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Abstract. While the rise of single-molecule sequencing systems has
enabled an unprecedented rise in the ability to assemble complex regions
of the genome, long segmental duplications in the genome still remain
a challenging frontier in assembly. Segmental duplications are at the
same time both gene rich and prone to large structural rearrangements,
making the resolution of their sequences important in medical and evolu-
tionary studies. Duplicated sequences that are collapsed in mammalian
de novo assemblies are rarely identical; after a sequence is duplicated, it
begins to acquire paralog-specific variants. In this paper, we study the
problem of resolving the variations in multicopy, long segmental dupli-
cations by developing and utilizing algorithms for polyploid phasing.
We develop two algorithms: the first one is targeted at maximizing the
likelihood of observing the reads given the underlying haplotypes using
discrete matrix completion. The second algorithm is based on correla-
tion clustering and exploits an assumption, which is often satisfied in
these duplications, that each paralog has a sizable number of paralog-
specific variants. We develop a detailed simulation methodology and
demonstrate the superior performance of the proposed algorithms on
an array of simulated datasets. We measure the likelihood score as well
as reconstruction accuracy, i.e., what fraction of the reads are clustered
correctly. In both the performance metrics, we find that our algorithms
dominate existing algorithms on more than 93% of the datasets. While
the discrete matrix completion performs better on likelihood score, the
correlation-clustering algorithm performs better on reconstruction accu-
racy due to the stronger regularization inherent in the algorithm. We
also show that our correlation-clustering algorithm can reconstruct on
average 7.0 haplotypes in 10-copy duplication datasets whereas existing
algorithms reconstruct less than one copy on average.
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1 Introduction

Advances in single-molecule sequencing (SMS) by Pacific Biosciences (Menlo
Park, CA), and Oxford Nanopore (Cambridge, UK) have recently enabled the
assembly of draft de novo mammalian genomes [21,35] nearing the quality of the
original release of the human genome. The goal of de novo fragment assembly is
to estimate the sequence of a genome given overlaps of relatively short sequencing
reads, which is a well-studied problem. While there are multiple formulations of
the fragment assembly problem [27,31], the common challenge is that repeats
in the genome longer than the length of sequenced DNA fragments make a
unique reconstruction of the genome impossible [30]. Reads produced by SMS
are advantageous for de novo assembly because the read length is at least two
orders of magnitude greater than other high-throughput sequencing methods, so
that genome order may be uniquely resolved when repeats are small.

SMS reads are characterized by a raw read accuracy between 75% and 90%
with read lengths that follow a log-normal distribution. Initial development in
de novo assembly of SMS reads focused on efficient methods to detect overlaps
between long but noisy reads [6,28]. Consistent with information theory [26],
regions of genomes without sufficiently long repeats are contiguously assembled
[24] with SMS reads. A type of repeat not well represented in human and other de
novo SMS assemblies are segmental duplications: sequences 1 to 400 kilobases in
length that are duplicated with at least 90% identity [18]. Segmental duplications
are at the same time both gene rich and prone to large structural rearrangements,
making the resolution of their sequences important in medical and evolutionary
studies [37]. Comparing an SMS-based assembly of a Yoruban individual [38] to
the human reference (GRCh38) reveals that only 64.2% of known segmentally
duplicated bases in the human genome are present in the assembly. Due to the
low raw-read accuracy of SMS, reads from different duplication paralogs are
frequently merged together into the same sequence in an assembly. As a result,
human assemblies of SMS reads contain large contigs with correctly resolved
unique sequence and shorter contigs containing the collapse of multiple copies
of a duplication into one sequence.

Segmental duplications that are collapsed in real de novo assemblies are
rarely identical; after a sequence is duplicated, over generations it begins to
acquire paralog-specific variants (PSVs): single-nucleotide variants that distin-
guish different duplication paralogs. To put this in an evolutionary context,
sequences that have duplicated shortly after the human-chimpanzee divergence
(6 million years ago) have acquired up to roughly one PSV per thousand bases
[17]. Although the ultimate goal of de novo assembly is to completely resolve the
sequence of a genome, an intermediate goal is to resolve the individual sequences
that are collapsed in the assembly. We propose resolving sequences by estimating
the number of duplications collapsed into an individual sequence in an assembly
and determining the PSVs belonging to each duplication.

Given S segmental duplication paralogs of the same length containing V
variants, one may represent all paralogs as an S × V matrix P with entries in
{0, 1}, where each entry P (i, j) is 0 if the repeat paralog i is in the consensus
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state at site j, or 1 if it is a PSV. The set of N reads from all repeat paralogs
may be aligned to the consensus sequence and represented as an N × V read-
fragment matrix X with entries in {0, 1,−} corresponding to consensus, variant,
or absent (since reads only give information about certain positions). The goal is
to reconstruct the paralog matrix P given only the read matrix X, where there
are also sequencing errors creating erroneous entries in X. Let us assume that
the error probability is ε at any position, i.e., with probability 1− ε, the location
is read correctly, and with probability ε, the location is read incorrectly (0 is
read as a 1 and vice versa).

For S = 2, this problem is identical to haplotype phasing of a diploid genome
[4,25,29]. Defining a read conflict as two overlapping reads that are non-gap
and disagreeing at a site, haplotype phasing with error-free reads may be deter-
mined by grouping all conflict-free reads. To handle sequencing errors, a common
formulation for haplotype phasing is minimum error correction (MEC), where
a minimal number of base changes are applied to reads so that they may be
partitioned into two conflict-free sets. For S = 2, there has also been an exact
information theoretic characterization of when it is possible to phase the genome
correctly [13,36], along with efficient algorithms. This is based on connections to
a problem called “community detection” [20] where the goal is to cluster users
into communities based on positive or negative interactions between individuals.

When S > 2, this corresponds to the much less studied problem of poly-
ploid phasing, which was discussed in pioneering work by Aguiar and Istrail [1].
Beginning with HapCompass [1], there has been some work on polyploid phas-
ing using algorithms based on branch-and-extend [5], belief propagation [32] and
semi-definite programming [14]. In a recent theoretical work [7], the hardness of
optimizing the MEC for S > 2 has also been proven, indicating that algorithms
for this problem need to be necessarily approximate or tailored to some assump-
tions. A major drawback of existing works is that they consider only S = 3, 4
and none have been developed, optimized, or tested for the high ploidy that is
encountered in segmental duplications, where S can be potentially larger than
10, and to the low error-rate in Illumina sequencers. Thus, algorithms that are
robust to the high error rates and can handle the high poly-ploidy are imperative
in solving the segmental duplication problem, and in this paper, we will design
such algorithms.

In particular, we propose two algorithms for solving the problem. The first
approach is based on a discrete matrix-completion paradigm where the goal is to
maximize the likelihood of the observed data given the underlying haplotypes.
The second approach is based on a correlation-clustering framework with an
inherent assumption that each haplotype has a PSV (which holds in many types
of segmental duplications). By performing detailed simulations, we demonstrate
the superior performance of the proposed algorithms over existing algorithms,
especially in the high ploidy regime.
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2 Haplotype Phasing via Discrete Matrix Completion

2.1 A Probabilistic Model

In order to represent the matrices in real-valued arithmetic, we adopt the follow-
ing mapping f : {0, 1,−} → {−1, 1, 0}, i.e., we represent the consensus allele as
−1, variant as 1 and undisclosed locations as 0. To model the read matrix X, we
first consider an idealized matrix M , which does not contain any noise nor does
it contain any undisclosed position. If read n is sampled from the s-th paralog,
then the n-th row of this matrix M is given by the s-th row of the paralog matrix,
i.e., Mn. = f(Ps.). The disclosed locations of the matrix are represented by a
set Ω, which is the set of tuples (n, v) where read n contains information about
variant v. Given M and Ω, the matrix X is not a deterministic function since
there are independent read errors, which convert a 1 into a −1 with probability
ε and vice versa. The probability of observing X given M and Ω is therefore
given as follows,

logP(X | M,Ω) =
∑

(n,v)∈Ω

logP(Xn,v | M,Ω)

=
∑

(n,v)∈Ω

log
(
(1 − ε)1Xn,v=Mn,v

)
+ log

(
ε1Xn,v �=Mn,v

)

= dH(X,M) ∗ log(ε) + (|Ω| − dH(X,M)) ∗ log(1 − ε)

= −dH(X,M) ∗ log(
1 − ε

ε
) + (|Ω|) ∗ log(1 − ε),

where dH(X,M) is the Hamming distance between the two matrices X and M
in the locations Ω, i.e., where X �= 0. Different haplotype assembly algorithms
have sought to minimize varied objective criteria in order to obtain the correct
clustering of reads belonging to the respective haplotypes [34]. Some of the note-
worthy objectives are minimum edge removal (MER), minimum single-nucleotide
polymorphism removal (MSR) and MEC. The quantity dH(X,M) is called the
error criterion, and in our approach, maximizing the likelihood is equivalent to
minimizing this error criterion referred to as MEC.

We observe that the ideal matrix M has repeated rows, since all rows sampled
from the same paralog are identical. This implies that the matrix M has low rank.
Indeed the matrix M can be factorized as the product of two matrices M = A·B,
where A ∈ R

N×S with Aij ∈ {0, 1} ∀i, j and B ∈ R
S×V with Bij ∈ {−1, 1} ∀i, j.

Each row of A is an elementary vector of length S denoting which paralog the
read is from and matrix B is identical to f(P ) (represented in {−1, 1}).

The observed matrix X is a noisy partial observation of the low-rank matrix
M , and the goal is to reconstruct the matrices A and B given X. If each read
spanned the entire segmental duplication, the problem would be trivial, since
similar reads can be grouped together and taking a consensus inside clusters
reveals the segmental duplications. The difficulty is posed by the fact that read
lengths are much smaller and do not span all variant positions.
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Each read only provides partial phasing information. The resulting X matrix
is thus sparse, and our goal can be formally stated as follows:

argminA,BdH(X,A · B). (1)

Real-valued versions of this problem have received much attention and are
called the matrix completion problem. While this problem has a rich history,
there is a significant difference in our setting, since the matrices A and B have
structure (i.e., A has only elementary row vectors and B has binary entries)
and the matrix X is ternary. We therefore have to develop new algorithms that
exploit the discrete structure of the problem.

The problem of finding missing entries in a matrix arises in diverse research
domains. One of the most illustrative examples is the Netflix challenge where
users rate a small fraction of movies at random and the task is to predict user
preferences for an unrated movie; a key assumption in this domain is that the true
matrix of preferences is low-rank. While a low-rank matrix-completion problem
is known to be NP-Hard, there are methods that can give provably correct
reconstruction under probabilistic rather than worst-case assumptions [10,33].
Popular techniques for this problem include convex relaxation of the rank to
nuclear norm [33], singular value thresholding [9] and alternating minimization
[22], all of which have theoretical guarantees as well. The key difference between
these works and our problem is that they consider real-valued matrix completion,
whereas, in this paper, we adapt and extend the algorithms to the discrete setting
inherent to the phasing problem.

In a recent paper [8], Cai et al. formulate haplotype phasing as a low-rank
matrix-completion problem and use structure constrained alternating minimiza-
tion for obtaining the haplotypes. In the paper, they demonstrate improved
performance over HapCompass for diploid and simulated polyploid data (with
S = 3, 4). We show in this paper that while that method has good performance
with small S, the performance starts deteriorating with higher S. The main rea-
son for the deteriorating performance is the inability of the algorithm to exploit
the discrete structure of the problem (for example, the algorithm does not use
the fact that the B matrix is binary, instead treating it as a real-valued matrix).
We alleviate this problem in the present paper by proposing an algorithm that
explicitly exploits this fact.

2.2 Iterative Two-Stage Matrix Completion

Our problem stated in (1) is a hard combinatorial problem. One can design
alternating minimization-based techniques for this problem, where A and B
are optimized alternatively while keeping the other variable fixed. While such
methods monotonically increase likelihood, they are not guaranteed to find the
global optimum of the problem and display high sensitivity to initial conditions.
The key idea in our approach is to first neglect the discrete nature of our problem
and view it as a real-valued matrix-completion problem. We then “round” the
results obtained from this real-valued matrix completion to obtain a feasible
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Algorithm 1. Iterative Matrix Completion
Input : Noisy incomplete Matrix X, Rank Estimate S

1: Initialize Ainit ∈ R
N×S and Binit ∈ R

S×V with sign-corrected SVD.
2: e ← Error rate
3: k ← S
4: while k ≥ 2 and MEC score decreases do
5: Best ← RealMatCom(Ainit, Binit, X, k)
6: Aest, Best ← DiscreteMatCom(Best, X, e)
7: Choose the best segment based on individual scores
8: Ainit ← Aest

9: Binit ← Best

10: k ← k − 1
11: end while

Output : Estimated Haplotypes Best

Algorithm 2. Real-Valued Matrix Completion
1: procedure RealMatCom(Ainit, Binit, X, k)
2: A ← Ainit

3: B ← Binit

4: while stopping criterion not satisfied do
5: Minimize A using projected gradient descent
6: Minimize B1:k using projected gradient descent
7: end while
8: return sign(B)
9: end procedure

Algorithm 3. Discrete-Valued Matrix Completion
1: procedure DiscreteMatCom(Best, X, e)
2: while MEC score decreases do
3: for each row i of X do
4: for each segment s of Best do
5: d(i, s) ← Hamming distance of Xi and Best,s for known entries
6: Wi ← Window size of revealed entries of Xi

7: Aest,is ← (1 − e)Wi−d(i,s) · ed(i,s)

8: end for
9: Update overall MEC score and score for each individual segment

10: Normalize Aest,i to be a probability distribution
11: end for
12: Initialize Best,new ∈ R

S×V with zeros
13: for each row i of X do
14: Best,new ← Best,new + PΩ(AT

est,i · Xi)
15: end for
16: Best ← sign(Best,new)
17: end while
18: return Aest, Best

19: end procedure
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solution for the discrete problem. This rounded solution then becomes the initial
value of a discrete matrix-completion routine designed based on the alternative
minimization technique. While this method already has superior performance
compared to existing approaches, we found that in the regime when the ploidy is
high, the algorithm is able to extract some dominant haplotypes correctly while
being incorrect on the other haplotypes. In order to overcome this barrier, in
iteration i, we only fix the best i−1 haplotypes based on the current MEC, then
optimize for the rest. A schematic representation of this algorithm is depicted
in Fig. 1, and the detailed pseudocode is in Algorithms 1, 2 and 3.

Fig. 1. The initialization
and iteration workflow for
discrete matrix comple-
tion.

A standard approach in combinatorial optimiza-
tion is to relax the integer constraints in the problem
in order to get a real-valued optimization problem, and
then to round the obtained results to get a feasible
solution. We follow a similar approach here by relax-
ing our discrete problem to a continuous optimization
problem, and along with it, we relax the objective too.
Instead of optimizing according to the Hamming dis-
tance objective with the discrete constraints on A,B
(see (1)), we instead minimize the Frobenius norm of
the difference while at the same time assuming that A
and B are real valued.

The noisy low-rank matrix completion can be for-
mally stated as an optimization problem.

min
A,B

1
2
‖PΩ(A · B − X)‖2F

The objective function is a squared sum of errors over all the known entries
of X. PΩ(·) is the projection operator and Ω is the set of known indices of X.
So, PΩ(Zij) = Zij if (i, j) ∈ Ω and 0 otherwise. While we relax the integer
constraints of the problem, we assume the following linear constraints to hold.

0 ≤ Aij ≤ 1 ∀ i ∈ [N ], j ∈ [S] (2)
−1 ≤ Bij ≤ 1 ∀ i ∈ [S], j ∈ [V ] (3)

Since the optimization is over unknown matrices A and B in a product form,
the problem is non-convex. However, alternating minimization algorithms are
known to have guaranteed reconstruction performance in certain regimes [22] and
therefore we resort to using such algorithms. Thus, we first solve the optimization
over A, keeping B fixed, which makes the problem convex in A and vice versa.

2.3 Projected Gradient Descent

The alternating minimization for our problem therefore can be stated as follows:

min
A

1
2
‖PΩ(A · B − X)‖2F

s.t. 0 ≤ Aij ≤ 1 ∀ i, j
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and similarly

min
B

1
2
‖PΩ(A · B − X)‖2F

s.t. − 1 ≤ Bij ≤ 1 ∀ i, j

To incorporate the constraints on the variables, we use a projected gradient
descent to minimize each of the convex formulations.

2.4 Initialization

Since the overall problem is non-convex, it is required to choose a suitable ini-
tialization for better performance. For this purpose, we use the singular value
decomposition (SVD). This is a factorization of a m × n rectangular matrix of
rank r in the form UΣVT , where U is a m×r unitary matrix, Σ is a r×r diagonal
matrix with non-negative diagonal entries, and V is a n × r unitary matrix. The
columns of U and V are called the left and right singular vectors, respectively.
Prior theoretical results [22] suggest taking the S singular vectors of PΩ(X) as
the initial guess for A and B. While this is a reasonable initialization, the signs
of the singular vectors obtained from SVD decomposition may not be consistent
with our problem since we require the entries of A to be strictly non-negative.
We note that the signs of the singular vectors can be swapped without affecting
the SVD. Therefore, in our algorithm, in order to ensure this sign consistency,
we reverse the signs of certain rows of B to ensure that all columns of A have a
positive sum.

PΩ(X) = U · Σ · VT Γ = sign(1T U)Ainit = U ∗ diag(Γ )Binit = (V ∗ diag(Γ ))T

For details of the projected gradient descent, we refer the reader to AppendixA.

2.5 Discrete Matrix Completion

We round the output of the real-valued matrix completion to satisfy the discrete
constraints of A and B and utilize this to run a discrete alternating minimization
algorithm to solve (1). The optimization of A given a fixed B is easy to solve:
the basic idea is to assign each read to the segment that minimizes the Hamming
distance with the read. To optimize B given a fixed A, we find the consensus
of all the reads that are informative about a given position. In our algorithm,
instead of having A to be a hard decision of which segment a given read belongs
to, each row i of A encodes the probability that read i belongs to segment j.
Therefore, while optimizing over B, we utilize the weighted consensus rather
than the plain consensus of the read assignments. This procedure of refinement
comes under the purview of a broader class of algorithms called the expectation
maximization (EM) algorithm [16]as well as Variational Bayes [40]. The matrix
A can be viewed as hidden variables encoding the membership of read fragments
to duplication copies and B as the parameters for the exact underlying segments.
We refer the reader to Algorithm 3 for a detailed description of the algorithm.
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2.6 Choosing the Best Segment and Effective Rank Reduction

As pointed out earlier, the algorithm as stated above works well with small poly-
ploid instances; however, in the presence of higher ploidy, the algorithm returns
only the top few haplotypes correctly. For example, consider the cascading topol-
ogy of repeats in Fig. 2, it is easier to resolve segment 7 but the other segments
are more easily confused. Therefore, we propose an iterative algorithm, where
in each iteration, the best haplotype is fixed and then the algorithm is run to
optimize over possibilities of the other haplotypes. Thus, in order to do matrix
completion with S haplotypes, the algorithm is iterated over S − 1 times. Such
algorithms have a precedent even in real-valued matrix completion. For example,
stagewise alternating minimization is shown to have better theoretical guaran-
tees in [22]. In our implementation, at iteration i, the best i − 1 haplotypes are
chosen as the ones with minimum Hamming distance from their assigned reads.

3 Haplotype Phasing with Correlation Clustering

One limitation of the MEC objective function and therefore of the discrete
matrix-completion algorithm is that the ploidy must be known a priori or esti-
mated. Since the MEC objective itself decreases monotonically with ploidy, it
is not possible to estimate the ploidy using the MEC objective. This can be
potentially remedied using regularized alternatives that account for model com-
plexity like Akaike information criterion, Bayesian information criterion, and
minimum length description. We propose an alternative algorithm here that can
jointly estimate the ploidy while estimating the haplotypes themselves. This
algorithm is based on a key assumption, distinct from the assumptions of the
discrete matrix-completion problem: that each of the haplotypes have uniquely
identifying variants. While this assumption is stronger, it can lead to stronger
regularization of the problem by restricting the search space and therefore leads
to better estimates, especially when the ploidy is high.

The basic idea of the algorithm is the following: each locus is represented as a
vertex and reads that straddle multiple vertices create edges between the vertices
that have either positive or negative weight based on whether reads share the
variant or not. The goal is then to cluster the nodes into groups that share the
same variant, with each cluster representing a haplotype and each locus (node)
in the cluster representing a haplotype-specific variant.

To formally define our algorithm, we begin with an alternative formulation
for polyploid phasing through correlation clustering [3], with the premise that a
metric defines how similar or dissimilar two objects are, and clusters maximize
the amount of similarity within each cluster and dissimilarity between clusters.
Importantly, in correlation clustering the number of clusters is discovered as a
result of clustering and not as a parameter.

We use an augmented form of the single-nucleotide polymorphism conflict
graph GS introduced in [25], denoted GPSV = (V,E), E = {E+, E−}. The con-
struction of GPSV requires the fragment matrix M , and some data-dependent
parameters: the expected range of coverage per haplotype cmin and cmax, and a
distance d that is the maximum distance reads are expected to overlap variants.
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A vertex exists for each of the columns (sites) in the fragment matrix M , con-
nected by an edge (u, v) ∈ E+ if u and v are overlapped by between cmin and
cmax reads that are variant (e.g., 1) at both sites, or an edge (u, v) ∈ E− if the
sites corresponding to u and v are within d bases and (u, v) /∈ E+. A weight
W (u, v) is assigned to each edge.

Correlation clustering on GPSV corresponds to finding clusters C = c1, . . . , cn

that minimize the sum of weighted negative edges within each cluster and
weighed positive edges between clusters: ScoreCC =

∑
ci

(
∑

(u,v)∈ci,(u,v)∈E−

w(u, v) +
∑

(u∈ci,v /∈ci),(u,v)∈E+ w(u, v)), where w(u, v) may reflect certainty of
clustering, or more simply w(u, v) = 1 to count edges. Each cluster defines a set
of sites that belong to a haplotype. This was shown to be APX-hard [12,15,19],
and approximations based on linear programming (LP) were described in [12,15].
We developed an implementation of the LP approach that was successful at clus-
tering smaller datasets; however, the number of constraints grows with |E|2, and
|E| grows by p2v2, for ploidy p and number of PSVs v, which requires excessive
resources for larger datasets.

To evaluate correlation clustering on larger datasets, we developed a simple
randomized heuristic to search similar to the method of [2] for clusters that
provide acceptable values for ScoreCC that follows the steps:

1. Define clusters likely to represent repeat paralogs through a random search.
2. Merge clusters with sufficient overlap and assign nodes to unique clusters.
3. Optimize clusters by swapping vertices from adjacent clusters.

We define the neighbor similarity Sim(u, v) of two vertices to be the number of
neighbors shared between u and v connected by edges in E+, and Score(V,E, c)
to be the ScoreCC of a single cluster c assuming all vertices V \c are in a separate
cluster. First, clusters are formed by iteratively adding vertices neighboring a
cluster as long as the neighbor similarity is sufficient and addition of the vertex
decreases ScoreCC, described in Algorithm 4.

Algorithm 4. Find cluster
procedure FindCluster(V, vi, E, s)

c ← vi

repeat
for all v ∈ c do

for all n ∈ Neighbors(v) /∈ c do
if Sim(v, n) ≥ s and Score(V,E, c ∪ n) < Score(V,E, c) then

c ← c ∪ n
end if

end for
end for

until c has not grown
return c

end procedure
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Given parameters for neighbor similarity s, a maximal number of search
iterations max search it and swap iterations max swap it, and fraction cluster
overlap fovp, the method FindCluster is used to find a set of clusters C by first
initializing C = ∅, iteratively selecting a vertex vi /∈ C, and adding the result of
FindCluster(V, vi, E, s) to C until C contains all vertices in V or max it iterations
are reached. The resulting clusters in C are not disjoint, and so any cluster ci

with a fraction of vertices overlapping with a cluster cj > fovp is first merged
into cj , then remaining vertices belonging to more than one cluster are assigned
to the largest cluster for which they are a member. Finally, the clusters are
further optimized by selecting edges (u, v) ∈ E+ where u ∈ ci and v ∈ cj and
swapping u and v if this improves ScoreCC for up to max swap it iterations.

4 Results

We benchmarked our methods on a dataset of simulated collapsed segmen-
tal duplications. It is difficult to simulate the complex mosaic architecture of
segmental duplications [23], and so we elected to use a simplified model of
100 kbp non-mosaic duplications. While this lacks the complexity of mosaic
duplication architecture, the length is greater than the average duplication unit
(∼30 kbp), ensuring evaluation on challenging problems. Starting with an ances-
tral sequence, sequences are duplicated according to a specified tree topology T
and mutation rate r, where each child node is a copy of a parent node mutated
at a rate of r random single-nucleotide variant mutations per base. In real data,
duplications arise with many complex histories [17,39]. To capture the complex-
ity of evolution, we used two classes of trees: 12 simulations from well-defined
topologies such as flat, bifurcating, and cascading resulting in four to eight dupli-
cated sequences, and 50 simulations from random tree topologies that have 10
duplicated sequences. Examples of the duplication topologies are shown in Fig. 2.
The mutation rate was varied across 0.01, 0.005, 0.001, and 0.0005 mutations
per base to simulate various ages of duplications. For each set of duplications
we simulated 50× read coverage using the Alchemy SMS read simulator [11], a
model-based simulator that emulates a sequencing run by Pacific Biosciences,
and mapped reads back to the ancestral sequence. PSV sites are detected as
sites that contain between 25 and 60 non-ancestral bases.

For each of the simulated topologies and mutation rates, we evaluated the
discrete matrix completion (DMP), correlation clustering (CC), and structure
constrained gradient descent (SCGD). The SCGD method has been shown to
outperform other previously developed methods in polyploid phasing [8].

We report MEC values by computing the sum of Hamming distance between
each read and the consensus sequence for each haplotype. For CC, we assign reads
to each haplotype according to the minimal Hamming distance from the read to
each haplotype. For duplications simulated under models of high mutation rates
(0.01 and 0.005), the DMP method is able to obtain a lower MEC score than
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Fig. 2. Examples of topologies of duplication simulations. In total there are 12 struc-
tured trees and 50 random topologies. The divergence between any two simulated
duplications is given by the mutation rate r× the shortest path between the duplica-
tions in the tree.

the other methods. Out of the 128 datasets for which every method is able to
run within the time constraint set on our server, we compare the performance.
We observe that CC obtains the best MEC score in 11% of the datasets, DMP
85%, and SCGD 3.9%.
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Fig. 3. MEC scores for the DMP, CC, SCGD, and CC+DMP methods. The DMP
method is shown to produce haplotypes with lower MEC scores than the other methods,
particularly for the high mutation rate simulations. Lower MEC score is better.

For each haplotype we count the number of reads in the haplotype that
are shared with the reads simulated in each duplication and define a matching
statistic as the sum of number of reads in the maximally matched duplication
divided by the total number of reads. This statistic ranges between 1 for perfect
reconstruction of haplotypes down to a 1/p when all of them are collapsed into
a single reconstructed haplotype. The results are shown in Fig. 4. CC had the
greatest matching score in 67.7% of the datasets, DMP 26.1% of the datasets,
and SCGD on 6.1% of the datasets. Interestingly, while the CC method has
a higher MEC statistic, it has a greater number of correctly partitioned reads
when compared with the ground truth. We reason that this is because the CC
method exploits the assumption that the positions are variant specific explicitly
resulting in stronger regularization, so that even though the likelihood score is
somewhat lower for CC method than other methods, it is able to fit the data
more accurately. The other methods DMP and SCGD are unable to exploit this
assumption and therefore overfit more severely to the data. The DMP method
is sensitive to the initialization conditions for Best, and so we used a solution
derived by CC as initial conditions for DMP. We measured improvements on
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Fig. 4. Matching statistics for the DMP, CC, SCGD, and CC+DMP methods. A per-
fect reconstruction of haplotypes shows a score of 1, while a random assignment will
score 1/ploidy. Higher matching score is better.
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Fig. 5. Correctly assembled haplotypes for the DMP, CC, SCGD, and CC+DMP meth-
ods. Each point is the number of correctly phased genotypes per simulation, with points
jittered for display.

this combination (CC+DMP) relative to DMP on MEC (Fig. 3, right), and CC
for matching score. While the MEC score was largely unchanged, 220 of the
224 simulations where both CC and CC+DMP had a solution had a greater
matching score in CC+DMP (Fig. 4).

We also measure a more stringent quality of reconstruction accuracy: we
ask for what fraction of the true haplotypes have a reconstructed cluster to
which 90% of the correct reads are assigned. Formally, for each simulated dupli-
cation we determined which haplotype had the most reads overlapping with
the reads simulated from that duplication and counted how many such haplo-
types had at least 90% of the reads from that haplotype reciprocally assigned to
that duplication. This gives an indication of the number of copies of a segmen-
tal duplication that would be correctly assembled given the phased haplotypes.
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For the 48 simulations with duplication copy number between 3 and 8, the CC
method resolves 70% of duplication copies, while the DMP and SCGD meth-
ods resolve 66% and 26%, respectively (Fig. 5). For duplications of ploidy 10,
the CC method resolves on average 7.0 copies of each duplication, whereas the
DMP and SCGD methods resolve on average 3.3 and 0.03 copies, respectively.
The CC+DMP combined method resolved 80% of duplications for simulations
of copy number between 3 and 8. However, for copy number 10 duplications this
provided marginal improvements over CC alone, providing solutions for 24 fewer
simulations than CC, resolving on average 7.1 duplications per simulation.

5 Conclusions

The resolution of segmental duplications remains problematic in de novo assem-
blies. Deviating from the typical formulations of de novo assembly, we present
a new formulation and two novel algorithms for resolving high-copy collapsed
duplications that rely on polyploid phasing. We demonstrated that while it is
possible to optimize for MEC, methods that focus on resolving clusters with
unique PSVs actually resolve more duplications despite having a higher MEC
value, perhaps due to less over-fitting of results to variants present in ancestral
copies of a duplication. In future work we hope to improve the rank estima-
tion for the discrete matrix-completion method, possibly leveraging the clusters
discovered by correlation clustering, and characterizing the conditions under
which correlation clustering converges to the correct clusters. Finally, we plan
on applying these methods to resolving duplications in published human assem-
blies [35,38].
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A Appendix

After each gradient step, the resultant matrix is projected onto the box. The
updates for A and B are as follows:

Ã(t+1) ← A(t) − αA∇Af(A)

Then A
(t+1)
ij =

⎧
⎪⎨

⎪⎩

0, if Ã
(t+1)
ij < 0

Ã
(t+1)
ij , if 0 ≤ Ã

(t+1)
ij ≤ 1

1, if Ã
(t+1)
ij > 1

B̃(t+1) ← B(t) − αB∇Af(B)

Then B
(t+1)
ij =

⎧
⎪⎨

⎪⎩

−1, if B̃
(t+1)
ij < −1

B̃
(t+1)
ij , if − 1 ≤ Ã

(t+1)
ij ≤ 1

1, if Ã
(t+1)
ij > 1
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where f(·) is the objective function. The projected gradient descent allows us to
incorporate additional constraints on the problem as well. If we further enforce
that the sum of each row of A equals 1, then we would have the projection as
A

(t+1)
ij = max{0, Ã

(t+1)
ij − νi} where νi can be computed for each row i using the

equality
S∑

j=1

max{0, Ã
(t+1)
ij − νi} = 1

We allow a maximum of 50 iteration steps for minimizing each of A and B,
and 100 iteration steps for alternating minimization. We exit the iterations if
the change in norm is insignificant (1e − 02) or if the objective value change is
below a tolerance (1e − 04). The learning rate values have to be computed in
order to ensure that gradient steps do not diverge. Our choices of learning rates
have been

αA = C
‖∇f(A(t))‖2F

‖PΩ(∇f(A(t)) · B(t))‖2F
and

αB = C
‖∇f(B(t))‖2F

‖PΩ(A(t) · ∇f(B(t)))‖2F
where C ∈ (0, 1).
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