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N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previ-

ously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant

in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA

complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome

sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unre-

lated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features

of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor mile-

stones, and autism spectrumdisorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are pre-

sent in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably

as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15.

Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and

surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We pro-

pose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans,

supporting the importance of the NatA complex in normal human development.
Advances in sequencing technologies such as whole-

exome or genome sequencing (WES/WGS) have led to

disease-gene association discoveries, functional annota-

tion of the human genome, and improved diagnostic rates

in individuals with suspected genetic disorders refractory

to conventional diagnostic testing. An estimated diag-

nostic rate that often exceeds 25% can be achieved when

WES/WGS is applied to otherwise undiagnosed complex

cases.1–5 NAA15 (N-alpha-acetyltransferase 15, MIM:

608000) was previously characterized as one of fifty-two

risk genes for neurodevelopmental disorders by targeted

sequencing of a large autism spectrum and intellectual

disability (ASID) cohort.6 In another study of de novo
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changes in severe congenital heart disease (CHD), likely

gene disrupting (LGD) variants in NAA15 were identified

in two affected individuals in a cohort of 362 severe

CHD cases; one of these individuals was known to have

additional neurodevelopmental defects.7 In an effort to

further characterize the clinical and molecular spectrum

associated with genetic defects in NAA15, we ascertained,

from 33 unrelated families, 38 individuals with truncating,

presumably LGD (nonsense, frameshifting and splice)

variants in NAA15 via a collaborative world-wide effort

among multiple institutions. As a result of comprehensive

clinical evaluation and molecular analyses in all individ-

uals, we propose that deleterious variants in NAA15 are
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associated with variable levels of intellectual disability,

developmental delay, autism spectrum disorder, dysmor-

phic features, and congenital cardiac anomalies.

This study was performed in accordance with protocols

approved by the institutional review boards of the partici-

pating institutions (see Supplemental Data). Three affected

individuals were recruited from the UK Deciphering Devel-

opmental Disorders (DDD) project (families 20, 27, and

30). Written informed consent was obtained from all study

participants. The key clinical features of our cohorts are

summarized in Table 1. Detailed clinical summaries for

each subject are provided in the Supplemental Data. The

use of GeneMatcher, a web-based tool for connecting

researchers with an interest in the same gene,8 facilitated

contact between international collaborators.

All subjects have variable degrees of neurodevelopmen-

tal disabilities, including impaired motor abilities (HP:

0001270), intellectual disability (HP: 0001249), impaired

verbal abilities (HP: 0000750), and autism spectrum disor-

der (HP: 0000729) (Table 1, Table S1, and Table S2). Many

subjects have impaired motor function, including fine-

motor difficulties (n ¼ 5, or 12%), mild ataxia (n ¼ 1),

abnormality of movement (n ¼ 1), motor delay (n ¼ 22,

or 60%), and hypotonia (n ¼ 5, or 14%). Various levels of

intellectual disability are reported in almost all study sub-

jects with available data; such disability includes mild,
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moderate, or severe intellectual disability and learning

difficulties with or without behavioral issues (Table 1, Table

S1, and Table S2). The majority of affected individuals

have verbal issues, including complete absence of speech,

delayed language development, the need for sign lan-

guage, or other speech difficulties. Most subjects also pre-

sent with autism spectrum disorder (ASD) and/or other

behavioral abnormalities. Individual 11 was noted to

have marked hypersomnolence in early years, in apparent

similarity to what was recently reported in a girl with a

missense variant in NAA10.9 Minor facial dysmorphology

was reported in some individuals (Table 1), but there

were no consistent features noted nor a recognizable

pattern of facial dysmorphology (Figure 1 and Figure S1).

The birth weight and length were low in some individuals;

the most notable feature was a birth weight % 1st percen-

tile in 7 out of 25 (28%) individuals with available informa-

tion (Table S3). Some of the individuals remain small

throughout life, whereas others are of normal stature and

a few are above average height (Table S3).

Almost all individuals have normal or uncharacterized

cardiac function (Table 1), with four exceptions. Individual

2 (Figure 1) has atrial ectopic (multifocal) tachycardia (HP:

0011701), treated with verapamil, and hypertension (HP:

0000822). Individual 3 had a ventricular septal defect

(VSD), repaired surgically during infancy. Individual 17
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Table 1. Summary of Phenotypes

Phenotype

Number of
individuals
with
phenotype

Number of
individuals
with relevant
data Percentage

Brain Structure and Function

Intellectual
disability (ID)a

23 23 100

ASD, ADHD, or
behavioral issues

30 33 91

Abnormal
brain MRI

2 11 18

Speech delay 32 33 97

Seizures 6 26 23

Motor Impairments

Motor delay
and related
abnormalities

31 32 97

Muscle tone
issues

7 18 39

Feeding
difficulties

8 14 57

Cardiovascular

Congenital
cardiac defects

4 19 21

Major vessel
anomalies

2 19 11

Arrhythmias 1 19 5

Hypertension 1 19 5

Other

Mild
dysmorphism

18 28 64

Skeletal or
connective-tissue
defects

8 20 40

aIn individuals > 5 years of age, when IQ testing or other cognitive testing was
performed.
has a Marfanoid habitus, with an aortic root at the upper

limit of normal. By far the most severely affected, individ-

ual 19 has heterotaxy syndrome associated with a complex

cardiac diagnosis of dextrocardia involving left superior

and inferior venae cavae, total anomalous pulmonary

venous return to the innominate vein, tricuspid atresia,

hypoplastic right ventricle, double-outlet right ventricle,

and transposed great arteries with severe pulmonary steno-

sis. The variant in this individual (c.1009_1012delGAAA)

was previously reported in a cohort of 1,213 subjects

with CHD and an increased prevalence of extracardiac

congenital anomalies (CAs) and risk of neurodevelop-

mental disabilities (NDDs).7,10 Another LGD variant,

c.2282C>A (p.Ser761*) in NAA15, was first reported in an

individual with pulmonary stenosis, single left coronary

artery, and tetralogy of Fallot (in the context of no reported

neurodevelopmental disability), although we have been
The Ame
unable to obtain additional information on this individ-

ual.7 A more recent analysis of this now expanded cohort

of 2,871 CHD probands, including 2,645 parent-offspring

trios, did not find any new variants in NAA15.11 Given

the low prevalence of CHD in our own cohort of 38 indi-

viduals, one caveat is that the expression of severe congen-

ital heart disease could be due to variation at a second

locus, a noncoding mutation outside of the exome, or

some other additional variation undetected thus far.

A total of 25 presumably LGD variants contained in 12

of the 20 exons and two intron-exon boundaries of

NAA15were identified from 33 unrelated families (Figure 2,

Table S1, Table S2); these included nonsense variants

(n ¼ 13), canonical splice-site variants (n ¼ 2), and frame-

shift variants (n ¼ 10). The inheritance pattern of the

variants was determined to be de novo for most subjects

(22 families) through testing of parental samples. Familial

inheritance was observed in three families (families 10, 22,

and 28), and the corresponding NAA15 LGD variant segre-

gated with the neurocognitive phenotypes, including in

one mildly affected parent in each family and in affected

siblings in families 10 and 28. For Family 10, the read

count data did not demonstrate any somatic mosaicism

in the blood sample from the mother. Among the 25 vari-

ants identified, there were three recurrent variants,

including c.228_232delCTTGA (p.Asp76Glufs*20) (fam-

ilies 3 and 4, de novo), c.239_240delAT (p.His80Argfs*17)

(families 6-11B, de novo in families 6 and 7, familial in

family 10, and unknown inheritance in the rest of the fam-

ilies), and c.1009_1012delGAAA (p.Glu337Argfs*5) (fam-

ilies 19 and 20, de novo). We examined genomic context

around the three recurrent loci to look formicro-homology

that might increase the propensity for recurrent mutations

and found that the most recurrent mutation, c.239_240de-

lAT, occurs in the middle of one of 20 reported mutation

hotspots, CATGT.12 In addition, this recurrent variant,

and another one, c.228_232delCTTGA, are close to each

other in exon 3 in an area that is computationally pre-

dicted13 to form a quasipalindromic structure (lying distal

to an even larger quasipalindromic structure), and the

third recurrent mutation c.1009_1012delGAAA in exon

9 lies just distal to a quasipalindromic structure

(Figure S2).14

Data from the Exome Aggregation Consortium (ExAC)

study of 60,706 control individuals show that NAA15 is

likely intolerant to LGD variants (pLI ¼ 1.00),15 that the

residual variation intolerance score (RVIS)¼�0.89 (among

the 10.2%most LGD intolerant of human genes), and that

LoF-FDR[ExAC]¼ 0.000224349.16 Excluding small cohorts

(<100 probands, Table S4), we in total identified fourteen

de novo variants in NAA15 from six independent rare dis-

ease cohorts with a total sample size of �36,731. Ten out

of 14 cases are reported in detail here; the remaining four

lack sufficient phenotype information. Our aggregate fre-

quency of de novo LGD variants in affected individuals

(�4.0 per 10,000) is significantly higher than the

background rates estimated by Samocha et al.17 for LGD
rican Journal of Human Genetics 102, 985–994, May 3, 2018 987



Figure 1. Pedigrees, Mild Facial Dysmor-
phology, and Hands of Individuals with
Familial or de novo NAA15 LGD Variants
(A) Pedigrees are shown for the three
families with inherited variants. Family
10, Individual 10-1: at age 17 years
and 6 months, with prominent eyebrows,
broad nose, and prominent chin. Hand ap-
pears normal. Individual 10-2: at 6 years
and 6 months, with very well-developed
philtral pillars. Hand appears normal.
Individual 10-3: mother, with long
mentum of the chin and relatively thick
alae nasi. Hand appears normal. Family
28, Individual 28-1: at age 15 years,
partial syndactyly in one hand, but other-
wise not with particularly notable dysmor-
phology. Individual 28-2: sister, at age
12 years, who was not noted to have
any obvious dysmorphology. Individual
28-3: Mother at age 45 years, with
broad nose but otherwise not with notable
dysmorphology.
(B) Minor facial dysmorphology was noted
in some probands, but there were no reli-
ably consistent features shared among
them. Individual 2: at 17 years old,
noted to have brachycephaly, appearance
of ocular hypertelorism with short palpe-
bral fissures, prominent nose tip with a
longer columella of the nose, trapezoidal
philtrum, andmicrognathia without retro-
gnathia. Also noted are small low-set, pos-
teriorly rotated ears, with thickened and
overfolded helix; hypoplastic distal pha-
langes on digits 2, 3, and 4; 5th finger
with brachyclinodactyly; and persistence
of fetal finger pads on the 3rd and 4th
digit. Individual 8: at the age 8 years
9 months, noted to have thin philtrum,
bulbous nasal tip, and 5th finger with
brachyclinodactyly. Individual 13: at
4 years old, no facial dysmorphism noted.
Individual 18: at 4 years and 3 months,
with bulbous nose tip, thick alae nasi and
anteverted nares, prominent cupid’s bow
and philtrum, long mentum of the chin,
and simple ears. Individual 31: with epi-
canthus inversus, smooth philtrum, thin
vermilion border of the upper lip, and
sparse lateral eyebrows.
mutations (expected �0.038 per 10,000; p < 2.2 3 10�16).

If we further restrict the analysis to the three largest

cohorts, each of which included more than 5,000 pro-

bands, the observed enrichment remains highly signifi-

cant (nine de novo LGD variants among 33,831 total pro-

bands; p ¼ 2.48 3 10�14). We acknowledge that there are

limitations to comparing results from ExAC to a clinically

ascertained cohort, particularly when one undertakes a

genotype-first approach by actively searching for singleton

cases with variants in NAA15 by using different

sequencing platforms and coverage levels.18 However,

the average coverage for NAA15 in ExAC and gnomAD

databases is 473 versus approximately 203 coverage levels

provided by clinically offered exome tests, suggesting that
988 The American Journal of Human Genetics 102, 985–994, May 3,
the increased number of LGD variants in the current study

is not due to higher exon coverage levels in clinical

sequencing. Only six LGD variants in NAA15 are reported

in ExAC (Table S5), and 11 NAA15 LGD variants are re-

ported in the Genome Aggregation Database (gnomAD)

(Table S6). Two of the variants that are recurrent and

de novo in our research cohort (c.239_240delAT [p.His

80Argfs*17] and c.228_232delCTTGA [p.Asp76Glufs*20])

are present one time each in ExAC (and also duplicated

in gnomAD, given that gnomAD includes many variants

from ExAC). It should be noted that phenotypic informa-

tion as well as the variant inheritance are not available

on these individuals in ExAC or gnomAD. Given that the

three parents in the inherited families (families 10, 22,
2018



Figure 2. Exonic Localization of NAA15
LGD Variants Identified in Subjects in
This Study
Schematic representation of the genomic
structure of humanNAA15. Solid blue rect-
angles indicate exons, and the horizontal
bars represent introns. NAA15 variants
with their relative positions in the gene
are shown, and the number of affected
individuals with the specific variants is
shown in parentheses.
and 28) were only mildly affected, it is possible that such

individuals could be found in cohorts such as ExAC or

gnomAD. A recent study showed that �2.8% of the

ExAC population is associated with possible disease-associ-

ated genotypes,19 and it is well-known that genetic back-

ground can influence the expressivity of any given variant.

We sought to confirm whether any of the LGD variants

might trigger nonsense-mediated decay (NMD) of the

respective mutant RNA. For this, we made use of two

research-subject-derived cell lines, including one lympho-

blastoid cell line (LCL) from individual 10-1 (c.239_

240delAT) (Figures 3A–3C and Supplemental Methods)

and one induced pluripotent stem cell (iPS) line from indi-

vidual 19 (c.1009_1012delGAAA) (Figures 3D–3F). Quanti-

tative RT-PCR with primers 30 to the mutation demon-

strated approximately 50% decreased total RNA in one

cell passage from the LCLs from individual 10-1 in compar-

ison to three control LCLs (Figure 3C, left panel), whereas

the same assay (Figure 3F, right panel) and an additional

Taqman assay (Figure S3) showed more variability in total

RNA isolated from three different passages of the iPS line

from individual 19 than from one control iPS line and a

control human embryonic stem cell (hESC) line. Nonethe-

less, RT-PCR with primers spanning the mutation sites,

followed by Sanger sequencing, did demonstrate substan-

tially reduced mutant transcript in the LCL from individ-

ual 10-1 (Figure 3B) and almost complete absence of the

mutant transcript in three different passages of the iPS

line from individual 19 (a representative result from

passage 16 is shown in Figure 3E). This reduction most

likely occurs because the variant transcript is targeted for

degradation via the nonsense-mediated decay (NMD)

pathway.20

We further explored the functional effects for two of the

other LGDs in a yeast assay in which the human NatA

complex can functionally replace yeast NatA, as shown

by complementation of growth phenotypes21,22 and

partial rescue of the NatA-specific Nt-acetylome.23 Mutant

NAA15 (p.Thr55Hisfs*2 [c.163delA] from family 2 and

p.Lys305* [c.913A>T] from family 18) failed to rescue the

temperature-sensitive growth phenotype of yNatAD

(Figure 4A and Tables S7, S8, and S9), suggesting that the

two variants lead to reduced or abolished NatA activity,

at least as assessed in this heterologous system. We further
The Ame
verified human NatA expression in the yNatA deletion

strain by immunoblotting (Figure 4B) against the HA

epitope that was incorporated N-terminal to NAA15. In

the context of overexpression from a plasmid, we detected

both full-length HA-NAA15 and HA-NAA15 p.Lys305*, but

not HA-NAA15 p.Thr55Hisfs*2, suggesting that the mRNA

for HA-NAA15 p.Thr55Hisfs*2 is most likely undergoing

complete NMD and/or that this truncated mini-protein is

unstable, whereas truncated mini-protein HA-NAA15

p.Lys305* can be expressed in this system but nonetheless

does not provide functional rescue.

Distributed throughout the entire gene ofNAA15, the 25

LGD variants we reported here are predicted to undergo

NMD, leading to degradation of the mutant mRNA and

thus loss of the aberrant protein product. Expression

analysis from research-subject-derived lymphoblast cells

or IPSCs confirmed under-representation of the mutant

transcript in cDNA. In addition, the functional deficiency

of human mutated NAA15 was further supported by the

growth rescue experiment in the yeast NatA-deficient

strain, in which mutant human NAA15 failed to restore

the growth-deficiency phenotype. In light of these results,

we propose haploinsufficiency of NAA15 as the most likely

mechanism for this newly recognized disease, although we

readily acknowledge that some of the LGDs might not

trigger complete NMD or might do so differentially in

different tissues, leaving open the possibility for expres-

sion of a truncated NAA15 protein, which could possibly

act via a dominant-negative or gain-of-function mecha-

nism in some individuals. De novo missense variants

(c.1014G>T [p.Lys338Asn] and c.841G>C [p.Glu281Gln])

have been previously reported in two individuals with

autism and intellectual disability, respectively;24,25 how-

ever, the deleterious effect of these missense variants has

not been established and so will also require further func-

tional studies, segregation in families, and/or proof of

recurrence in multiple affected individuals. Further sup-

porting our postulated mechanism of haploinsufficiency,

when we searched the DECIPHER database26 and our clin-

ical cohorts for individuals with small microdeletions

involving NAA15, the smallest deletion we could find is

in a 31-year-old man carrying a de novo 2.73 Mb deletion,

including NAA15 and 17 other predicted genes. This man

was noted as having mild intellectual disability, mild
rican Journal of Human Genetics 102, 985–994, May 3, 2018 989



Figure 3. Expression Analysis ofNAA15 in
Research-Subject-Derived Cell Lines
(A and D) Sanger sequencing of genomic
DNA (top panel) and reverse-transcribed
cDNA (bottom panel) isolated from a lym-
phoblastoid cell line (LCL) of individual
10-1 (c.239_240delAT) (A) and an induced
pluripotent stem cell (iPS) line (passage 16)
of individual19 (c.1009_1012delGAAA) (D).
(B and E) Quantification of different cDNA
species from cDNA Sanger sequencing
showing the relative ratio of WT NAA15
versus c.239_240delAT (LCL line) (B) and
(c.1009_1012delGAAA) (passage 16 iPS
cell line) (E).
(C and F) NAA15 mRNA expression level
analyzed by qPCR in research subject-
derived cell lines (at passage numbers
p10, p13, and p16), as compared to control
cell lines (at passage 16). Error bars are
standard deviation (SD), and the assay
was performed three times per sample.
dysmorphic features, motor delays in childhood, a low

birth weight (�2SD), and adult height, weight, and head

circumference all at the 10th centile (Figure S4). He has

poor vision as a result of cortical visual impairment

(CVI), which was not reported (but also not formally

screened for) in any of the above reported individuals

but which was found in some of the individuals with

NAA10 mutations.27 It is also possible that his CVI could

be due to some other missing gene in the CNV interval.

There are currently 18 large heterozygous CNV deletions,

including NAA15 in the DECIPHER database;26 these dele-

tions range in size from 3.27 Mb to 24.30 Mb, and many

are noted to be associated with global developmental delay

or intellectual disability, supporting the case for haploin-

sufficiency of at least some of the genes in these CNV

intervals. One individual with a de novo 5.2 Mb deletion

died from a sudden cardiac event at the age of 35 (see

Supplemental Case Reports).

Human NAA15 encodes an 866 amino acid (�105 kDa)

protein, NAA15, containing tetratricopeptide repeat

domains and a putative bipartite nuclear localization

signal.28 Many studies have shown that NAA15 acts as
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the auxiliary subunit binding with

the catalytic subunit NAA10 and

localizes it to the ribosome, where

this complex (named the NatA com-

plex) serves as an N-terminal acetyl-

transferase (NAT).29 This complex is

evolutionarily conserved from yeast

to vertebrates,23 and the X-ray crystal

structure of the 100 kDa holo-NatA

complex from Schizosaccharomyces

pombe shows that the NatA-NAA15

auxiliary subunit contains 13 tetratri-

copeptide motifs and adopts a ring-

like topology that wraps around the
NatA-NAA10 subunit, an interaction that alters the

NAA10 active site for substrate-specific acetylation.30

Mutation or loss of the NatA subunits in yeast (Saccharo-

myces cerevisiae) or human HeLa cells results in inhibited

cell growth, cell apoptosis, and failure to enter the G0

phase in the cell cycle.31,32 Nat1 (ortholog of NAA15)

knock-down flies have impaired locomotor activity and

early adult lethality.6 NAA10 and NAA15 are both highly

expressed in regions of cell division and migration during

brain development and are downregulated as neurons

differentiate in early postnatal development.33,34 NAA15

has been shown to be expressed at low levels in most adult

tissues (e.g., nervous system, heart, and reproductive sys-

tem) (see GTEx Portal). However, RNA-seq data from

human brain tissue suggests that upregulation of NAA15

occurs in utero at eight weeks after conception and is

developmentally downregulated thereafter, the highest

expression being in the occipital neocortex and anterior

cingulate (medial prefrontal) cortex (Figures S5A and

S5B), supporting a role for NAA15 in development of the

nervous system. Similarly, in mice, upregulated expression

of NAA15 has been shown in regions of neuronal



Figure 4. Truncation Mutations of Hu-
man NAA15 Impair NatA Function and
Yeast Viability
(A) Serial dilution spot assay depicting the
sensitivity of human NAA15 Thr55Hisfs*2
and Lys305* mutants to increased temper-
ature in a ynaa10D, ynaa15D double-dele-
tion background (yNatAD).
(B) Confirmation of human NatA expres-
sion by immunoblot analysis with anti-
hNAA10 and anti-HA (for HA-hNAA15
detection) along with anti-beta Actin as a
loading control.
migration, and proliferation in the neonatal mouse brain

has been shown along with reduced expression as neurons

differentiate during early postnatal development.33,34

Genetic defects in NAA10, which is X-linked and

encodes another member of the NatA complex, are associ-

ated with Ogden syndrome (MIM: 300855), Lenz micro-

phthalmia (MIM: 309800), and intellectual disability

(with variable cardiac involvement).27,35–39 In the case of

Ogden syndrome, a total of eight boys from two families

had a distinct combination of dysmorphology, hypotonia,

global developmental delays, cardiac anomalies, cardiac

arrhythmias and cardiomegaly, and the identical missense

mutation segregated in multiple affected individuals in

two unrelated families.40 Different variants in NAA10

have been reported, sometimes with only a mild intellec-

tual-disability phenotype in heterozygous females, but

also sometimes with hydrocephaly, supernumerary verte-

brae, congenital heart defects, and arrhythmias, which

are always more severe in the males.9,27,35–37 Although

developmental delay and/or intellectual disability might

be the only presenting feature, the additional cardiac,

growth, dysmorphic features and other findings vary in

type and severity. For the one family in which affected

members had Lenz microphthalmia syndrome and a

splice-site variant in NAA10, and in which proband-

derived fibroblasts lacked expression of full-length

NAA10 and displayed a cell-proliferation defect,41 it is

not known why this family alone has such a dramatic

ocular phenotype, although it is worth noting that 9/13

(69%) of the female subjects reported with missense vari-

ants in NAA10 had some milder form of eye anomalies,

including astigmatism, hyperopia and/or myopia.27 Most

studies have reported that missense mutations in NAA10

decrease the enzymatic function of NAA10 and/or decrease

its binding to NAA15.21,22,27,35,39,40

In total, the presentations involving NAA10 and NAA15

appear to have phenotypic overlap but variability, and

as such should be referred to more broadly as ‘‘NAA10-

related syndrome’’ and ‘‘NAA15-related syndrome.’’ The

extensive phenotypic variability is most likely related to

genetic background differences and also to the spatial

and temporal tissue-specific acetylation of a few N-termi-

nal acetylation substrates by the NatA complex, although

there are also suggested N-terminal acetylation (NTA)-
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independent functions for NAA10.38,42 In the past few

years, the first instance of NTA with relevance to cardiac

function was reported and involved NTA of the cardiac

voltage-gated sodium channel, Nav1.5, in tissues from in-

dividuals with end-stage heart failure.43,44 Indeed, protein

quality control is of major relevance in heart failure.45

Also, a 2015 study linked NTA and N-end-rule degradation

to blood pressure regulation46,47 and demonstrated that

N-terminal mutants of Rgs2, a key G-protein regulator,

are differentially processed by NATs and the two branches

of the N-end-rule pathway, leading to an imbalance in the

signaling governing blood pressure. In regard tomore com-

mon diseases and basic biology, there is emerging evidence

that NTA of proteins are overexpressed or otherwise dysre-

gulated in a variety of cancers, including lung, prostate,

and liver cancers.48–54 NTA has been linked to neurodegen-

erative diseases such as Parkinson, Alzheimer, and

Huntington disease, and NatA/NAA10 has been shown to

contribute to the regulation of amyloid b-protein genera-

tion, to modulate the stabilization of Sup35 amyloid for-

mation, and to prevent aggregation of Htt,55–60 supporting

the importance of NTA in the progression of these diseases.

Current findings link NTA to degradation of some proteins

via Ac/N-degron-mediated recruitment of specific ubiqui-

tin ligases.47,61–64 NTA might also influence protein-

complex formation, as exemplified by the NEDD8 ligation

enzymes,65 along with prion formation.60 Also, protein-

specific targeting to membranes of the nucleus,66

Golgi67,68 and lysosomes69 was shown to require NTA,

but a general role in targeting is not supported. 39,40,70

In conclusion, we propose that disruption of NatA com-

plex functionality can cause developmental disorders with

variable expressivity. Future identification of additional

affected individuals and studies in model organisms will

be required if we are to continue to refine the clinical

phenotype and determine the underlying mechanism

whereby reduced expression or perturbed function of

NAA15 results in these phenotypes.
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Supplemental Data include Supplemental Case reports, Figures
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