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We present a hierarchical genome-assembly process (HGAP)  

for high-quality de novo microbial genome assemblies using 

only a single, long-insert shotgun DNA library in conjunction 

with Single Molecule, Real-Time (SMRT) DNA sequencing.  

Our method uses the longest reads as seeds to recruit all  

other reads for construction of highly accurate preassembled 

reads through a directed acyclic graph–based consensus 

procedure, which we follow with assembly using off-the-shelf 

long-read assemblers. In contrast to hybrid approaches,  

HGAP does not require highly accurate raw reads for error 

correction. We demonstrate efficient genome assembly for 

several microorganisms using as few as three SMRT Cell zero-

mode waveguide arrays of sequencing and for BACs using  

just one SMRT Cell. Long repeat regions can be successfully 

resolved with this workflow. We also describe a consensus 

algorithm that incorporates SMRT sequencing primary quality 

values to produce de novo genome sequence exceeding 

99.999% accuracy.

Determining the genomic sequences of microorganisms is a  
prerequisite to understanding their biology, rationally manipu-
lating their function, tracing their history and geographical dis-
tribution, and—in the case of pathogens—developing effective 
treatments1–3. Sequence information can be obtained rapidly  
and cost-effectively using second-generation sequencing tech-
niques, and differences between isolates can be detected by com-
paring sequence reads to related reference strains4. However, 
this information provides an incomplete view into the genomes 
of microorganisms under study because it is restricted to what 
is known for the reference strain that is used for comparison. 
Certain aspects of microbial diversity, including large-scale 
structural rearrangements, segmental duplications or inver-
sions, and horizontal transfer of mobile elements such as phages 
and plasmids, can be overlooked by these types of resequencing 
approaches because the sequence reads that do not align to the 
chosen reference genome are removed from consideration. In 
many cases, it is those sequences that provide critical insights 
into what makes certain bacterial strains different from their  
reference strains5–8.

Nonhybrid, finished microbial genome assemblies 
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Obtaining the complete genome sequence of microbes in an 
automated, high-throughput manner has been challenging5,9,10. 
Because of the short read lengths in second-generation sequencing 
methods, long repeats present in multiple copies often cannot be 
resolved, resulting in unfinished, fragmented draft assemblies11. 
Gaps in draft genome assemblies can also be caused by extreme 
sequence contexts such as GC- or AT-rich regions or palindromic 
sequences, both of which are frequently not covered by second-
generation sequencing methods. Because of these limitations, 
Sanger sequencing has typically been used to ‘finish’ microbial 
genomes, but the laborious and low-throughput nature of this 
process make it slow and expensive. Therefore, efficient methods 
for finished, high-quality de novo genome determinations that do 
not rely on assumptions about the DNA sample under study are 
highly desirable for capturing the complete genetic constitution 
of microorganisms in an unbiased, hypothesis-free manner.

Recently, SMRT DNA sequencing (Pacific Biosciences) has 
been used to generate sequencing reads that are much longer than 
second-generation or even Sanger sequencing reads, facilitating 
de novo genome assembly and genome finishing12,13. For typical 
bacterial genome sizes (1–10 megabases (Mb)), hybrid assembly 
approaches that use the long SMRT sequencing reads in conjunc-
tion with shorter reads (from SMRT circular consensus sequenc-
ing reads or second-generation sequencing methods) have been 
used to generate finished, high-quality genome assemblies in 
automated workflows14–16. In these hybrid strategies, the short 
reads are used to correct errors in the long SMRT sequencing 
reads; the corrected long reads are then subjected to a kilobase-
read, overlap-based assembler. Although these strategies have 
been applied successfully to a variety of microbes and eukaryotic 
organisms, hybrid assembly requires the preparation of at least 
two different sequencing libraries and several types of sequencing 
runs (and sometimes multiple sequencing platforms). For more 
efficient genome closing, a homogeneous workflow requiring only 
one library and sequencing method is desirable.

Hybrid assemblies are known to break in regions with insuf-
ficient second-generation sequencing data coverage (owing  
to the GC or sequence context biases mentioned above). For  
those regions, it was found that a consensus established from  
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the SMRT sequencing reads mapping to these uncovered regions 
could be used to span them and thereby connect more contigs15—a  
process that can be implemented in the latest version (7.0) of  
the Celera Assembler.

Extending this principle genome wide, we reasoned that we 
could leverage the long reads, lack of bias and high consensus 
accuracy due to the random nature of errors in SMRT sequenc-
ing to generate finished genomes using long insert–library SMRT 
sequencing exclusively. To achieve this, we developed a consensus 
algorithm that preassembles long and highly accurate overlapping 
sequences by correcting errors on the longest reads using shorter 
reads from the same library. We describe a nonhybrid HGAP 
that implements this approach in a fully automated workflow, 
and we demonstrate the de novo construction of several micro-
bial genomes into finished, single-contig assemblies. We evaluate 
the performance of the method on several bacterial genomes for 
which Sanger and 454 (Roche) sequencing were used to generate 
reference sequences, finding that the de novo assembly is collinear 
with these references and >99.999% (quality value (QV) of >50) 
concordant. We also show that HGAP can be used to sequence 
and effectively assemble BACs containing sequences that can be 
problematic for second-generation approaches.

RESULTS

Hierarchical genome-assembly process workflow

The principle (Fig. 1) and workflow (Fig. 2) of HGAP consist of 
several well-defined steps. (1) Select the longest sequencing reads 
as a seeding sequence data set. (2) Use each seeding sequence 
as a reference to recruit shorter reads, and preassemble reads 
through a consensus procedure. (3) Assemble the preassembled 
reads using an off-the-shelf assembler that can accept long reads. 
(4) Refine the assembly using all initial read data to generate the 
final consensus that represents the genome. Optionally, minimus2 
or similar tools can be used to connect the contigs from step (3) 
to further improve the continuity of the assembly and remove 
spurious contigs due to assembly or sequencing errors17,18.

The preassembly step converts long raw SMRT sequencing 
reads into high-quality sequences that can be used with exist-
ing long-read assemblers. It is based on alignment and map-
ping between raw reads in combination with a directed acyclic 
graph–based consensus step to remove randomly distributed 
deletion and insertion errors. It is conceptually akin to a mini-
assembly process to generate highly accurate preassembled 
reads. In addition, low-quality and chimeric sequence reads are 
removed during this process. In contrast to hybrid approaches, 
HGAP does not require highly accurate raw reads for  
error correction.

Details of each analysis step are described in the Online 
Methods. The technical algorithm and implementation details 
are provided in Supplementary Note 1.

Application to Escherichia coli
To evaluate HGAP, we first applied it to E. coli K-12 MG1655, 
for which a high-quality reference sequence had previously been 
generated by Sanger sequencing (NC_000913.2, genome size 
4,639,675 base pairs (bp))19. We prepared and sequenced a single 
~8.5-kilobase (kb) SMRTbell library (Fig. 2) using eight SMRT 
Cells, which yielded 461 Mb of sequence from 141,492 continuous 
long reads, with a typical average read length of 3,257 bp. The data 

were then subjected to the HGAP method (the optional cleanup 
by minimus2 or similar tools was not used in this study to show 
the unaltered output of HGAP).

The availability of a high-quality reference allowed us to char-
acterize the algorithm at each assembly step. First, we examined 
the length and accuracy of the seed reads by aligning each read 
longer than the 6-kb cutoff to the reference sequence (Fig. 2  
and Supplementary Fig. 1a). We found that 17,726 seed reads 
representing ~140 Mb of total sequence fulfilled this criterion 
and had an average aligned read length and single-pass accu-
racy of 7,213 bp and 86.9%, respectively. The aligned read length  
was shorter than the overall mean seed read length (8,160 bp) 
because, for some reads, lower-quality regions or chimeric reads 
did not align.

In the preassembly stage (see Online Methods), the seed reads 
were converted into 17,232 highly accurate preassembled reads 
with a mean length of 5,777 bp and a mean accuracy of 99.9% (Fig. 2  
and Supplementary Fig. 1b). The drop in read length is due to 
end trimming and filtering of spurious and chimeric reads. About 
30%–35% of total bases are typically removed during preassembly 
as a function of the mapping and trimming parameters, but these 
parameters can be further optimized to improve the yield and 
length distribution in future implementations of HGAP.

Subjecting the preassembled reads to the Celera Assembler 
yielded one 4,656,144-bp contig representing the E. coli genome 
and a spurious small 7,589-bp contig (aligning to positions 
2,393,788–2,401,380 of the reference with 99.96% identity).  
A genome-wide alignment showed that the assembly spanned the 
entire E. coli reference and was collinear with it (Fig. 2; see Table 1  
for final assembly statistics and Supplementary Table 1 for 
detailed statistics). The Celera Assembler assumes the genome 
to be linear, so the assembly was slightly larger (100.35%) than 
the reference because the ends of the single contig that cover a 
genome can have overlaps. These overlaps can be trimmed manu-
ally on the basis of the sequence identity of the overlapping end 
regions (data not shown) to give a finished genome sequence that 
is the same size as the reference sequence.

The consensus accuracy of the assembly was evaluated 
with genome-wide alignments using the MUMmer package20 
(Supplementary Note 1). Because not all potential sequencing 
errors are removed in the preassembly step, it is likely that the out-
put from the Celera Assembler still contains some errors. To evalu-
ate the effect of the Quiver consensus algorithm on the final quality 
of the assembly, we compared the reference concordance before 
and after the Quiver consensus step (Supplementary Table 1).  

Construct
preassembled
reads

Assemble
to finished
genome

Long reads

Preassembled
reads

Longest 
‘seed’ reads

Genome 

Figure 1 | Principle of the hierarchical genome-assembly process using 
long-insert-size DNA shotgun template libraries with SMRT sequencing. 
The longest reads are selected as ‘seed’ reads, to which all other reads 
are mapped. A preassembly is performed that converts the seed reads 
into highly accurate preassembled reads that are used for the genome 
assembly, which is followed by a final consensus-calling step (not shown).
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Quiver reduced the number of differences with the Sanger-based 
reference from 49 in the initial assembly to 23, corresponding to 
a nominal QV of 53 (99.9995% identity).

Of the remaining 23 differences, 9 point mutations were vali-
dated with PCR-based Sanger sequencing as biological variations 
in the E. coli sample used in this study (Supplementary Table 2). 

Table 1 | HGAP assembly statistics summary for three different microorganisms and one human BAC

SMRT Cells

CLR bases 

(Mb)

Assembly  

size (bp)

Number of 

contigs >10 kb; 

(total)

Assembly  

size relative to 

reference (%) N50

Concordance 

with Sanger 

reference (%) Nominal QV

Genes 

predicted (%) Assembler

Escherichia coli MG1655
8 461 4,656,144 1 (2) 100.35 4,648,564 99.99951 53.1 99.3 Celera
8 461 4,784,874 8 (16) 103.13 4,606,235 99.99937 52.0 99.1 MIRA
6 341 4,701,623 10 (14) 101.34 1,163,944 99.99938 52.1 99.0 Celera
6 341 5,043,988 26 (52) 108.71 455,003 99.99939 52.1 98.6 MIRA
4 232 4,689,701 17 (21) 101.08 392,114 99.99876 49.1 98.2 Celera
4 232 4,807,190 25 (42) 103.61 317,682 99.99906 50.3 97.7 MIRA

Meiothermus ruber DSM1279
4 334 3,098,781 1 100.04 3,098,781 99.99965 54.5 99.3 Celera
4 334 3,134,158 1 (5) 101.18 3,103,747 99.99978 56.5 99.5 MIRA
3 248 3,098,729 1 100.04 3,098,729 99.99958 53.8 99.2 Celera
3 248 3,154,602 4 (7) 101.84 3,101,561 99.99968 55.0 99.3 MIRA
2 170 3,102,769 3 100.17 1,053,479 99.99897 49.9 98.8 Celera
2 170 3,138,573 4 (5) 101.33 3,096,314 99.99939 52.2 99.0 MIRA

Pedobacter heparinus DSM2366
7 485 5,171,533 2 (3) 100.08 2,927,691 99.99959 53.9 99.4 Celera
7 485 5,197,624 1 (5) 100.59 5,164,849 99.99960 53.9 99.3 MIRA
6 408 5,173,388 2 (3) 100.12 2,928,902 99.99969 55.1 99.3 Celera
6 408 5,174,349 2 (3) 100.13 3,511,353 99.99969 55.1 99.3 MIRA
4 274 5,184,825 11 (18) 100.34 1,403,814 99.99944 52.5 98.9 Celera
4 274 5,196,690 15 (22) 100.57 1,258,275 99.99950 53.0 98.6 MIRA

Human BAC (VMRC53-364D19)
1 85 186,053 1 (4a) 100.00 186,053 N/A N/A N/A Celera

For full statistics, see Supplementary Table 1. CLR, continuous long read; N50, N such that 50% of the bases in the assembly are contained in contigs  N ; QV, quality value.
aThe three additional contigs were the result of E. coli contamination.
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Figure 2 | Workflow for the de novo HGAP assembly of E. coli MG1655. Data for steps 3 and 4 are provided for all microorganisms studied in 
Supplementary Figures 1–3. CLR, continuous long read.
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In addition, we observed five local structure variations. SMRT 
sequence reads mapping to all five structural-variation regions 
showed that the long-read data were consistent with the struc-
tural variations inferred from our assembly, indicating that this 
particular strain of E. coli K-12 MG1655 differed from the refer-
ence strain in these regions (Supplementary Figs. 4–8). The high 
accuracy of the final assembly allowed the correct prediction of 
over 99% of all genes present in the organism (Table 1).

Assembly quality

We compared the HGAP assembly to previously described hybrid 
technology–based assembly approaches (Table 2). The assembly 
described here is of the same contiguity as, and has similar accu-
racy to, an approach combining long SMRT sequencing reads with 
two additional Illumina libraries (a 0.2-kb library and an ~3-kb 
jumping library) subjected to Illumina sequencing16.

We also explored assembly quality as a function of different 
amounts of sequencing data (Table 1, Supplementary Table 1  
and Supplementary Fig. 9). With only six and then four SMRT 
Cells worth of data, HGAP returned 7 and 17 contigs above  
0.1 Mb (14 and 21 total), respectively. In all cases, >98.9% of all 
genes were correctly predicted from the assemblies. Therefore, 
for certain applications in which close-to-finished genomes are 
sufficient, it may be more economical to run a smaller number 
of SMRT Cells.

Resolving repeat regions

One of the most important prerequisites for obtaining high-
quality, finished genome assemblies is the resolution of repeat 
regions. Long, exact repeats can cause misassemblies or frag-
mented assemblies if the sequence reads are not long enough  
to span the repeats with unique flanking sequences. For non- 
exact repeats, it is important that sequence reads are correctly 
discerned from different instances of a repeat. This is important 
not only for the assembler to generate correct contigs but also 
for the Quiver consensus algorithm to produce the most accu-
rate sequence: if unresolved or collapsed repeats exist in the 

final genome assembly, the consensus algorithm, which relies 
on unambiguous mapping, might not generate optimum results 
because of collapsed repeats.

We examined HGAP’s capability to resolve repeats by compar-
ing the highly similar rRNA operon repeats in E. coli MG1655. We 
selected two seed reads that correspond to repeat regions within 
positions 2,724,000–2,734,436 and 3,420,825–3,431,015 of the 
reference and have 95.9% identity over 5,404 bp. Four types of 
reads map to each seed read (Supplementary Fig. 10): (i) reads 
that are anchored by unique regions at both ends, (ii) reads that 
are anchored at one end only, (iii) reads that map fully within  
the repeat region and (iv) reads that do not overlap with the  
repeat regions.

Type (i) and (ii) reads are unlikely to be mismapped because 
they have unique flanking sequences. When a repeat is smaller 
than the average read length, most of the reads will be types (i) 
and (ii), generating excellent assemblies and consensus accuracies 
regardless of the similarity to other genomic copies of the repeat. 
In the case of long repeat regions, more reads will be of type (iii), 
for which only real biological differences between repeat copies 
can be used to avoid mismapping. We found that because sequenc-
ing errors were random and did not correlate with the differences 
between repeats, most type (iii) reads still mapped correctly. To 
demonstrate this, we aligned all reads from the two repeat regions 
to the Sanger reference or seed reads (Supplementary Fig. 11) 
and compared alignment scores. Although the two seed reads had 
accuracies of 88.4% and 89.8%, which are below the 95.9% iden-
tity between repeats, the read alignment scores of type (iii) reads 
had sufficient sensitivity to distinguish them and map correctly.

To determine whether errors are more likely to be encountered 
in repetitive regions, we examined assembly quality across the 
rRNA repeats for the E. coli sample. We examined the 22 anno-
tated rRNA repeats with flanking regions (500 bp on both ends). 
The regions ranged from 1.1 kb to 3.9 kb, and some occurred in 
tandem, with similarity from 99.4% (9 differences out of 1,540 bp) 
to 100%. Out of the 54 kb of total sequence, there were only two 
differences between the assembly and the reference, meaning that 

Table 2 | Comparison of the E. coli HGAP assembly of this study to earlier hybrid assembly approaches

Study Method

Illumina library and data 

details PacBio library and data details

Assembly  

size (bp)

Number of  

contigs N50

Reported base 

concordance (%)

Ref. 16 ALLPATHS-LG 239,610,582-bp (2,372,382 
reads), 180-bp-insert paired-
end library; 367,889,95-bp 
(3,955,806 reads), ~3-kb 
jumping library

C1 chemistry 619,784,574 bp 
(409,304 reads)  
Median length = 1,261 bp 
Maximum length = 9,724 bp

4,638,970 1 4,638,970 99.999957  
(2 errors)

Ref. 15 PacBioToCA  
with Celera 
Assembler

22,720,100 reads of 100 bp, 
500-bp-insert paired-end  
library

Data collected with preleased 
instrument 251,762 reads  
Median length = 540 bp  
Maximum length = 3,787 bp

4,465,533 77 89,431 99.99916  
(39 differences)

This study  
(eight SMRT  
Cells)

HGAP with  
Celera  
Assembler

– 10-kb SMRTbell insert, XL/C2 
chemistry 460,967,046 bp 
(141,492 reads)  
Median length = 2,755 bp 
Maximum length = 17,831 bp

4,656,144 2 4,648,564 99.99951  
(23 differences, 

14 errors)

Ribeiro et al.16 used long Pacific Biosciences (PacBio) reads to resolve midrange ambiguities and to fill gaps in an initial short-read assembly that was constructed using a modified de Bruijn 
graph approach. The PacBio library was constructed with shorter inserts and sequenced with an earlier chemistry, and longer-range information was derived from an ~3-kb jumping Illumina 
library. Koren et al.15 used PacBioToCA to correct PacBio reads before assembling with the Celera Assembler. No final consensus was generated using PacBio data, and reads were substantially 
shorter than those from the current study as data were collected using a prerelease instrument and sequencing chemistry. The reference genome size is 4,639,675 bp.
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the repeats were resolved correctly. The assemblies characterized 
by many reads anchored at unique regions contained few errors 
due to paralogous or repetitive regions.

In SMRT sequencing, more data can be collected to increase the 
chances of obtaining reads that span through the longest repeats 
to resolve them. As an example, most contigs in the four–SMRT 
Cell assembly described above (a total of 17 contigs over 10 kb; 
21 contigs total) ended at the rRNA operon repeats. As expected, 
all rRNA operon repeats (~5 kb each) were successfully resolved 
in the two-contig eight–SMRT Cell assembly because the added 
sequencing data provided a greater fraction of long reads that 
cover these regions.

Application to other bacteria

We applied HGAP to two additional microorganisms, both of 
which had previously been sequenced (Table 1).

Meiothermus ruber DSM1279 is a nonmotile, aerobic, ther-
mophilic bacterium isolated from a hot spring (Kamchatka penin-
sula, Russia) with a single replicon and a genome of 3,097,457 bp  
with a GC content of 63% and a repeat content of 1.7% (window 
size of 25 bases)21. We performed SMRT sequencing of an  
~10-kb insert library of genomic DNA from this organism using 
four SMRT Cells and found that three SMRT Cells were sufficient 
to produce single-contig, finished genomes as uncurated HGAP 
output (Table 1). The assembly from four SMRT Cells contained 
one misassembly with respect to the reference, caused by a 7,092-bp 
exact repeat (Supplementary Fig. 12). Notably, when we applied 
the same method to data from three SMRT Cells, the single con-
tig generated by the Celera Assembler agreed with the reference,  
but the start and end of the contig were broken at the second 
repeat copy.

Apart from the single misassembled repeat, the assemblies  
covered the entire M. ruber genome at 99.999% concordance 
with the Sanger-based reference (nominal QV >50), and over 
99% of genes were predicted correctly (Table 1). Quiver improved 
accuracy markedly, correcting 130 bases in the initial assembly, 
predominantly in high-GC homonucleotide stretches. Of the 
residual 11 base differences from the reference, we chose 8 for 
validation by PCR and Sanger sequencing and found that 7 sup-
ported the SMRT sequencing call, which was indicative of biologi-
cal variation relative to the reference rather than of sequencing 
errors (Supplementary Table 3).

Pedobacter heparinus DSM2366 is a motile, aerobic, mesophilic 
bacterium with a single replicon and a genome of 5,167,383 bases 
with a GC content of 42% and a repeat content of 1.5% (window 
size of 25 bases)22. It is the type species of the rapidly growing 
Pedobacter genus within the phylum Bacteroidetes. P. heparinus 
was the first isolated strain shown to grow with heparin as the 
sole carbon and nitrogen source, and it produces several enzymes 
involved in the degradation of mucopolysaccharides. We gener-
ated seven SMRT Cells of sequencing data and used four, six or 
all seven SMRT Cells’ worth of data in the HGAP workflow. For 
six and seven SMRT Cells, we obtained two-contig assemblies 
that contained the entire genome and were over 99.999% con-
cordant with the reference (Table 1, Supplementary Fig. 13 and 
Supplementary Table 4). Only one 6,139-bp-long repeat was not 
sufficiently resolved in the assembly. Similarly to with E. coli and 
M. ruber, we successfully predicted >99% of the genes from the 
P. heparinus assemblies. For this organism, additional Illumina 

sequence data were available, which allowed a comparison of 
the HGAP assembly with previously described hybrid assembly 
approaches (Supplementary Note 2). Our HGAP assembly was 
generally more contiguous, but slightly less accurate, than some 
of the hybrid assembly results.

Using alternative assemblers

To demonstrate the generality of applying preassembled reads 
to a variety of long read–capable assemblers, we compared the 
results of using the Celera and MIRA assemblers (Table 1 and 
Supplementary Table 1). As expected from the similar assembler 
designs, results were alike, in terms of both genome contiguity 
and sequence accuracy. For the seven–SMRT Cell MIRA case 
for P. heparinus, a single contig spanning the entire reference 
was obtained; however, the 6,139-bp repeat was not confidently 
resolved in this assembly (Supplementary Fig. 14), analogously to 
the three–SMRT Cell assembly for M. ruber described above with 
the Celera Assembler. We hypothesize that the greedy nature of 
the heuristic algorithm optimized for speed in the layout stage of 
both Celera Assembler and MIRA might not detect the inconsist-
ent overlaps around the repeats to break contigs accordingly, espe-
cially in cases in which the sequence read lengths are on the same 
order as the lengths of the long repeats. It is possible to investigate 
the underlying overlap information of the DNA fragments used 
by an assembler so that such misassembled contigs can be broken 
properly. The probability of such misassemblies will be reduced 
with longer read lengths, provided that reads spanning unique 
parts on both ends of a repeat region are generated.

De novo BAC assembly

We also explored the utility of HGAP for other de novo assem-
bly applications, including BACs, which are typically several 
hundred kilobases in size. Sanger sequencing of BAC libraries 
is the preferred approach to resolve genomic regions with high 
repeat content and structural variation in complex genomes, 
including the human genome23–25. For this demonstration,  
we chose an ~175-kb BAC (VMRC53-364D19) corresponding 
to a region on chromosome 15 (32,291,106–32,463,964 relative 
to the hg19 human reference sequence). Using a single SMRT 
Cell of sequencing, HGAP produced a correct and accurate BAC 
assembly (Table 1). From the initial 84.5 Mb of sequence, we 
chose reads longer than 3,200 bases as the seed reads (corres-
ponding to 11.8 Mb of total sequence). After preassembly, we 
obtained 1,892 preassembled reads (5,027,597 bases total) with 
an average length of 2,657 bp. After assembly, we obtained four 
contigs of lengths 186,053 bp, 2,690 bp, 2,343 bp and 1,263 bp. 
The largest contig could be circularized and contained the tar-
geted region and the BAC vector sequence; the smaller contigs 
were found to be small fragments of E. coli DNA sequences.  
In the final assembly, we observed 165 single-nucleotide poly-
morphisms relative to the hg19 reference sequence. All of the six 
single-nucleotide polymorphisms that we selected for PCR and 
Sanger sequencing were validated as true biological variations  
(Supplementary Table 5).

DISCUSSION

We have applied the de novo genome assembly method HGAP 
to three microbial genomes and one human BAC. In each case, 
SMRT sequencing of a single, large-insert template library to 
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~80×–100× coverage followed by HGAP analysis resulted in 
excellent de novo genome assemblies that are comparable in qual-
ity and contiguity to assemblies generated by Sanger sequenc-
ing or by hybrid approaches combining long- and short-read 
sequencing methods16. The assembly algorithm developed here 
simplifies the workflow from a microbial DNA sample to the  
finished genome considerably. Previously described hybrid  
technology–based algorithms required at least two separate 
sequencing libraries and sequencing runs, and in certain imple-
mentations, at least two different sequencing technologies14–16. 
Here, only a single, long-insert shotgun DNA library is prepared 
and subjected to automated continuous long-read SMRT sequenc-
ing, and the assembly is performed without the need for circular 
consensus sequencing26.

Whereas the shorter reads from long-insert SMRT sequenc-
ing are discarded in the hybrid assembly approaches, the HGAP 
method described here uses every bit of such sequencing data: the 
longest reads for assembling a contiguous genome, and the shorter 
reads for improving the accuracy of the long reads through the 
preassembly process. Spurious, low-quality and chimeric reads are 
removed as early as possible in the overall genome assembly pro-
cess and therefore do not contribute to artifactual contigs or mis-
assemblies. The final consensus–calling algorithm Quiver, which 
takes into account all of the underlying data and the raw quality 
values inherent to SMRT sequencing, then polishes the assembly 
for final consensus accuracies in excess of 99.999% (QV of >50), 
which are on par with consensus accuracies achieved with Sanger 
sequencing27,28. The algorithm disregards the original assembly 
sequence for consensus calling and thus avoids artifacts caused 
by reference bias. It is worth noting that Quiver can also be used 
for resequencing applications (that is, when reads are mapped to a 
previously determined reference to identify variants), permitting 
variant detection with high sensitivity and specificity.

One prerequisite for obtaining finished, highly accurate 
genomes is the ability of a sequencing technology to generate 
high-quality sequence data over the entire range of sequence 
complexities and GC content present in that organism’s genome. 
Systematic sequencing bias can introduce errors in the final 
genome sequence that cannot be overcome by additional sequenc-
ing coverage. SMRT sequencing has demonstrated excellent  
uniformity of sequence data over the widest range of GC content, 
including high-GC extremes at which other technologies, includ-
ing even Sanger sequencing, fail29. Unbiased sequencing coverage 
allows for straightforward identification of any potential misas-
semblies or discordances with existing references, which appear 
as breaks in the random, shotgun-read structure (Supplementary 
Figs. 4–8). In addition, because sample preparation in SMRT 
sequencing does not include denaturation or amplification steps, 
palindromic sequences can be read successfully with this method, 
whereas they typically cause so-called ‘hard stops’ due to hairpin 
formation that are prohibitive in other sequencing systems30.

Although single-pass accuracies in SMRT sequencing are lower 
than those of other, multimolecule-based sequencing technolo-
gies, the quality of the final genome sequence is determined in 
consensus. The random-error profile in SMRT sequencing and 
lack of systematic bias result in high consensus accuracies, as 
random errors wash out exponentially rapidly when consen-
sus is generated15. In addition, the multikilobase read lengths  
in SMRT sequencing greatly facilitate the correct mapping of  

reads into repetitive regions by spanning the entire repeat 
units and anchoring the reads with unique flanking sequences. 
Difficulty around correctly mapping into repeat regions in 
genomes has been recognized as a source of errors in short-read 
sequencing technologies14,31.

For smaller assembly targets such as BACs, given the current 
overall throughput of >100 Mb per SMRT Cell, it is likely that 
multiplex strategies to sequence pooled BACs could further 
enhance the efficiency of assemblies. Upon careful design of the 
sequencing run, one can potentially assemble all sequences at 
once if no long repeats between the different BACs in the pool are 
present and proper assembly preprocesses—for example, vector 
and E. coli contamination filtering—are included. Alternatively, 
barcoding strategies during library preparation could be used.

Our approach is currently capable of producing near-finished, 
high-quality genomes in terms of contiguity and error rate, and 
it should thereby facilitate closing of the large gap that currently 
exists between drafted and finished genomes32. The workflow 
described here is implemented in a fully automated process from 
DNA sample preparation to the determination of the finished 
genome and, in our hands, has been completed in as few as 4 d. 
In addition, the same SMRT sequencing reads can be used to 
determine the epigenome of the organism under study33. It will 
also be interesting to evaluate the utility of HGAP for the de novo 
assembly of eukaryotic genomes.

METHODS

Methods and any associated references are available in the online 
version of the paper.

Accession codes. The raw data for this study are deposited in NCBI 
Sequence Read Archive under BioProject numbers PRJNA196342 
(E. coli; SRR811719, SRR811720, SRR811743–SRR811747 and 
SRR811770), PRJNA196343 (M. ruber; SRR811863–SRR811865 
and SRR811890) and PRJNA196344 (P. heparinus; SRR811935–
SRR811937, SRR811960–RR811963, SRR812176 and SRR812197).

Note: Supplementary information is available in the online version of the paper.
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Materials. E. coli K-12 MG1655 (NCBI reference sequence 
NC_000913.2, genome size of 4,639,675 bp) was obtained from 
the American Type Culture Collection. DNA was prepared 
from this strain by Lofstrand Labs Limited. M. ruber DSM1279 
(NC_013946.1) and P. heparinus DSM2366 (NC_013061.1) 
DNA samples were isolated from cultures originally obtained 
from DSMZ (German Collection of Microorganisms and Cell 
Cultures). Reference genomes had been generated at the Joint 
Genome Institute by Sanger sequencing (P. heparinus) and a 
combination of Sanger and 454 sequencing (M. ruber) as part 
of the GEBA (Genomic Encyclopedia of Bacteria and Archaea) 
project21,22. The BAC clone VMRC53-364D19 was selected from 
a BAC library constructed by C. Amemiya and corresponds to 
HapMap sample NA12878.

SMRTbell DNA template libraries of ~8- to 10-kb average 
insert size for the bacterial samples were prepared according to 
the manufacturer’s specification, with G-tubes (Covaris) used 
for fragmentation. The BAC SMRTbell average template library 
was generated using a Covaris DNA miniTUBE (Blue for 220 
series, Covaris), resulting in an average insert size of ~3 kb. SMRT 
sequencing was carried out on the PacBio RS according to stand-
ard protocols, with the XL binding kit used in conjunction with 
the C2 sequencing kit for E. coli (1 × 120-min acquisition mode), 
C2 chemistry for M. ruber, P. heparinus (1 × 90 min) and the BAC 
(2 × 45 min). All runs were carried out with diffusion-based load-
ing and analyzed using the standard primary data analysis. Sanger 
validation sequencing was carried out by McLab.

Source codes for an implementation of HGAP and Quiver, 
data sets and additional documentation are available at http://
www.pacbiodevnet.com/HGAP and http://www.pacbiodevnet.
com/quiver. Visualizations were carried out using Tablet34  
and Gepard35.

HGAP workflow details
Mapping. So that all continuous long reads (CLRs) from the 
sequencing data generated by the PacBio RS for HGAP are used, 
the longest reads are selected with a prespecified length cutoff 
to provide the seeds for constructing preassemblies. Typically, 
we target about 20× genome coverage of such seed sequences 
so that a sufficient amount of coverage of preassembled reads 
will be generated for the subsequent assembly. The preassembled 
reads are constructed by aligning all reads to each of the seed 
reads. Each read is mapped to multiple targeted seed reads using 
BLASR36. The number of sequence reads mapping to the seed 
reads is controlled by the “- bestn” parameter when BLASR is 
called for mapping. This number should be smaller than the total 
coverage of the seed sequences on the genome. If the “- bestn” 
number is too high, it is likely that reads from similar repeats will 
be mapped to each other, which could result in consensus errors. 
If the chosen “- bestn” number is too low, the quality of the preas-
sembled read consensus may be decreased. The optimal choice 
might also depend on DNA fragment–library construction, which 
can affect the subread length distribution. Currently, we obtain 
good results by empirically choosing “- bestn” as 12 reads to map 
to the seed reads. Further study will allow a reasonable choice for 
optimized results.

Preassembly. A mini-assembly of reads that are mapped to seed 
reads is now performed. Because the seed sequences are long,  

such mini-assembly can be done simply by an alignment- 
and-consensus step to construct single ‘preassembled reads’ for 
each of the seed reads. In our current implementation for HGAP, 
we use PBDAG-Con for generating the consensus (https://github.
com/PacificBiosciences/pbdagcon). PBDAG-Con uses an algo-
rithm that is based on encoding multiple sequence alignments 
with a directed acyclic graph to find a best path for best con-
sensus37. In general, an algorithm is needed that can generate 
good consensus by eliminating insertion and deletion errors in 
the raw sequences efficiently for this preassembly step38,39. There 
are multiple approaches that can achieve this goal. We find that 
using a graph to represent multiple sequence alignments (MSAs) 
is helpful to effectively remove random insertion and deletion 
errors for generating the consensus from the graph. For example, 
a long stretch of random insertions is typically an isolated path in 
the graph that can be eliminated easily when the optimized path is 
sought as the consensus. The principle of the preassembly step is 
illustrated in Figure 1. The full description of the algorithm used 
in PBDAG-Con is presented in Supplementary Note 1.

Certain sequencing artifacts are removed during this preas-
sembly process: for example, spurious low-quality sequences 
and/or chimeric reads (Supplementary Fig. 15). Generally, this 
involves a few steps of trimming the alignment hits and remov-
ing the regions that do not have a sufficient number or quality of 
reads mapped to the seed reads (Supplementary Fig. 15a). Long 
chimeric sequences can easily confuse an assembly during the 
stage of constructing layouts, and they are typically removed as 
the first step within a genome assembler40,41. The preassembly 
step described here relies on consistent information contained 
in all reads. As these rare chimeric reads are generated randomly, 
the chimera junction in a read will be random, i.e., a chimeric 
seed read would have zero or low coverage through the chimeric 
junction when other reads are mapped to it, shown by example in 
Supplementary Figure 15b. Through this process, a preassembly 
that contains the whole chimeric sequence is avoided. Through 
the early detection and removal of such artifacts, i.e., during the 
preassembly step, the best preassembled reads without artifacts 
are sent to an assembler.

One can think of the preassembly process to combine the reads 
into preassembled reads as an assembly of the shorter reads, using 
the long seeds to provide the overlap and layout information. The 
preassembled read can be seen as the “contig” output of the tra-
ditional overlay-layout-consensus assembler. Therefore, existing 
modularized infrastructure for genome assemblies can be used 
for this preassembly step, for example, AMOS18, to assemble the 
shorter reads to generate preassembled reads for subsequent full-
genome assembly. The details on how to use AMOS for this pre-
assembly step, and the comparison of the final assembly results,  
are provided in Supplementary Note 1 and Supplementary  
Table 1, respectively.

Assembly. After the preassembly step, the resulting preassem-
bled reads typically have read accuracies above 99% (a full evalu-
ation of the preassembly accuracy is presented in the Results). 
Therefore, the preassembled reads can be easily fed into any 
assembler that can accommodate long-read inputs. Typically, 
assemblers that use the overlap-layout-consensus (OLC) strat-
egy are better for assembling such long preassembled reads.  
In this study, we have used both the Celera Assembler42 and 
MIRA (http://sourceforge.net/projects/mira-assembler/) for the 
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assembly process. For both assemblers, we found that the preas-
sembled read accuracy was sufficiently high that we were able to 
use the parameters and configurations originally designed for 
Sanger sequencing reads. In this study, we did not generate quality 
values for preassembled reads. For assemblers that require quality 
values as input, we assigned a uniform phred score of QV 24 for 
all bases in the preassembled reads. We find that assigning such 
an ad hoc QV does not affect the assembly results, as the quality of 
preassembled reads is generally uniform because SMRT sequenc-
ing shows very little quality fluctuations through the reads15. In  
addition, the assembler is used only to generate the genome  
contiguity—the Quiver consensus algorithm (described in detail 
below) is used to determine the final genome sequence.

We have observed that sometimes an assembler will generate 
contigs that can be further connected. We have used minimus2 
to connect them17, although one should use caution and examine 
the result of this post-assembly step to ensure that contigs were 
combined properly and that no valid contigs were dismissed.  
In addition, we have noticed that sometimes contigs are supported 
by only a very small number of reads. A remapping process com-
paring the reads to these contigs can also be used to remove such 
artifacts from the assemblers used. In addition, the assembler will 
often generate overlapping ends on circular genomes that can be 
trimmed manually at the end of the assembly process. This was 
not done in this study so as to highlight the unaltered output 
of the assembler, and it explains the slightly larger numbers of 
assembled genome sizes relative to their references.

Final consensus. Upon obtaining the final result from the long-
read assembler, we apply a new multiread consensus algorithm, 
called Quiver, to generate the best consensus sequence for the 
final genome sequence result. The Quiver algorithm is designed 
to take advantage of the full information from the raw pulse and 
base-call information that is generated during SMRT sequencing. 
During the signal processing, which converts the raw fluorescence 
pulses from a nucleotide incorporation event43,44 into base calls,  
a hidden Markov model informs about the probabilities that these 
events corresponded to true incorporations or spurious base calls. 
The model is therefore specific to a particular SMRT sequencing 
chemistry and requires a training step. Quiver takes this QV-
aware model of SMRT sequencing errors into account and uses a 

greedy algorithm to identify the maximum-likelihood consensus 
sequence corresponding to multiple reads.

The SMRT sequencing reads and the initial de novo assembly are 
the inputs to Quiver; the new consensus sequence and a table of 
corrected variants to the initial reference are its output. The algo-
rithm first uses reference-based alignment to map the reads to their 
corresponding locations in an assembly. After reads are mapped to 
genomic regions, Quiver disregards the assembly sequence and the 
alignment. Thus, within a given genomic region, the consensus is 
computed anew from the reads alone, making it independent of 
fine-scale errors made in the draft assembly and free from local 
reference biases—as consensus bases have a tendency to agree with 
the reference owing to preferential mapping31. Quiver then uses  
a fast heuristic algorithm (partial order alignment37) to generate 
an initial, approximate consensus. All single-base substitution, 
insertion and deletion edits to the approximate consensus are 
tested, and those that improve the likelihood are applied, yield-
ing an improved consensus. This procedure is repeated until the 
likelihood cannot be increased any further. Full details of this 
algorithm can be found in Supplementary Note 1.
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