specifically, strand-specific mRNA aligned to GRCh38 read quantification was performed for protein 
coding genes annotated by the gencode version 25 GTF using featureCounts, part of the Subread 
package69. Coverage normalization was then performed using the RPKM method, which resulted in a final 
set of expression values of 18,873 genes for the nine samples70. With each set of RPKM values for genes 
overlapped by a real variant call in a given sample, a group t-test was performed against the RPKM values 
for each of the lists of genes overlapped by the permuted regions. Finally, multi-test correction was applied 
using the fdrtool package in R  71. The q-values were then -log2 transformed and the average was plotted 
for each sample to assess the significance of the effects of each type of variant on the expression of 
engulfed genes (Supplementary Figure 45). 

Our results (Supplementary Figure 45) illustrated a high level of congruence of the expression effect 
brought about by these gene-engulfing SVs across the samples. Particularly, the expression of IL-SV 
deletion-engulfed genes for all nine samples showed significant differences from the permuted genes. 
Similarly, all three trio daughters showed significant differences in expression for those genes completely 
overlapped by large IL-SV inversions. 7/9 individuals were found to be impacted in a similar manner for the 
sets of whole-gene duplications. When the same analysis was conducted using the PB-SV deletions for the 
three trio daughters, we found 21 deletions were found to completely engulf protein coding genes 
(Supplementary Data 68) and one of the three individuals showed significant differences in the expression 
of the affected genes (Supplementary Figure 45). 

Indel functional annotations 

(Contributed by: Wen, Shi) 

We annotated the integrated Illumina indel callset for three trios using the variant effect predictor (VEP)72. 
Of 1,743,129 autosomal small indels from the Illumina indel integrated set, 1,944 indels were located in 
coding sequence region. For indels with different predicted consequences, we only counted one entry for 
each indel corresponding to its impact of the longest transcript (Supplementary Data 69), where the 
transcript annotation file used was Gencode.v25.transcripts.fa. 44.96% (874/1,944) of these indels were 
frameshift variants (FS) and 52.78% (1,026/1,944) were non-frameshift variants (NFS). In addition, 44 
indels were annotated as other types of variants including coding sequence variant, protein coding variant, 
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splice acceptor variant, splice donor variant, stop gained variant and nonsense mediated decay (NMD) 
transcript variant. 

Allele specific expression analysis 

(Contributed by: Wen, Nodzak, Shi) 

Allele specific expression (ASE) analyzes differences in expression by leveraging heterozygous sites in 
diploid organisms. Former studies found up to 30% of loci showing allelic-specific effect on the transcript at 
individual level73. One study showed that approximately 20% of human genes can be affected by ASE in 
European populations74. Another study reported that nearly 18% of variants that located in protein coding 
regions showed ASE in HapMap populations75. 

We conducted ASE analysis of SNPs and SVs using the strand-specific RNA-seq data on the trios 
(Supplementary Figure 46). We started with SNP ASE analysis, based on the strand-specific RNA-seq 
data and the Whatshap strand-seq 10X phased SNPs using a pipeline which conducted mapping bias 
correction using WASP76 and tested for ASE by applying binomial tests with multi-correction test on FDR 
5%77.  

The pipeline of SNP ASE analysis includes the following steps. First, the strand-specific RNA-seq fastq 
files were mapped using the STAR (v2.4.2a) with default option to the GRCh38 human reference to create 
bam alignment files78. Second, we adapted WASP76 to correct mapping biases as follows. Specifically, the 
STAR bam files were remapped to all SNPs and we discarded the reads not mapped to the same location 
with reference allele after flipped to the alternative allele. Third, duplicate reads were then removed using 
Picard (http://broadinstitute.github.io/picard) where the reads with the best quality and least mismatch were 
kept. Fourth, we used the following criteria to keep uniquely mapped reads for quality filtering. These reads 
will have an i) NM <= 6, ii) a base quality >= 10, iii) a mapping quality score > 20, and iv) total read count 
>=8 at each both allele seen heterozygous SNP (het-SNP) site. If the four criteria above were satisfied, 
then the number of reference allele count and alternative allele count were extracted with perl script 
samase.pl provided by Kukurba et. al79,  and a subsequent binomial test was performed with FDR-based 
(5%) multi-test correction conducted afterwards. 

To evaluate the effect of overdispersion in the Strand-Specific RNA-seq data, we selected YRI mother 
NA19238 to calculate the overdispersion to compare the binomial test and beta-binomial test80 with the 
same input for both allele seen heterozygous SNPs. The low overdispersion (0.0152) indicates that our 
RNAseq data is not overdispersed, and the binomial test and beta-binomial test for ASE analysis would 
give similar results (Supplementary Figure 47). Hence, we chose to use binomial test for our WASP 
based ASE analysis pipeline in this study (The whole ASE analysis pipeline can be found in 
https://github.com/shilab/HGSVC_ASE_Analysis). 

Using this pipeline, we identified a total of 4,292 SNPs that exhibit ASE in the three 
trios(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/201707_ASE_
RES_Trios/). We overlapped these ASE SNPs with Ensembl genes using annotations by Gencode v25 
protein coding genes. We found that 3,609 of these ASE SNPs affect 1,947 Ensembl genes in these three 
trios (YRI trio: 1,647 SNPs showing ASE on 1,043 Ensembl genes; PUR trio: 1,293 SNPs showing ASE on 
857 Ensembl genes; CHS trio: 1,138 SNPs showing ASE on 703 Ensembl genes). We overlapped all of 
the 4,292 ASE SNPs we identified with published ASE results, and found that 72.8% (3,124/4,292) of our 
ASE SNPs and 97.5% (1,899/1,947) of our ASE genes were previously reported as tagging ASE loci in 
LCLs80–82. Among these, 246 ASE SNPs identified were also previously reported as eQTLs41,81,83–91. We 
also overlapped these 4,292 ASE SNPs identified in this study with GWAS catalog92, 35 of them were 
GWAS signals associated with 32 human traits including diabetes, obesity, and Alzheimer's disease. We 
performed a permutation-based test to assess if ASE SNPs are enriched for known eQTLs, and in 
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consistent with prior reports89,93,94 we found that ASE SNPs are significantly enriched for eQTLs in LCLs 
(Supplementary Figure 48). 

To functionally characterize the identified ASE genes, we conducted Gene Ontology (GO) enrichment 
analysis (GO annotation released 2017-11-28)95,96. The PANTHER overrepresentation test (Fisher’s exact 
test with FDR-based multiple test correction at 5% FDR cutoff) was used for enrichment testing for three 
GO categories - molecular function, biological process and cellular component. REVIGO was used to 
reduce the redundant significant GO terms and group GO terms for visualization97. 20, 31, 18 unique GO 
terms were found for the molecular function, biological process and cellular component categories, 
respectively. These data are summarized in the Supplement including through the Supplemental 
Supplementary Figures 49, 50, and 51.  

We next assessed the overlap between our ASE genes and genomic imprinting. Of 1,947 ASE Ensembl 
genes identified in the three trios, 30 were overlapped with experimentally validated and predicted 
imprinting genes in prior studies98,99,100 (Supplementary Data 70). Two of these imprinted genes, 
SNURF/SNRPN and GNAS, were previously reported as imprinted ASE genes93. SNURF/SNRPN is a 
paternally expressed gene, and our ASE result showed a consistent inheritance pattern with the imprinted 
pattern (mRNA read counts of two alleles at 283 vs 1 for YRI father and 213 vs 1 for YRI child; 1 vs 287 for 
CHS father and 2 vs 230 for CHS child). Genomic imprinting is an epigenetic phenomenon that causes 
genes to be expressed in a parent-of-origin-specific manner, leading to ASE. But imprinting is just one out 
of many molecular mechanisms leading to ASE, and thus we certainly would not expect that a much larger 
portion of the ASE genes reported are undergoing imprinting. Previous studies have been consistent in 
reporting that relatively small fractions of ASE genes are due to imprinting73,101, which is consistent with our 
data.  

Once we characterized ASE SNPs, we sought to investigate if SVs brought about ASE effect on those 
genes whose expressions were shown to be allele specific from the SNP-ASE analysis above. In order to 
do so, we developed an SV-ASE analysis pipeline (Supplementary Figure 46) with the following three 
steps for PB-SVs and IL-SVs respectively. First, we established a set of candidate SVs-gene pairs by 
taking the intersection of heterozygous SVs (het-SVs) with SNP-ASE genes. Second, phased RNA-Seq 
reads were filtered following the same criteria established by our SNP-ASE analysis above and read 
counts of the genes were calculated for each sample’s two haplotypes using BEDtools multicov. Third, the 
significance of SV-genes pairs was then obtained by applying a binomial test to the read counts of the two 
haplotypes with multi-test correction using FDR 5%.  

Our results (Supplementary Data 71) showed that the majority of het-SVs tested significantly affected the 
target gene expression in allele specific manner. Specifically, in the PB-SV set, a total of 144 SVs (70 
insertions and 73 deletions) showed ASE effect on 60 genes, out of the 199 het-SVs intersected with 78 
SNP-ASE genes for NA19240; a total of 196 SVs (88 insertions and 108 deletions) showed ASE effect on 
77 genes, out of the 220 het-SVs intersected with 85 SNP-ASE genes for HG00514; and a total of 219 SVs 
(141 insertions and 78 deletions) showed ASE effect on 89 genes, out of the 274 het-SVs intersected with 
106 SNP-ASE genes for HG00733. In the IL-SV set, 58 SVs (7 insertions, 48 deletions and 3 inversions) 
demonstrated ASE effect on 59 genes, out of the 83 het-SVs intersected with 62 SNP-ASE genes for 
HG00514;  60 SVs (10 insertions, 45 deletions and 5 inversions) demonstrated ASE effect on 60 genes, 
out of the 108 het-SVs intersected with 78 SNP-ASE genes for HG00733; and 57 SVs (6 insertions, 48 
deletions and 3 inversions) demonstrated ASE effect on 44 genes, out of the 79 het-SVs intersected with 
55 SNP-ASE genes for NA19240. 

Our SV-ASE results prompted us to address whether or not the observed allelic imbalance at SV-ASE 
genes was attributable to a local haplotype along the gene region. For this, we calculated the LD (R2 
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values) between the SVs and SNPs with ASE effect on the same gene. We illustrated this analysis to 
assess the allelic effect resulting from a heterozygous deletion belonging to HG00514 within a transcription 
factor binding site on exon 5 of the ZNF717 gene (Supplementary Figure 52). We further ruled against a 
haploblock effect driving the allelic imbalance between the haplotype from low R2 values for the sample's 
variants and those from the 1000GP phase3 CHS population within a window ± 100 Kb of the gene, and 
showed that there were few variants with high R^2 within the exon as well. 

Variants overlapping GWAS sites 

We searched for deletion SVs that overlapped GWAS sites, since common structural variation that has not 
been detected could affect interpretation of allele frequency.  The results of SV overlapping with 11,737 
GWAS sites is given in Supplementary Data 75. There were 16 deletions from HG00514, 9 HG00733, 
and 16 from NA19240 that were overlapping GWAS sites, with an average length of 286 Kb and median 
length of 16,302 bp. 

6.3 MEI discovery and analysis with PacBio data  
(Contributed by: Gardner, E. Chuang, Nelson, and Devine, S.E.) 

Short-read Illumina-based approaches are not able to capture the interior sequences of potentially active 6 
Kb FL-L1 retrotransposons. Thus, we sought to utilize our LA assembly data from the three children in our 
study (HG00514, HG00733, and NA19240) to assess reference (REF) FL-L1 sites (those found in the 
Hg38 reference genome assembly) and nonREF FL-L1 sites (those not found in the reference genome but 
found in one or more of the children’s genomes). We developed two approaches, one each for REF and 
nonREF sites, to independently assess these two genomic compartments. Using these data, we then 
developed profiles of potentially active FL-L1 sites in the genome of each child. These profiles include 
annotation of the number of intact open reading frames (ORFs—either zero, one, or two), L1 subfamily 
analysis102, and published information on whether the element is highly active (i.e., “hot”), active, or 
inactive103,104 (Supplementary Data 13).	

Reference L1 assembly 

For each proband, all FL-L1 (6 Kb) L1Hs and L1PA2 intervals in the human Hg38 assembly (Smit, AF) 
were reassembled using haplotype partitioned reads (Section 3.2 MsPAC). In short, given an L1 interval, (i, 
j), reads overlapping the coordinate interval (i-10,000, j+10,000) were passed as input to MsPac to yield a 
final assembly sequence containing the L1 interval. We determined with Sanger sequencing that Pacific 
Bioscience RSII (PacBio) sequencing consistently generated a reproducible error in discriminating the 
number of bases in four homopolymer tracts at FL-L1 positions 1117, 1699, 3135, and 3564. Thus, we 
systematically corrected deletions that were detected at these four positions. With this approach, 
1042/1103 (94.5%) of the FL-L1 sequences that were examined in the three children were identical to their 
Hg38 counterparts. These results are consistent with previous reports indicating that FL-L1 sequences can 
vary across populations 105,106. For each haplotype resolved sequence, assemblies were then queried for 
the presence/absence of an L1 to generate a genotype (0/0, 0/1, or 1/1) at that given locus. 	

L1 annotations were generated with a custom Python script that aligns each L1 of interest to a consensus 
L1. It then searches for the ORF1 and ORF2 regions, translates them, and calculates the respective 
protein sizes. Subfamilies are determined using a conservative interpretation of the classification scheme 
that was developed by Boissinot et al, where a complete match of each canonical base was required for an 
element to be assigned to a given subfamily. Subfamilies that had canonical Ta and PreTa bases, but did 
not have complete matches to the subfamily were flagged as Ambiguous-Ta (Ambig-Ta) or Ambiguous-
PreTa (Ambig-PreTa), respectively. If there were no canonical base matches, then it was considered L1 
Ambiguous (L1Ambig) .	
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Non-reference L1 polishing 

To determine the polymorphic nonREF L1 component of each proband’s genome (i.e. for HG00514, 
HG00733, and NA19240) we utilized the repeat annotation provided within the unified PacBio call set VCF 
(Section 3) to extract all L1 insertion variants labelled as human specific (L1Hs; Section 1). Using Smith-
Waterman alignment, we then aligned each extracted L1 to a known, active FL-L1107 to determine 
subfamily, number of intact open reading frames (ORFs), and overall sequence composition. On initial 
assessment, we observed that a number of our L1 assemblies had more than the expected number of 
indels compared to our reference L1 element (Supplementary Figure 53). As PacBio sequencing can 
introduce an overabundance of indels in assembled sequences and these observed indels disrupted 
coding sequence internal to our assemblies, we sought to determine the validity of all indels in our PacBio 
assembled nonREF L1Hs elements. To accomplish this goal, we developed a novel approach utilizing 10X 
Genomics GemCode sequencing to polish all PacBio assembled L1Hs from each proband’s VCF file.	

Our 10X polishing approach has four steps. First, we sort the 10X bam file based on the “BX” tag which 
contains the GEM read cloud barcode generated during 10X sequencing (section 1.2 10X genomics). 
During this step, we also calculate the total number of reads attributable to each tag and filter tags which 
have less than 15 reads or more than five times the median number of reads per tag in a given sample 
(Supplementary Figure 53A). Next, we generate a file index containing the precise location of each read 
cloud within our sorted bam file. After indexing, we iterate over all nonREF L1 loci, recruiting read clouds 
which support the presence of an L1 insertion at that given locus. Evidence consists of either discordant 
pairs where one mate aligns to the reference and the other aligns to an L1, or split reads where part of one 
mate aligns to both the reference and an L1. All reads from each supporting read cloud are then aligned to 
the PacBio L1 assembly at a given locus. Finally, supporting reads are processed using a kmer approach 
108 and queried using overlapping 21-mers for consistency to each PacBio L1 assembly at every base within 
that assembly. Bases in the assembly not supported by the kmer library are then iterated over to determine 
the highest likelihood base, deletion, or insertion at that position. Bases where we could not determine the 
correct residue/variant due to insufficient evidence were reported as “N” in the final output. Polished 
sequences are then reported in fasta format and annotated as outlined above for REF elements. Using this 
approach, we were able to generate polished (i.e. no “N” bases) sequences for between 76 and 93% of all 
PacBio assembled nonREF L1Hs elements per genome (Supplementary Figure 53).	

Considering that the average 10X read cloud size is in the tens of Kb in magnitude, we also sought to 
ensure that we were not recruiting adjacent L1Hs reads when building kmer libraries which may lead to 
incorrect polishing. To test for this scenario, we examined the n bases (where n is the average read cloud 
size in a given individual) surrounding the genomic coordinate of each polished L1Hs element for both REF 
and nonREF L1Hs or L1PA2 sequences as annotated by RepeatMasker. We found that the majority of 
polished L1Hs elements did not have any other young, and thus potentially polymorphic, L1 elements 
within their read cloud that could potentially lead to errors in our polishing approach (Supplementary 
Figure 53C).	
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Supplementary	Figure	1.		
Examples	of	critical	regions	of	microdeletion	syndrome	loci	flanked	by	inversions.	Genome	browser	view	of	two	
microdeletions	located	on	chr16p	(red	bars,	labeled	‘A’	and	‘B’)	flanked	by	inversions	located	in	the	present	study	(black	
bars	with	yellow	highlight).	Expanded	view	of	the	segmental	duplications	rearranged	by	the	inversions	flanking	region	A	
are	shown	in	the	right	panel.	The	coordinates,	length,	and	genotypes	for	each	inversion	are	listed	in	the	table.	Blue	bars	
are	microdeletions	found	in	donors	from	the	CNV	morbidity	map. 
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Supplementary	Figure	2.	
Intact	FL-L1	source	element	profiles	for	the	three	children.	Chromosome	1	through	22,	X,	and	Y	are	displayed	from	left	
to	right.	FL-L1s	with	two	intact	open	reading	frames	are	represented	by	a	circle	in	the	color	corresponding	to	the	
individual.	The	circle	can	either	be	filled	or	half-filled	depending	on	the	genotype	in	the	respective	individual.	L1	sites	
with	activity	documented	in	the	literature	are	depicted	by	light	purple	(highly	active	or	“hot”)	or	dark	purple	(low	to	
moderate	activity)	horizontal	lines	at	the	site.	  
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Supplementary	Figure	3.		
The	number	of	phased	SNVs	in	60	kbp	windows	across	the	genome.	
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Supplementary	Figure	4.	
PacBio	Coverage	Permutation	Test.	The	coverage	of	pacbio	reads	that	map	to	a	breakpoint	when	the	breakpoints	are	
randomly	shuffled.	
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Supplementary	Figure	5.	
Bionano	Concordance.	 The	 concordance	defined	 as	 the	 closest	matching	 SV	 lengths	 across	 the	 variant	 boundaries	 of	
each	Bionano	variant	call	is	shown	for	insertions	(black)	and	deletions	(red),	for	HG00514,	HG0073,	and	NA19240.	
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Supplementary	Figure	6.		
MsPAC	and	PacBio	SV	site	comparisons.	(left)	Net	SV	calls	across	100	kbp	bins	in	the	euchromatic	genome	for	both	
haplotypes	of	NA19240.	(black)	bins	where	both	methods	have	a	net	insertion	(red)	bins	where	both	methods	have	a	net	
deletion	(green)	MS-PAC	has	a	net	insertion,	and	Phased-SV	is	less	than	or	equal	to	zero	(blue)	Phased-SV	has	a	net	
insertion,	and	MS-PAC	is	less	than	or	equal	to	zero.	(right)	A	histogram	of	the	difference	between	net	SV.	A	value	of	zero	
indicates	the	net	SV	insertion	and	deletion	is	equal	between	the	two	methods.	
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Supplementary	Figure	7.		
Closest	distance	between	Phased-SV	and	MsPAC	calls.	The	closest	distance	to	a	Phased-SV	call	for	all	MS-PAC	calls.	All	
values	>	5kbp	are	grouped	at	5kbp.	
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Supplementary	Figure	8.		
SV	callset	size	by	merging	parameter.	Number	of	SVs	after	merging	SVs	between	haplotypes	for	calls	outside	of	tandem	
repeats	(top),	and	inside	tandem	repeats	(bottom),	for	Phased-SV	(left)	and	MS-PAC	(right)	for	HG00514	(blue),	
HG00733	(green),	and	NA19240	(red).	
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Supplementary	Figure	9.		
Tandem	repeat	cluster	sizes.	The	cumulative	distribution	of	total	number	of	SVs	relative	to	the	number	of	SVs	in	within	
tandem	repeat	loci.	
	



44	

	

Supplementary	Figure	10.	
Pipeline	to	integrate	SVs	from	multiple	Illumina	callsets.		
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Supplementary	Figure	11.		
Assessment	of	breakpoint	accuracy	of	each	Illumina	algorithm.	
	

	

	

Supplementary	Figure	12.		
The	deletion	can	be	confirmed	by	raw	PacBio	read-support	in	an	alignment-free	approach	using	dot-plots.	A	6.5kbp	
PacBio	read	(m140817_221907_42175_c100689561270000001823145102281516_s1_p0/95354/0_6656)	supporting	
the	deletion	is	shown	in	the	dotplot	below.		
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Supplementary	Figure	13.		
Alignment	pattern	of	a	14Kb	deletion	that	was	uniquely	discovered	by	Illumina	algorithms.	
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Supplementary	Figure	14.		
Illumina-genotyping,	heterozygosity	by	depth	of	coverage.	The	depth	and	genetic	diversity	in	each	of	the	seven	SGDP	
super	populations.		
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Supplementary	Figure	15.		
SGDP	Sample	Distribution	Geographic	distribution	of	the	Simon’s	Genome	Diversity	Project	samples.	Individuals	
without	longitude/latitude	data	are	excluded	from	this	plot,	e.g.	Native	north	American.		
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Supplementary	Figure	16.		
Locating	and	genotyping	inversions	in	Strand-seq	data.	A)	Summary	of	the	Strand-seq	libraries	used	to	generate	the	
merged	composite	files	for	each	chromosome	B)	the	final	median	coverage	of	the	composite	per	chromosome	shown	
for	each	sample.	C)	strategy	for	locating	and	genotyping	inversion	in	composite	files.	D)	examples	of	a	heterozygous	and	
homozygous	inversion	identified	by	the	proportion	of	reads	mapping	to	the	reference	assembly	in	each	orientation,	
which	is	used	to	calculate	the	read	ratio.	
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Supplementary	Figure	17.		
Putative	Inversions	discovered	in	Strand-seq	composite	files.	A)	Dotplot	of	local	read	ratios	calculated	for	the	Strand-
seq	composite	files.	Each	point	represents	a	putative	inversion,	and	its	position	reflects	the	proportion	of	reads	in	
reference	and	non-reference	orientation	at	that	locus.	Loci	with	a	read	ratio	>	15%	are	shown	in	red.	The	B)	distribution	
of	read	ratios,	and	C)	genotype,	as	determined	by	Fisher	Exact	Test,	were	used	to	further	classify	these	events.	D)	Size	
length	distribution	of	predicted	inversions.		
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Supplementary	Figure	18.		
Haplotype	structure	of	homozygous	inversions	discovered	by	Strand-seq.	A)	Illustrative	examples	of	a	simple	
homozygous	inversion	from	the	Strand	seq	discovery	set	that	was	supported	by	orthogonal	phase	data.	The	upper	panel	
(read	count)	displays	the	number	of	reads	in	the	reference	(grey)	and	‘non-reference’	(purple)	orientation	around	the	
highlighted	locus,	and	the	read	ratio	(shown	below)	supports	a	homozygous	inversion.	The	middle	panel	(Ph)	displays	
the	phase	of	these	reads,	with	H1	‘haplotagged’	reads	in	red,	H2	reads	in	blue.	In	this	panel,	phased	reads	in	the	
reference	orientation	are	displayed	above	the	ideogram,	whereas	phased	reads	in	the	‘non-reference’	orientation	are	
shown	below	(allowing	for	strand-aware	analyses).	The	bottom	panel	(SD)	highlights	the	location	of	annotated	
segmental	duplications,	with	the	intensity	of	blue	indicative	of	the	percent	match.	B)	Scatter	plots	summarizing	the	high	
read	ratios,	mixed	haplotype	ratios,	and	size	distribution	of	inversions	classified	as	homozygous	using	this	approach.	
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Supplementary	Figure	19.		
Summary	of	inversion	callsets	included	in	the	integration	analysis.	Violin	plots	illustrating	the	size	distribution	of	
inversions	predicted	from	various	technologies,	with	the	total	number	of	inversion	calls	made	for	all	individuals	(N)	listed	
above,	and	the	unique	number	of	calls	in	brackets.		
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Supplementary	Figure	20.		
Intersection	test	results	for	HG00733.	Example	results	of	inversions	showing	>	50%	reciprocal	overlap	between	two	
independent	technologies,	sorted	by	inversion	size.	Each	horizontal	bar	in	the	right	panel	represents	a	passing	inversion	
and	depicts	the	level	of	agreement	between	the	overlapping	orthogonal	platforms,	with	the	technologies	intersecting	at	
the	locus	listed	in	the	left	panel.	Illumina	(Imn);	Pacific	Biosciences	(PB);	Strand-seq	(Ss);	BioNano	(bN);	Jumping	libraries	
with	3.5kb	(j3.5k)	and	7kb	(j7k)	insert	lengths.	
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Supplementary	Figure	21.		
Summary	of	reciprocal	overlap	of	inversions	by	method.	A)	Total	number	of	inversions	showing	>	50%	reciprocal	
overlap	between	two	independent	methods,	sorted	by	technology.	B)	Percent	of	inversions	in	the	initial	discovery	
callsets	that	passed	the	intersection	test.	C)Ssize	lengths	of	passing	inversions,	sorted	by	technology.	D)	Number	of	
methods	intersecting	at	each	inversion.	Illumina	(Imn);	Pacific	Biosciences	(PB);	Strand-seq	(Ss);	BioNano	(bN);	long-
insert	Whole	Genome	Sequence	(a.k.a	‘jumping’)	libraries	(liWGS).	
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Supplementary	Figure	22.		
Inversion	lists	used	to	generate	the	final	unified	inversion	callset.	Venn	diagram	illustrating	the	degree	of	overlap	
between	the	three	support	lists	that	were	merged	together	to	generate	the	unified	inversion	callset.	
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Supplementary	Figure	23.		
Parent-child	trios	characterized	for	structural	variation.		We	refer	to	the	children	from	each	pedigree	as	YRI	(Yoruban),	
CHS	(Han	Chinese	South)	and	PUR(Puerto	Rican).		
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Supplementary	Figure	24.	
Insert	size	distribution	of	an	example	HGSVC	liWGS	library.	We	generated	liWGS	libraries	for	all	nine	HGSVC	individuals	
following	previously	described	protocols	targeting	a	mean	insert	size	of	3.5kb.	As	an	example,	the	distribution	of	insert	
sizes	from	the	library	generated	for	the	father	from	the	Puerto	Rican	trio	is	shown	here.	All	nine	libraries	closely	
resembled	this	distribution.	This	distribution	was	generated	automatically	by	Picard	tools	
(http://broadinstitute.github.io/picard/).	
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Supplementary	Figure	25.		
SMRT	sequence	coverage.	
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Supplementary	Figure	26.		
Data	portal	for	IGSR	samples.	To	assist	in	locating	data,	IGSR	has	created	a	data	portal,	which	includes	the	major	data	
collections	hosted	by	the	project.	A	full	description	of	IGSR,	including	the	data	portal	is	available	in	(Clarke	et	al.	2017).	A	
page	summarising	data	from	the	HGSVC	can	be	found	at	http://www.internationalgenome.org/data-portal/data-
collection/structural-variation.	
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Supplementary	Figure	27.		

Map	 of	 meiotic	 recombination	 events	 for	 each	 family	 trio.	 Ideograms	 show	 map	 of	 meiotic	 breakpoints	 for	 each	
chromosome	with	inherited	parts	of	paternal	(Paternal	homologue	H1	–	light	blue,	Paternal	homologue	H2	–	dark	blue)	
and	maternal	(Maternal	homologue	H1	–	light	red,	Maternal	homologue	H2	–	dark	red)	homologues.	Inset	figure	in	the	
right	upper	 corner	of	 each	 ideogram	shows	 the	 size	distribution	of	mapped	meiotic	 recombination	breakpoints	using	
Strand-seq	(yellow	dots)	and	corresponding	refined	breakpoints	using	PacBio	reads	(blue	squares)	connected	by	a	line.	
Meiotic	breakpoints	that	in	theory	could	be	further	refined	by	residual	HET	SNVs	within	the	breakpoint	are	shown	reb	
bar	(TeorB).	
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Supplementary	Figure	28.		
Level	 of	 overlap	 between	 Strand-seq	 and	 PacBio	 derived	 meiotic	 breakpoints.	 Figure	 shows	 an	 overlap	 between	
meiotic	 breakpoints	 mapped	 by	 Strand-seq	 and	 breakpoints	 predicted	 from	 PacBio	 reads.	 Strand-seq	 meiotic	
breakpoints	are	shown	 in	gray	color	and	are	sorted	by	size.	Overlapping	breakpoints	predicted	 from	PacBio	 reads	are	
depicted	in	red	color.	Number	of	overlapping	breakpoints	from	the	total	number	of	breakpoints	predicted	from	PacBio	
reads	is	shown	in	the	lower	right	corner	of	each	plot.	
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Supplementary	Figure	29.		
Enrichment	analysis	of	Alu	and	THE1-A,B	elements	around	mapped	meiotic	breakpoints.	Figure	shows	raw	counts	of	
Alu	and	THE1-A,B	elements	overlapping	with	our	fine	mapped	meiotic	breakpoints	(n=162).	Mapped	breakpoint	ranges	
were	scaled	to	 the	 largest	mapped	range	 (~10	kb).	To	 test	 if	 the	 the	above	mentioned	elements	are	enriched	around	
meiotic	 breakpoints	 we	 have	 compared	 their	 counts	 for	 observed	 versus	 random	 meiotic	 breakpoints.	 To	 simulate	
random	meiotic	 breakpoints	 in	 the	 genome	we	have	 randomly	 shuffled	 our	mapped	meiotic	 breakpoints	 around	 the	
chromosome	 they	 originate	 from.	 We	 have	 performed	 10	 independent	 trials	 and	 presented	 randomized	 counts	
represent	mean	 values	 of	 all	 trials.	We	used	 t-test	 statistics	 to	 compare	Alu	 and	 THE1-A,B	 elements	 counts	 between	
observed	and	random	breakpoints.	

a. Distribution	of	Alu	elements	around	the	breakpoints	versus	randomized	breakpoints.	
b. Distribution	of	THE1-A,B	elements	around	the	breakpoints	versus	randomized	breakpoints.	
c. Consensus	 motif	 found	 in	 fine	 mapped	 meiotic	 breakpoints	 (n=162)	 using	MEME	 suite	 (zoops	 mode).	 Motif	
significance	level:	E-value	=	3.1e-179.	Motif	is	compared	to	the	previously	published	motif	by	Myers	et	al.	(2008).	

Note:	Genomic	positions	of	Alu	and	THE-1A,B	elements	were	taken	from	the	‘GRCh38	RepeatMasker	track’	from	UCSC	
genome	browser.	

	 	



63	

	

Supplementary	Figure	30.		
Indel	discovery	summary.	Deletions	and	insertions	are	merged	from	GATK,	Pindel	and	FreeBayes	calls	to	give	Integrated	
Illumina	deletions	and	insertions	respectively,	which	is	then	compared	to		PacBio	calls.	A.	Size	frequency	distribution	of	
merged	Illumina	deletions	alongside	PS/MP	(UW_PacBio)	deletions	from	1bp	to	1kb.	B.		Size	frequency	distribution	of	
merged	Illumina	insertions	alongside	UW_PacBio	insertions	from	1bp	to	1kb.	C.	Four-way	Venn	diagrams	of	indels	(1-



64	

49bp)	from	GATK,	Pindel,	FreeBayes	and	UW_PacBio	callsets	for	three	children:	HAN	(HG00514),	PUR	(HG00733)	and	YRI	
(NA19240).	D.	Comparison	of	UW_PacBio	and	Illumina	integrated	indels	(1-49bp).	E.	Table	summarizing	the	number	of	
deletions	and	insertions	called	by	different	methods	for	the	three	children.	F.	Stacked	bar	graph	summarizing	the	
proportion	of	deletions	and	insertions	residing	in	various	types	of	repeat	regions	and	Non-repeat-masked	region.	
“Genome”	indicates	the	background	proportion	of	repeat	content	in	the	human	genome.		
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Supplementary	Figure	31.		
The	number	of	insertions	and	deletions	detected	at	each	size	from	0	to	49	bp	were	compared	across	all	samples.		
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Supplementary	Figure	32.		
BLASR	and	NGM-LR	alignment	comparisons.	The	SV	counts	from	BLASR	and	NGM-LR,	with	jitter	applied	to	distinguish	
different	densities	of	points.	
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Supplementary	Figure	33.		
Dotplot	comparison	of	alignments	in	tandem	repeat	regions.	Examples	of	tandem	repeat	loci	where	(top	left)	both	
alignment	methods	detect	two	SVs,	(top	right)	NGM-LR	detects	more	SVs	than	BLASR,	and	(bottom	left),	BLASR	detects	
more	SVs	than	NGM-LR.	
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Supplementary	Figure	34.		
Excess	SNV	count	by	alignment	method.	Excess	SNV	count	by	method.	For	each	TR	locus	in	HG00514,	haplotype	0,	the	
number	of	times,	and	by	how	many	one	method	exceeds	the	other	in	SNV	count.	
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Supplementary	Figure	35.		
Detailed	view	of	excess	SNV	count	by	alignment	method.	A	comparison	of	excess	SNV	count	by	method	and	number	of	
SVs	detected	at	each	locus.	
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Supplementary	Figure	36.		
Genomic	distribution	of	SVs.	The	number	of	segmentally	duplicated	bases	per	100	kbp	is	plotted	along	with	the	number	
of	bases	of	segmental	duplication	per	100	kbp	for	the	children	of	each	trio.	The	largest	association	of	SV	is	with	
telomeres,	and	not	segmental	duplication.	
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Supplementary	Figure	37.	
Oxford	Nanopore	sequencing	read	length	and	coverage	for	HG00733.	
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Supplementary	Figure	38.		
Read	support	for	SV	calls	for	HG00733	from	(red)	ONT	and	(black)	PB	reads.	Support	for	each	type	of	SV	(insertion	and	
deletion)	is	shown	inside	and	outside	tandem	repeat	loci.		
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Supplementary	Figure	39.		
Example	of	ONT	SV	detection	with	different	base	calling	parameters.	(top	track)	tandem	repeat	annotations,	(HG00733	
insertion	SV,	HG00733	deletion	SV)	insertion	and	deletion	calls	from	the	HGSVC	Phased-SV+MSPAC	calls,	(PacBio	raw	
read	gaps	track)	SV	calls	detected	in	raw	PacBio	reads.	Blue	is	insertion	(start+length),	and	red	is	deletion.	While	the	
insertion	calls	are	spread	out,	they	are	largely	of	consistent	length,	(Default	ONT	basecalling)	SVs	detected	within	reads	
from	the	default	ONT	base	calling	(Defau	alt	ONT	basecalling	track)	where	reads	support	the	3’	insertion,	and	many	
reads	show	disperse	deletions	over	the	5’	tandem	repeat,	(HG00733	ONT	improved	basecalling)	SVs	detected	within	the	
same	reads	but	recalled	with	updated	basecalling	parameters.	The	insertions	are	of	more	consistent	size	and	count,	and	
now	support	the	insertion	even	more	consistently	than	then	PacBio	reads.	
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Supplementary	Figure	40.		
Overview	of	SVs	discovered	with	all	algorithms	and	a	subset	of	algorithms	on	full	coverage	(75X)	and	down	sampled	
(30X)	datasets.	Full-15	=	Callset	integrated	from	15	SV	discovery	algorithms	on	75X	Illumina	whole	genome	sequences	
(WGS);	Full-6	=	Callset	integrated	from	6	algorithms,	i.e.	Delly,	Lumpy,	Manta,	MELT,	Wham,	SVelter,	on	full	coverage	
Illumina	WGS;	ds-1	=	callset	integrated	from	6	algorithms	on	30X	WGS	down	sampled	with	seed	1.	
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Supplementary	Figure	41.		
The	counts	of	SVs	affecting	genes	by	method	and	region	of	gene.	
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Supplementary	Figure	42.		
Regions	of	SV	that	were	called	in	the	IL-SV	callset	and	not	PB-SV.	PB-SV	only	calls	are	shown	for	the	YRI	child.	
	 	



77	
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b)	

c)	 	

	

Supplementary	Figure	43.		
Misassemblies	in	the	GRCh38	reference	validated	by	large	insert	clone	based	sequence	and	assembly.	Inversions	
detected	by	strand	seq	followed	by	sequence	resolution	using	CH17	BAC	clones.	Inversions	are	validated	by	by	aligning	
the	corresponding	BAC	sequences	to	GRCh38	and	visualized	using	Miropeats	(Parsons	1995)	and	dot	plots.	The	
miropeats	figures	depict	black	lines	indicating	homologous	sequence	between	the	two	assemblies	and	red	lines	
correspond	to	inversion	events.	RepeatMasker	annotation	demonstrates	that	inversion	events	are	flanked	by	inverted	
LINE/L1	repeats	(green).	b)	An	~857	kbp	sequence-resolved	inversion	on	chromosome	16p12.1.	Sequence	and	
assembly	of	16	CHM1	BAC	clones	to	generate	a	~1.8	Mbp	alternate	reference	haplotype	corresponding	to	chr16p12.	A	
miropeats	comparison	between	the	alternate	reference	and	the	GRCh38	reference	depicts	a	large	inversion	(red	lines)	
and	additional	expansions	of	segmental	duplication	blocks	(blue).	Annotations	include	whole-genome	shotgun	sequence	
detection	(WSSD)	(Bailey	et	al.	2002),	DupMasker	(Jiang	et	al.	2008)	and	Refseq	annotations.	c)	An	842	kbp	chr2q13	
alternate	reference	haplotype	consistent	with	the	GRCh38	reference	assembly.	Sequence	and	assembly	of	6	CHM1	
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BAC	clones	to	generate	a	~843	kbp	alternate	reference	haplotype	corresponding	to	chr2q13.	A	miropeats	comparison	
depicts	large	highly	identical	segmental	duplication	blocks	(~358	kbp)	mapping	in	inverted	orientation	(orange	lines)	
flanking	~120	kbp	of	unique	sequence.	The	alternate	reference	haplotype	confirms	the	order	and	orientation	of	the	
GRCh38	reference	assembly	indicating	that	CHM1	represents	the	minor	reference	haplotype	at	this	locus.	Annotations	
include	whole-genome	shotgun	sequence	detection	(WSSD)	(Bailey	et	al.	2002),	DupMasker(Jiang	et	al.	2008)	and	
Refseq	annotations.	
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Supplementary	Figure	44.		
Enrichment	for	SVs	intersecting	functional	elements	in	the	IL-SV	and	PB-SV	callsets.	CDS:	coding	sequences,	PPS:	
processed	pseudogenes,	UPS:	unprocessed	pseudogenes.	
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Supplementary	Figure	45.	
Significance	of	gene	expression	effect	by	PB-SVs	and	IL-SVs	that	engulf	protein	coding	genes.	Samples	are	given	along	
the	x-axis	of	each	plot	while	vertical	bars	depict	the	average	–log2(q-values)	calculated	from	the	group	t-tests	between	
the	RPKM	normalized	expression	values	of	genes	engulfed	by	structural	variants	and	that	of	genes	engulfed	by	
permuted	chromosomal	regions.	Panel	A.	shows	results	for	the	integrated	Illumina	deletions	(IL-DELs)	for	all	9	
individuals,	while	Panel	B.	gives	the	results	for	PacBio	deletions	(PB-DELs)	in	trio	daughters.	Panel	C.	illustrates	the	
results	from	the	analysis	of	the	integrated	Illumina	duplications	(IL-DUPs)	for	the	9	samples,	and	Panel	D.	shows	results	
from	the	analysis	of	Illumina	inversions	(IL-INVs)	engulfed	genes	for	the	trio	daughters.	The	position	of	the	horizontal	
line	in	each	panel	corresponds	to	the	significance	threshold	(q	=	0.05).	
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Supplementary	Figure	46.		
A	pipeline	of	the	allele	specific	expression	analysis	for	SNPs	and	SNVs.	
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Supplementary	Figure	47.		
The	distribution	of	reference	allelic	ratio	using	both	allele	seen	het-SNPs.	Grey	bars	shows	the	empirical	reference	
allelic	ratio	distribution.	Red	and	blue	lines	show	the	null	expected	allelic	ratio	distributions	associated	with	the	binomial	
and	beta-binomial	test,	respectively.	The	overdispersion	b	is	as	low	as	0.0152	which	would	give	similar	results	for	
binomial	and	beta-binomial	tests.		
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Supplementary	Figure	48.		
Enrichment	analysis	for	eQTLs.	The	red	line	denotes	the	246	ASE	SNPs	identified	to	overlap	with	eQTLs;	the	bars	denote	
the	number	of	SNPs	overlapping	with	eQTLs	in	each	permutation	test.		
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Supplementary	Figure	49.		
Molecular	functions	enriched	for	ASE	genes.	A	positive	value	denotes	enrichment	and	a	negative	value	denotes	
depletion.	
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Supplementary	Figure	50.		
Biological	processes	enriched	for	ASE	genes.	A	positive	value	denotes	enrichment	and	a	negative	value	denotes	
depletion.	
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Supplementary	Figure	51.		
Biological	processes	enriched	for	ASE	genes.	A	positive	value	denotes	enrichment	and	a	negative	value	denotes	
depletion.	
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Supplementary	Figure	52.		
Analysis	of	SNP	and	PB-SV	ASE	for	indication	against	a	haploblock	effect.	A.)	IGV	plot	of	phased	RNAseq	read	counts	on	
HG00514	haplotype	1	(upper	track)	vs.	haplotype	2	(lower	track)	with	SV-ASE	(PB-DEL,	with	a	genotype	of	1|0	meaning	
deletion	on	haplotype	1	and	no	deletion	on	haplotype	2)	on	ZNF717	gene;	A	nearby	ASE-SNP	was	found	644	bp	away	
from	the	SV-ASE	affecting	the	same	gene.	B.)	R2	calculations	for	CHS	population	variants	within	exon	5	of	ZNF717	show	
local	LD	surrounding	IL-DEL	site.	C.)	LD	map	for	CHS	population	variants	±	100kb	of	ZNF717	gene	shows	little	evidence	of	
a	regional	haploblock	effect.		
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Supplementary	Figure	53.		
Correction	of	L1	insertions.	
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