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Structural variations in the chromosome 22q11.2 region medi-

ated by nonallelic homologous recombination result in 22q11.2

deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2)

syndromes. The majority of del22q11.2 cases have facial and

cardiacmalformations, immunologic impairments, specific cog-

nitive profile and increased risk for schizophrenia and autism

spectrum disorders (ASDs). The phenotype of dup22q11.2 is

frequently without physical features but includes the spectrum

of neurocognitive abnormalities. Although there is substantial

evidence that haploinsufficiency for TBX1 plays a role in the

physical features of del22q11.2, it is not known which gene(s) in

the critical 1.5Mb region are responsible for the observed

spectrum of behavioral phenotypes. We identified an individual

with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a

behavioral phenotype characterized by cognitive impairment,

autism, and schizophrenia in the absence of congenital malfor-

mations. Using somatic cell hybrids and comparative genomic

hybridization (CGH) we mapped the chromosome-22 break-

point within intron 7 of the GNB1L gene. Copy number evalua-

tions and directDNA sequencing ofGNB1L in 271 schizophrenia

and 513 autism cases revealed dup22q11.2 in two families with

autism and private GNB1L missense variants in conserved res-

idues in three families (P¼ 0.036). The identified missense

variants affect residues in the WD40 repeat domains and are

predicted to have deleterious effects on the protein. Prior studies

provided evidence thatGNB1Lmay have a role in schizophrenia.

Our findings support involvement of GNB1L in ASDs as well.
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INTRODUCTION

The chromosome 22q11.2 genomic region harbors four low-

copy repeats that make it susceptible to nonallelic homologous

Additional supporting information may be found in the online version of

this article.
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recombination that is responsible for the 22q11 deletion

(del22q11.2) and duplication (dup22q11.2) syndromes

[Stankiewicz and Lupski 2002]. Del22q11.2 is the most common

genomic disorder, with a frequency of 1 in 4,000 to 1 in 7,000 births

[Botto et al., 2003;Oskarsdottir et al., 2004]. This complex disorder

has been called velocardiofacial syndrome (VCFS) [MIM 192430]

for its associated facial dysmorphism, palatal clefting or insuffi-

ciency, and conotruncal heart abnormalities, orDiGeorge sequence

(DGS) [MIM 188400] when the immune system and parathyroid

function are compromised. Del22q11.2 also has a prominent

cognitive and behavioral component [Murphy 2005]. Individuals

with del22q11.2 have a lower IQ than expected and a complex

psychoeducational profile characterized by language impairment

and higher verbal than performance IQ [Moss et al., 1999; Antshel

et al., 2008]. Del22q11.2 greatly increases the risk for psychiatric

disorders. An autism spectrum disorder (ASD) is diagnosed in as

many as 50% and schizophrenia or related psychosis develops in

approximately one-third of individuals with del22q11.2 [Murphy

et al., 1999; Fine et al., 2005; Vorstman et al., 2006; Antshel et al.,

2007; Niklasson et al., 2009]. Conversely, the microdeletion has

been found in approximately 1–3% of adults with schizophrenia

and with much higher frequencies in the subsets with childhood

onset, making del22q11.2 the most frequent genetic cause of

schizophrenia in the general population [Yan et al., 1998;Wiehahn

et al., 2004; Horowitz et al., 2005]. Complex neurodevelopmental

phenotypes also characterize the newly recognized reciprocal

dup22q11.2 syndrome [MIM 608363]. The phenotype of the

individuals with dup22q11.2 is exceedingly diverse—some indi-

viduals have no apparent abnormalities, but others manifest phe-

notypes ranging from congenital malformations reminiscent of

del22q11.2 to behavioral disorders including intellectual disability,

ASD, and learning disorders [Mukaddes and Herguner, 2007;

Ramelli et al., 2008; Lo-Castro et al., 2009], further supporting

the importance of the 22q11.2 region in cognition and behavior.

Most VCFS/DGS cases have a deletion spanning 3Mb or, less

frequently, a nested deletion of 1.5Mb, mediated by homologous

recombination between different blocks of low-copy repeats. As the

range of clinical features in groups with different size deletions is

indistinguishable, the boundaries of the 1.5Mb deletion define a

critical del22q11.2 region (NCBI36/hg18 17.2-18.7Mb) that con-

tains 31 genes [Funke et al., 1999]. Rare patients with unique

deletions, translocations or mutations in the region offer an

opportunity to dissect the genotypic and phenotypic components

of the syndrome. Studies of such patients and of mouse models

provide strong evidence that mutations in one of these genes,

T-Box1 (TBX1 [MIM 602054]), can cause the structural craniofa-

cial, cardiovascular, thymic and pharyngeal anomalies, but evi-

dence for the role of TBX1 in the psychiatric/behavioral problems is

conflicting [Gong et al., 2000; Yagi et al., 2003; Liao et al., 2004;

Torres-Juan et al., 2007; Zweier et al., 2007].

Other genes in the critical del22q11.2 region have also been

considered as candidates for the neurobehavioral phenotypes,

based on their functions, expression patterns in humans and

presence of behavioral abnormalities in mouse models [Gogos

et al., 1998; Gothelf et al., 2005; Paterlini et al., 2005]. Recently,

significant evidence for association between schizophrenia

and Guanine Nucleotide-Binding Protein, Beta-1-Like (GNB1L

[MIM 610778]) was reported in a case-control association study

[Williams et al., 2008]. This observation, combined with the

findings of reduced expression of GNB1L in postmortem brains

of schizophrenics [Ishiguro et al., 2010] and the effect of heterozy-

gous deletion of Gnbl1 on prepulse inhibition, a schizophrenia

endophenotype, in amousemodel [Paylor et al., 2006], suggest that

GNB1L is associated with the schizophrenia phenotype observed in

del22q11.2. Herein we report an individual with a history of autism

and schizophrenia who was found to have a balanced translocation

involving the 22q11.2 region. We mapped the chromosome

22 breakpoint to the GNB1L gene. We also detected additional

rare and possibly damaging GNB1L sequence variants in subjects

with ASD. These findings support the involvement of GNB1L

in autism.

MATERIALS AND METHODS

Proband and Family
The proband and his family members provided informed consent

and blood samples under a protocol approved by the University of

Washington Institutional Review Board.

ASD Cases
Cases were identified from families with two ormore children with

ASD. The ASD cohort is comprised of 513 unrelated individuals,

most of whom have participated in our previous genetic studies

[Schellenberg et al., 2006; Chapman et al., 2011; Korvatska et al.,

2011]. More than 80% of cases are self-identified as White,

approximately 10% are of mixed race, and less than 10% are US

minorities. The University of Washington and University of

Pittsburgh Institutional Review Boards approved the relevant

study, and informed consent was obtained from all participants

and/or their parents. Children with a reported ASD were assessed

using the Autism Diagnostic Interview-Revised (ADI-R) [Lord

et al., 1994] and Autism Diagnostic Observation Schedule-Generic

(ADOS-G) [Lord et al., 2000] by trained clinicians, and assigned a

DSM-IV [APA, 1994] diagnosis. Individuals designated as affected

met DSM-IV criteria for an ASD based on ADI-R, ADOS-G, and

expert clinical judgment.

Schizophrenia Cases
The 271 cases were participants in either the 7-site Consortium on

the Genetics of Schizophrenia (COGS) or the Veterans Affairs

Cooperative Studies Program # 166, Genetic Linkage of Schizo-

phrenia study, and provided informed consent under protocols

approved by the Institutional Review Boards at the relevant sites.

One hundred fifty five cases were European-Americans and 116

wereAfrican-American. For the current project, all casesmetDSM-

IV criteria for schizophrenia using the Diagnostic Interview for

Genetic Studies and related instruments, as described in previous

publications [Tsuang et al., 2000; Calkins et al., 2007].

Control Subjects
Unrelated participants in other studieswhohad provided informed

consent for sharing DNA or genetic information for use in research
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of other genetic disorders served as controls. These individuals

were not screened for autism or schizophrenia. Control subjects

were self-identified as European-American (n¼ 630) or African-

American (n¼ 414).

Cytogenetic Evaluations
The initial karyotype of the proband with a translocation was

analyzed at an outside clinical laboratory. Karyotype and fluore-

scence in situ hybridization (FISH) analyses of his relatives were

performed in the clinical cytogenetics laboratory of the University

of Washington.

Somatic Cell Hybrid Construction
Somatic cell hybrids were constructed using Conversion Technol-

ogy at the Mayo Clinic Cytogenetics Laboratory [Highsmith et al.,

2007]. An EBV transformed lymphoblastoid cell line from the

proband was electrofused with E2 cells and 215 mouse/human

hybrid colonies were obtained. Twenty-one colonies were expand-

ed and evaluated by FISH for the presence of chromosomes 1 and22

withwhole chromosome paint probes. Separate somatic cell hybrid

lines that retained only the derivative chromosome 22 (der22) or

the derivative chromosome 1 (der1) and not their normal counter-

parts were isolated and expanded for DNA extraction.

Fine Mapping of the Translocation Breakpoints
Comparative genomic hybridization (CGH). DNAs from the

separate hybrid cell lines containing either der22 or der1 were sent

to NimbleGen Systems (Madison, WI) where they were differen-

tially labeledwith either Cy3-dCTPorCy5-dCTP andhybridized to

chromosome-specific oligonucleotide arrays (NimbleGen HG18

Chr1 and HG18 Chr22 designs) according to manufacturer’s

protocols. Each NimbleGen chromosome specific array contains

385,000 probes. The median probe spacing is 531 base pairs for

chromosome 1 and 65 base pairs for chromosome 22. The hybrid-

izations localized the breakpoints at sufficiently high resolution to

enable PCR based breakpoint cloning.

Capillary sequencing. PCRprimers for regions that flanked the

breakpoints were designed and tested on normal chromosomes

1 and 22 (Table S I, supplemental material). To establish the exact

base-pair positions of the chromosomal breaks on the derivative

chromosomes, PCRwas thenperformedusing primers thatworked

during the control runs. For this purpose, the forward primers of

chromosome 1 were combined with the forward primers of chro-

mosome22 to span the breakpoint onder22 and the reverse primers

of chromosome 1 were combined with the reverse primers of

chromosome 22 to span the breakpoint on the der1. The PCR

products were sequenced on an ABI 3130XL DNA analyzer. The

PCR and sequencing conditions were the same as described in

‘‘Mutation screening’’ section.

Detection of Copy Number Variation in GNB1L
by TaqMan� Copy Number Assay
To detect deletions/duplications of GNB1L, we conducted

TaqMan� based real-time quantitative copy number tests accord-

ing to the manufacturer’s protocol (Applied Biosystems, Carlsbad,

CA). The TaqMan� copy number assay is a duplex reaction with a

FAM�-assay targeting the gene of interest and a VIC�-assay

targeting the reference gene (Table S II, supplementary material).

The copy number is determined by relative quantification using a

reference sample known to have two copies of the gene of interest.

Each DNA sample was analyzed in triplicate on an Applied Bio-

systems 7500 Real-Time PCR System. For assay quality, positive

control DNA from an individual with del22q11.2 was obtained

from the Coriell cell repository (Coriell GM07939). Calculation of

gene copy number for each sample was done using the Copy Caller

Software V1.0 (Applied Biosystems).

Confirmation of GNB1L Duplication by CGH
Array-CGH experiments were performed as described previously

(73), with somemodification. Briefly, 250 ng of each of patient and

sex matched reference DNA was denatured at 98�C with Cy3- or

Cy5-labeled random monomer (TriLink Biotechnologies, San

Diego, CA) in 62.5mM Tris-HCl, pH 7.5, 6.25mM MgCl2, and

0.0875% b-mercaptoethanol. The denatured sample was chilled on

ice, and then incubated with 100 units (exo-) Klenow fragment

(NEB, Ipswich, MA) and dNTP mix (6mM each; Invitrogen,

Carlsbad, CA) in Tris, EDTA buffer, for 2 hr at 37�C. Reactions
were terminated by addition of 0.5M EDTA (pH 8.0); the end

products were precipitated with isopropanol and resuspended in

water. The Cy-labeled test sample and reference samples were then

combined (10 mg each) and hybridized to a custom-designed

(Girirajan and Eichler unpublished) 400 K oligonucleotide array

(Agilent Technologies, Santa Clara, CA) at 60�C for 40 hr. The

arrays were washed in commercially available solutions and

scanned. The resulting TIFF images were analyzed with Feature

Extraction software and output from this software was imported

into CGH Analytics software for final analysis. The data were

analyzedwith theGenomicWorkbench using anADM-2 algorithm

with a 0.25 cut-off threshold. The wash buffers, scanner, and all

software are available from Agilent Technologies.

Mutation Screening by Capillary Sequencing
For ASD and schizophrenia cases and 130 controls, DNA was

extracted from lymphocytes and lymphoblastoid cell lines. Primers

flanking coding exons were designed with Primer3 (Table S III,

supplemental material). Genomic DNAwas PCR amplified in aMJ

Research DNA Engine Tetrad 2. The 15 ml final volume contained

40 ng DNA, 0.3mM each primer, 0.5U Qiagen HotStarTaq DNA

Polymerase, 1.5mM MgCl2, and 200mM each dNTP. The con-

ditions consisted of an initial incubation of 95�C for15min, fol-

lowed by 30 cycles at 94�C for 45 sec, 60�C for 45 sec, and 72�C for

60 sec. The final incubation step was at 72�C for 7min. Aliquots of

5ml ofPCRamplifiedDNAfragmentswereprepared for sequencing

with Exonuclease I/Shrimp Alkaline Phosphatase digestion using

2ml of USBCorporation ExoSAP-IT for 30min at 37�C followed by

enzyme deactivation at 80�C for 15min. A 2ml aliquot of the

ExoSAP-IT treated PCR product was cycle sequenced with Applied

Biosystems BigDye Terminator v3.1 on aMJ ResearchDNAEngine

Tetrad 2. The conditions were, 10ml final volume, 1.5ml Big Dye,
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4 pmol primer, and 2ml of 5M Betaine, initial incubation of 96�C
for 2min followed by 25 cycles at 95�C for 15 sec, 50�C for 10 sec,

and 60�C for 4min. The dye labeled sequencing reaction products

were capillary electrophoresed on a Applied Biosystems 3130XL

Genetic Analyzer with a 36 cM array, 3130 POP-7 polymer, 3130XL

Data Collection v3.0 and Sequencing Analysis Software v5.3.1.

Further analysis was performed with SeqScape 2.1 or DNASTAR

Lasergene 8.1.

Mutation Screening by Next-Generation
Sequencing
Exome sequence data were produced by the University of

Washington Genome Sciences Genomic Resource Center using

the same methods for exome capture, massively parallel sequenc-

ing, readmapping, and annotation as previously described [Norton

et al., 2011]. Sequences were analyzed across the GNB1L gene

for coding exons 3–8 for 500 self-identified European-Americans

and 414 African-Americans.

Mutational Burden Analysis
In concordance with work on Mendelian disorders where rare

variants of large effects are causal, our assumption was that poten-

tially pathogenic GNB1L variants would be rare changes that are

evolutionary conserved and predicted to have deleterious effects on

protein function. To evaluate evolutionary conservation of discov-

ered variants we used PhastCons [Siepel et al., 2005] and GERP

[Goode et al., 2010], and to evaluate putative effects of amino

acid change on protein function we used Polyphen [Ramensky

et al., 2002], pMUT [Ferrer-Costa et al., 2005], and SIFT [Ng and

Henikoff, 2003]. To deem a variant potentially pathogenic, we

required it to be determined as evolutionarily conserved with

at least one of the two methods, and considered damaging with

at least two of the three methods.

RESULTS

Proband and Family
The proband was seen in the Genetic Medicine Clinic at the

University of Washington for deteriorating cognitive and social

functioning. He had a history of autism as a child, schizophrenia as

a teenager and a persistent, variably severe problem with speech

production. The perinatal period was marked by emergency cesar-

ean section at 29 weeks gestation, birth weight of 1,304 g, and

2 months hospitalization. Despite these complications, he met

developmental milestones, walked at approximately 1 year, and

spoke single and then combined words between 1 and 2 years.

However, in early childhood he had a tendency to memorize

phrases, paced in circles, and appeared to ‘‘imagine things.’’

In kindergarten he was found to have receptive and expressive

languagedelays that qualifiedhim for special education services and

school records indicate that in the first grade hewas evaluated at the

Child Development and Rehabilitation Center at Oregon Health

and Science University and diagnosed with autism. Cognitive

testing was performed on several occasions. Full scale Wechsler

Intelligence Scale for Children III (WISC-III) [Wechsler, 1992] IQ

scores of 76 and 87 were obtained at ages 6.2 and 7.6 years,

respectively. At 16.5 years performance tests from the Wechsler

Individual Achievement Test II (WIAT-II) [Wechsler, 2002]

demonstrated a wide range of scores, from 111 (77th percentile)

for phonological decoding to 40 (<0.1 percentile) for math

reasoning.

In the public school system he received special education

and speech services. The deterioration of expressive language

was noted, and he never spoke more than one or two words at a

time. In the 8th grade, he began acting confused, his behavior

became more erratic with episodes of anger and violence, and he

reported hearing voices and ‘‘beeping noises.’’ At age 14 he was

hospitalized with visual, olfactory hallucinations, and dysregulated

behavior and a diagnosis of schizophrenia was made. Although

his behavior stabilized on a combination of antipsychotic medi-

cations, he continued tobe intermittently agitated anddisorganized

and to complain of auditory hallucinations. In later teen years, he

became more anxious and was started on a selective serotonin

reuptake inhibitor. There is no history of seizures and no seizure

activity was detected on multiple EEGs. A recent brain MRI was

normal.

On examination by a medical geneticist and a child and adoles-

cent psychiatrist at the University of Washington at age 18 no

physical features of VCFS were detected. The neurologic exam was

normal. The patient was casually dressed and cooperative but

avoided eye contact, except when he was directly addressed. He

sat somewhat restlessly in the chair, with stereotypic movements

characterized by rubbing his hands back and forth over his knees. At

times, it appeared that he was gesticulating with his mouth as if

he were talking to someone. It appeared that he is struggling with

speech production. He would respond verbally to some questions,

but only after a long delay and with only one or two words, making

mental status examination difficult. It was notable that there was

no delay in his nonverbal responses. The clinical diagnosis by the

psychiatrist was pervasive developmental disorder not otherwise

specified and psychosis not otherwise specified. A structured

psychiatric evaluation was not performed and available records

were insufficient for establishment of a structured diagnosis.

Cytogenetic Evaluations
Karyotype analysis revealed a balanced translocation, t(1;22)-

(p36.1;q11.2) (Fig. 1). FISH was performed in the University of

Washington clinical laboratory with two probes for chromosome

22q. Signals for the 22q11.2 VCFS probe were observed on both

the normal and derivative chromosomes 22, while signals from the

distal 22q13.3 ARSA probe were observed on the normal chromo-

some 22 and derivative chromosome 1 (Fig. S1, supplementary

material). Additional cytogenetic evaluations revealed that the

proband’s father and several other paternally related family mem-

bers are balanced translocation carriers, which is consistent with

the history of infertility and multiple pregnancy losses. There

was no history of developmental disability, autism or psychosis

in these or other relatives, but neuropsychiatric testing was not

done. A pedigree is not shown because of concerns regarding

identifiability.
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Characterization of the Translocation
Breakpoints
CGH with somatic cell hybrids that each contained one derivative

chromosome was used to fine map the translocation break

points. To precisely determine the translocation location, primers

spanning the breakpoint were designed and the region was

sequenced. The chromosome 1 breakpoint is at 25,434,753 bp

(NCBI36/Hg18). (Fig. S2, supplementary material). The chromo-

some 22 breakpoint is at 18,167,843-18,167,854, encompassing a

10 bp deletion (tcttctctgc) (Fig. 2). The chromosome 1 breakpoint

lies in aheterochromatic regionofALUrepetitiveDNAbetween the

SYF2 andC1orf63genes. The chromosome22q11.21 breakpoint lies

within intron 7 of the GNB1L gene, a region without repetitive

DNA. No homology was found between the two breakpoints.

GNB1L has 8 exons spanning 66.5 kb of genomic DNA encoding

327 amino acids (NP_443730). The fusion predicts substitution of

16 amino acids from the noncoding ALU sequence of chromosome

1 in place of the terminal 83 amino acids of GNB1L. No other

abnormalities of sequence dosage for chromosomes 1 or 22 were

detected by whole genome CGH (data not shown).

FIG. 1. Karyotype showing the balanced translocation

t(1;22)(p36.1;q11.2) in the proband and other members of his

family. Arrows indicate derivative chromosomes 1 and 22.

FIG. 2. Fine mapping of the chromosome 22 translocation breakpoint. The derivative chromosome 22 was differentially labeled with Cy3-dCTP,

derivative chromosome 1was labeled with Cy5-dCTP and both were hybridized to chromosome 22 specific oligonucleotide array (NimbleGen HG 18

Chr22 design). The hybridization localized the breakpoint at sufficiently high resolution (A) to enable PCR based breakpoint cloning (B). The

chromosome22breakpoint is between18,167, 843-18, 167,854 bp,within intron7of theGNB1Lgene, andencompassesa10 bpdeletion shown in

lower case (tcttctctgc). [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/journal/ajmgb]
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Evaluation of GNB1L for CNVs and Mutational
Burden Analysis
Using Quantitative TaqMan

�
Copy Number Assays we detected

GNB1L duplications in two subjects with ASD. By array CGH we

determined that both are the typical 3Mb dup22q11.2.

We sequenced the 6 coding exons and splice junctions ofGNB1L

in genomic DNA of 271 subjects with schizophrenia and 513

subjects with ASD. In this sample we identified five missense

variants we define as rare as they are not listed in the NCBI dbSNP

Build 132 (R57Q, C70R, R88W, R283Q, andV290M). Two of these

variants R57Q and C70R, were detected in multiple controls of

European-American and African-American background and are

likely to be polymorphisms. The three private variants found in

ASD subjects, R88W, R283Q, and V290M, affect residues in the

WD40 domains and meet our criteria for missense variants that

are highly conserved across multiple species as determined by

PhastCons and GERP, and predicted to have pathogenic effects

on the protein structure by at least two of three software algorithms

(SIFT, PolyPhen, and pMUT). No rare variants were detected in

schizophrenia sample. For a control sample we have evaluated

coding sequence of 630 controls of European-American and 414

controls of African-American ancestry. In this combined sample

of 1,044 controls, we have identified four variants that were not

present in dbSNPBuild 132, none ofwhich havemet our criteria for

deleteriousness based on conservation score and effects on protein

function (Fisher Exact, two sided P¼ 0.036) (Table I). Figure 3A

shows the genomic organization ofGNB1L and the protein location

of unique variants identified in ASD cases.

Transmission in Families
The duplications identified in the probands were genotyped in all

available members of both families (Fig. 4). In family AU142, the

3Mb duplication was transmitted from the father to both affected

monozygotic twin daughters, one of whom had autism and the

other had a diagnosis of ASD. Both had low IQ scores (full-scale IQ

49). The father showed decreased social motivation and limited

range of interests/flexibility as assessed by the Broader Phenotype

Autism Symptom Scale (BPASS) [Dawson et al., 2007]. In family

M2017 the duplication is a de novo event in one of the two affected

offspring with a diagnosis of autism.

All three private missense variants were transmitted from an

unaffected parent (Fig. 3B). In family AU169, both affected sons

with autism and the unaffected daughter inherited the R88W

variant; the carrier father had elevated BPASS scores, indicating

presence of the broader autism phenotype. In families AU498 and

AU510, a brother with ASD did not carry the respective R283Q or

V290M variant. The carrier mother in family AU510 showed

subclinical traits of the autismphenotype as reflected by an elevated

BPASS score, as did the noncarrier father in family AU498.

DISCUSSION

There is increasing evidence that autism and schizophrenia are

highly heterogeneous disorders on both phenotypic and genotypic

levels [McClellan et al., 2007; Abrahams and Geschwind, 2008;

Bassett et al., 2010; State, 2010]. Recent molecular studies have

identified multiple risk factors for both disorders. For autism there

is evidence for a pathogenic effect of missense mutations in a

number of genes, including NLGN3 (MIM 300336) and NLGN4

(MIM 300427) [Jamain et al., 2003],NRXN1 (MIM 600565) [Kim

et al., 2008], SHANK3 (MIM 606230) [Durand et al., 2007],

SHANK2 (MIM 603290) [Berkel et al., 2010], and CNTNAP2

(MIM 604569) [Bakkaloglu et al., 2008]. In addition to the

22q11.2 region, recurrent deletions and duplications at 7q11.3,

15q11–q13, 16p11.2, and 17p11.2 have autism as a frequent phe-

notypic presentation [Cook and Scherer 2008; Stankiewicz and

Lupski, 2010). None of these single gene mutations or CNVs

account for more than a minority of autism cases. Similarly, for

schizophrenia, the list of candidate genes and CNVs continues to

increase [Bassett et al., 2010; Stankiewicz and Lupski, 2010].

TABLE I. Summary of Rare Missense Variants Detected in ASD Cases and Unscreened Controls

Prediction of Functional Effect
Evolutionary
conservation

Nucleotide
change

Protein
residue

hg18
location

Number of
variants

Polyphen
(40, 41)

pMUT
(42)

SIFT
(39)

Phast
consa GERPb

ASD cases (n¼ 513)
c.262G/A p.R88W 18,179,963 1 Damaging Damaging Damaging 1 4.61
c.848C/T p.R283Q 18,156,368 1 Benign Damaging Damaging 1 0.938
c.868C/T p.V290M 18,156,348 1 Damaging Benign Damaging 0.997 4.97
Controls (n¼ 1,044)
c.17G/A p.P6L 18,188,862 1 Benign Benign Benign 0 �4.38
c.313C/T p.V108M 18,179,903 1 Damaging Benign Benign 0.068 0.158
c.692G/A p.A231V 18,169,564 1 Benign Benign Benign 0.988 2.91
c.913G/A p.A305T 18,156,303 1 Benign Benign Benign 0 �9.54

aPhastCons scores range from 0 to 1, where 1 is most conserved.
bGERP conservation scores range from �11.6 to 5.82, where 5.82 is most conserved.
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FIG. 3. Schematic of GNB1L and corresponding protein and transmission of GNB1L variants in families with autism. A: The chromosome 22

translocation breakpoint lies in intron 7. The locations of the three unique variants found in ASD in the WD40 motifs are indicated. B: Affected

individuals in all families have a diagnosis of autism or ASD, indicated by black fill. Up-arrow indicates an elevated BPASS social motivation and

range of interest/flexibility scores; scores have a direct correlation with symptoms of ASD such that high scores are abnormal.

FIG. 4. Identification of GNB1L duplication and transmission patterns in two families with autism. Affected individuals in the pedigrees have a

diagnosis of autism or ASD, indicated by black fill. Up-arrow indicates elevated BPASS socialmotivation and range of interest/flexibility scores. (þ)

indicates 22q11.2 duplication shown as increased copy number by TaqMan and CGH. [Color figure can be seen in the online version of this article,

available at http://wileyonlinelibrary.com/journal/ajmgb]
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To date, the cumulative results point to involvement ofmany genes

and unknown environmental influences on the pathogeneses of

autism and schizophrenia and the variability in their phenotypic

expression.

Althoughdeletionof the22q11.2 region is associatedwith autism

and is the most common identified cause of schizophrenia, it is not

known which gene or genes confer this risk. The disruption of

GNB1L by a balanced translocation in the del22q11.2 region in our

proband with ASD as a child and schizophrenia as a young adult

suggests that this gene might play a role in neurobehavioral

phenotypes. Williams et al. 2008 reported significant evidence

for a male specific association between schizophrenia and geno-

types at the GNB1L locus and replicated these findings in two

independent samples with a total of 1,408 cases and 2,746 controls.

Furthermore, they found a significant allelic association between

the variants of GNB1L and psychosis in males with del22q11.2. By

direct sequencing of theGNB1L coding exons, they did not identify

any novel variants, but this was a limited re-sequencing study of

only 14 subjects. The association of common GNB1L alleles and

schizophrenia was recently replicated in a Chinese sample [Li et al.,

2011].GNB1L (MIM 610778) encodes a 327 amino acid G-protein

beta-subunit-like polypeptide that belongs to theWD-motif repeat

protein family. GNB1L protein contains six putativeWD40 repeats

and no other recognizable functional domains [Gong et al., 2000].

WD-motif containing proteins have 4–16 repeating units, all of

which are thought to form a circularized beta-propeller structure.

Members of the WD-motif family are found in all eukaryotes

and are involved in a variety of cellular processes, including cell

cycle progression, signal transduction, apoptosis, and gene regula-

tion. WD-repeat proteins have been associated with inherited

neurodevelopmental and neurodegenerative diseases, such as

lissencephaly-1 (MIM 607432), Parkinson disease type 8 (MIM

607060), Cockayne syndrome type A (MIM 216400), Triple-A

syndrome (MIM 231550), microcephaly (MIM 600176), and Jou-

bert SyndromeType 3 (MIM608629). Inmice, Gnb1l is an essential

protein as homozygous loss of function causes embryonic lethality

[Paylor et al., 2006]. It is widely expressed in the forebrain,

midbrain, and hindbrain structures of the adult mouse, and hemi-

zygous deletion of Gnb1l is associated with deficits in prepulse

inhibition of the startle response, a schizophrenia endophenotype

[Braff et al., 2001].

All of these factors motivated our evaluation of the contribution

ofGNB1L variants to autismand schizophrenia.As largemultigenic

22q11.2 CNVs are responsible for del22q11.2 and dup22q11.2

genomic disorders, we first evaluated GNB1L for copy number

changesusingTaqManassays that could, inprinciple, detect smaller

single gene CNVs. In this fashion we have detected two GNB1L

duplications in ASD subjects that we confirmed with CGH as 3Mb

multigenic duplications. As is true for the del22q11.2 syndrome,

the newly recognized dup22q11.2 syndrome is characterized by

cognitive and behavioral disturbances and extensive phenotypic

variability [Ensenauer et al., 2003; Yobb et al., 2005; Mukaddes

and Herguner, 2007; Ou et al., 2008; Yu et al., 2008; Lo-Castro

et al., 2009]. In one of our families the dup22q11.2 was transmitted

from a parent who had elevated BPASS scores for social motivation

and range of interest/flexibility. The BPASS was developed for use

with child and adult relatives as well as affected children to assess

social motivation, social expressiveness, conversational skills, and

flexibility, domains that are abnormal inASD [Dawson et al., 2007].

The BPASS scores were designed to span the range from clinical

impairment to typical behavior and have a direct correlation with

symptoms of ASD such that high scores indicate abnormality or

impairment in autism related traits. Although the father had

normal cognition, his monozygotic twin daughters share low IQ

scores but differ with respect to severity of behavioral impairment.

In the second family one of the two autistic siblings has a de novo

duplication, suggesting that in this family additional risk factors are

present. We are not aware of any publication that has found an

associationof dup22q11.2with schizophrenia andwedidnotdetect

either deletion or duplication of 22q11 in our relatively small

sample of 271 schizophrenic subjects. It is interesting to note

that the del22q11.2 is associated with schizophrenia and autism

and dup22q11.2 has been described only in autism, suggesting

shared genetic influences modulated by gene dosage.

Our second assumption was that rare coding sequence changes

in GNB1L might be responsible for the phenotype in a subset of

ASD or schizophrenia cases. In 513 subjects with ASD we found

three rare missense GNB1L variants that affect highly conserved

nucleotides and are predicted to be deleterious. We have found no

such variants in a smaller sample of 271 schizophrenia cases. For

mutational burden analysis we defined potentially pathogenic

variants as not present in dbSNP, conserved and as having delete-

rious effects on protein function as determined by two out of three

bioinformatic functional prediction tools. Our assumption is that

variants defined in such a way that includes nucleotide-sequence

conservation and protein based prediction of functional effects are

likely to be deleterious regardless of the ethnic background of

subjects. The three ASD variants met those criteria and no variants

meeting these criteria were detected in 1,044 controls (P¼ 0.036).

The unique GNB1L variants in our families with autism were all

inherited. As with dup22q11.2, the variants did not co-segregate

with ASD diagnoses, suggesting the presence of additional risk

factors. In autism males outnumber females by approximately

fourfold, possibly a consequence of a lower threshold for expression

of the ASD phenotype in males. This hypothesis is consistent with

the transmission patterns we have observed. In the three autism

families with missense mutations four of the five males who carry a

variant have autism or ASD and the fifth has an elevated BPASS

score. In contrast, only one of three female carriers has an

elevated BPASS score. Our findings are consistent with the

hypothesis that GNB1L mutations are risk factors in a multigenic

threshold model for autism. Given the decreased penetrance and

marked variability in expression for the behavioral phenotypes

observed with deletion and duplication of the 22q11.2 region, it is

likely that any causal gene in the region would have decreased

penetrance as well. Decreased penetrance and variable phenotypic

expression have been observed for other genes in which rare

variants are reported to be associated with autism [Abrahams

and Geschwind, 2008; State, 2010] such as SHANK3 [Moessner

et al., 2007],NRXN1 [Kimet al., 2008], andCNTNAP2 [Bakkaloglu

et al., 2008].

Our study has several weaknesses. Although the 46,XY,t(1;22)-

(p36.1;q11.2) translocation disrupts the GNB1L gene, it is possible

that the resulting phenotype is due to position effects that alter
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expression of genes in the vicinity including TBX1 and COMT

which are also strong candidates for behavioral phenotypes. In our

screening ofGNB1L for potentially damaging sequence variants we

found an association of rare potentially damaging nonsynonimous

variants and ASD. This conclusion is based on the assumption that

currently available bioinformatic tools can accurately distinguish

variations that will change the protein function and ultimately

result in a behavioral phenotype. An additional weakness is that our

cases and controls contain several ethnic and racial groups and their

ethnic classification is based on self-identification. It is possible that

the variants we have identified as potentially deleterious are poly-

morphisms in one of the ethnic subpopulations. Our findings

should be replicated, preferably in a larger sample of cases, as it

is likely that the contribution of rare variants in any one gene is

responsible for a very small proportion of the genetic burden for

complex disorder such as autism.

If our finding that rare missense GNB1L variants contribute to

ASD in a subset of cases is replicated, studies would be warranted to

determine the effects of such mutations on the GNB1L protein

whose function is not well understood. AsGNB1L lies in the critical

del22q11.2 region it is a priori a candidate gene for neurodeve-

lopmental disorders that occur in the associated CNV syndromes.

Coupled with observations of other investigators for its involve-

ment in schizophrenia, our detection of a translocation disrupting

GNB1L and potentially damaging, extremely rare GNB1L variants

in subjects with autism provides evidence that this genemay have a

role in the pathogenesis of autism and expands the number of

phenotypes associated with GNB1L.
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