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The genetic basis of neurodevelopmental and neuropsychiatric

diseases has been advanced by the discovery of large and

recurrent copy number variants significantly enriched in cases

when compared to controls. The pattern of this variation

strongly implies that rare variants contribute significantly to

neurological disease; that different genes will be responsible for

similar diseases in different families; and that the same

‘primary’ genetic lesions can result in a different disease

outcome depending potentially on the genetic background.

Next-generation sequencing technologies are beginning to

broaden the spectrum of disease-causing variation and provide

specificity by pinpointing both genes and pathways for future

diagnostics and therapeutics.
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Introduction
High-throughput genetic analyses, including current

advances in detecting copy number variants (CNVs)

and single nucleotide variants (SNVs), are leading to

an explosion in the number of candidate genes and

genomic regions contributing to neurodevelopmental dis-

ease [1��,2��,3]. This has been accompanied by a change

in focus from a genetic model involving common genetic

variants (>1% frequency) to rare variants of high impact

that are collectively common. CNV analyses, in particular,

have led to the identification of numerous genomic

regions, which, when deleted or duplicated, increase risk

for autism, schizophrenia, epilepsy, and numerous intel-

lectual disability phenotypes. Several themes have

emerged from these and recent genome sequencing

studies. First, every human carries a surprisingly large

number of essentially disruptive mutations that are extre-

mely rare (estimated at 250–300 genes per individual) [4].

Second, for certain neurological diseases there is an
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emerging view that there is an overall increase in the

burden of the most disruptive mutations (i.e. larger

CNVs). Third, dozens of mutations in different regions

and different genes have been identified for seemingly

identical neurodevelopmental disorders. This is in stark

contrast to earlier Mendelian disease models where one

gene was primarily responsible for diseases such as Hun-

tington disease, Duchenne muscular dystrophy, and

familial Parkinsonism. Finally, mutations in the same

gene or seemingly identical large CNVs may result in

very different disease outcomes. Interpretations of these

findings are compounded by the lack of a consensus

phenotyping criteria and the notion of various subtypes

for a given ‘umbrella disorder.’ These observations have

suggested a more complicated genetic model underlying

the etiology of neurodevelopmental disorders. Given

their population prevalence and the cost to the healthcare

system, genetics provides the best prospect to furthering

our understanding of their cause, genetic counseling

options, and eventually improved treatments. In this

review we will highlight the current status of whole-

genome efforts to identify genes and discuss their

implications in the context of a common neurodevelop-

mental model for disease.

Copy number variation in neurodevelopmental
disorders
Genetic linkage analysis and chromosome karyotype

analyses initially played a key role in the discovery of

genes important in neurological disease [5,6,7��,8,9].

Many of these disorders were clinically well-defined

and relatively quite rare facilitating their rapid genetic

delineation. Other more common and complex pheno-

types, including developmental delay, epilepsy, schizo-

phrenia, and autism, in the general sense, have been

genetically more elusive although successful linkage stu-

dies suggested a model where different genetic loci (each

in a different family) contributed to disease. Genome-

wide association studies (GWAS) have identified rela-

tively few common variants of large effect, leading to

increased interest in a rare-variant common-disease

model to help explain the missing heritability [10].

Strong support for this model arose from the initial studies

of large copy number variation of idiopathic cases of

disease [11,12�,13–15]. CNV studies using array compara-

tive genomic hybridization (arrayCGH) or single nucleo-

tide polymorphism (SNP) microarrays identified

numerous large deletions and duplications among

patients with neurodevelopmental disease. While very

few specific loci initially reached statistical significance, a

consistent pattern of increased CNV burden, particularly
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CNV burden and de novo rates. (a) CNV burden becomes significantly

greater at >100 kbp in cases (blue line) of developmental delay when

compared to controls (green). The observed size of a large CNV

(>100 kbp) is linearly proportional (black line) to the odds that it

originates sporadically. We anticipate that this trend (red line) will hold

below 100 kbp (dropping exponentially as it approaches the size of an

indel). In conjunction with an increase in CNV rates for smaller events,

this implies that a significant amount of de novo CNV load remains to be

discovered in the under-ascertained 10–50 kbp range. (b) The relative

number of structural variants (SVs) detected in a normal individual is

displayed as a function of SV size. The number of SVs begins to climb

exponentially below �500 bp reaching on the order of 10 000 events per

person at 50 bp. Conversely, large events are significantly rarer with

500 kbp events detected in only a subset (9%) of individuals. Current

paired-end sequence methodologies lose detection sensitivity above

�10 kbp, while array-based platforms rapidly lose sensitivity below 50–

100 kbp. As a result, CNVs in this moderate size range are under-

ascertained by the majority of methodologies.
for large CNVs affecting multiple genes, was reported.

This heterogeneity meant that sample sizes of a several

hundred patients were insufficient to claim significance at

the individual CNV level. Two studies recently examined

CNVs in some of the largest cohorts (�15 000) of children

with developmental delay and intellectual disability

[1��,2��]. This has led to the discovery of new sites of

potentially pathogenic variation and refinement of the

smallest region of overlap of previously identified loci

[1��]. There are now 59 CNVs corresponding to 39 distinct

genomic regions that show enrichment in CNVs among

cases when compared to controls. The majority are large

(>300 kbp), comprising on average 10–15 genes. Each

CNV locus is extremely rare, with the most recurrent

flanked by segmental duplications, which elevate local

CNV mutation rates as a result of unequal crossover

[14,16,17]. For Intellectual Disability/Developmental

Delay (ID/DD), 25.7% of ascertained cases carry a CNV

greater than 400 kbp in size, compared to only 11.5% of the

control population (Figure 1a) [1��]. It is, thus, predicted

that 14.2% of disease may be associated with large CNVs.

This matches well with the diagnostic yield of 14.7%

described by Kaminsky et al., which also focused on large

CNVs (primarily >500 kbp) [2��], and previous studies

reviewed in Hochstenbach et al., 2011 [18].

Comparisons of CNV burden for different diseases suggest

increasing CNV burden in disorders with greater pheno-

typic severity (defined here in terms of increasing comor-

bid cognitive impairment and congenital abnormalities)

[1��,19�,20]. Cases with congenital malformations demon-

strate the greatest increase in CNVs followed by ID/DD.

Intermediate burdens were observed for idiopathic gener-

ealized epilepsy (IGE), autism spectrum disorder (ASD)

and schizophrenia. While CNV studies for children with

ID/DD show an increase of 14.2% for large CNVs, the

burden is lower for ASD [1��,21,22] with a diagnostic yield

around 6–8% predominantly from de novo CNVs [18,21,22].

Studies of adults with schizophrenia and epilepsy demon-

strate lower diagnostic yields of �5% [11,12�,18,23,24]. For

other neurodevelopmental conditions there is either con-

flicting evidence for increased CNV burden, such as for

bipolar disorder [25,26��], or no evidence, as for Tourette’s

syndrome and dyslexia [19�,20,27]. In all cases burden

statistics are more significant when considering de novo
events exclusively [15,18,21,22,26��].

One possible interpretation of these results is that large

CNVs, by virtue of affecting more genes by way of dosage

imbalance, demonstrate a larger effect size than small

CNVs and SNP variants. Consistent with this obser-

vation, the odds of a CNV being de novo is linearly

proportional to its size with CNVs larger than 1 Mbp

being more likely to arise sporadically than inherited from

a parent (Figure 1a). There is compelling evidence, then,

that CNVs are under strong purifying selection in the

general population [24,26��,28]. Remarkably, as much as
Current Opinion in Neurobiology 2012, 22:829–836 
8–10% of the general population carries such extremely

rare or private CNVs suggesting that they must play an

important role in human health.

Size spectrum of copy number variation
The majority of CNV loci convincingly classified as

pathogenic to date are large (>500 kbp). We posit that

this reflects both a technological limitation and an ascer-

tainment bias as a result of the mutation severity. Afford-

able whole-genome sequencing [29] has revealed a

plethora of uncharacterized genetic variation below the

lower limits of arrayCGH and SNP array platforms, which

rapidly lose genome-wide sensitivity below 50 kbp for

most commercial arrays [30]. The number of CNVs per
www.sciencedirect.com
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individual increases linearly as sizes approach 100 kbp

(closely related to the de novo rate and matching obser-

vations of selection against large CNVs), but then begins

to increase exponentially for CNVs less than 10 kbp in

size (Figure 1b) [31]. This poses a significant challenge in

the study of smaller variants that are more likely to be

inherited (Figure 1a) but present at a far greater count in

any given individual (Figure 1b). Larger, ethnically

matched control populations in conjunction with infor-

mation regarding the inheritance will be required to

assess significance as ‘the haystacks get larger and the

needles become smaller.’

Whole-genome sequencing experiments focus primarily

on detecting SNPs and indels (typically below �20 bp in

length). The analysis of copy number and structural

variation is frequently an afterthought requiring special-

ized and computationally intensive methods [4,29,30]. No

method is comprehensive and each differs in its sensi-

tivity as a function of size and class of CNVs. Read-pair

methodologies, for example, are most sensitive to events

between 40 bp and 1 kbp (depending on library insert

sizes and consistency) [30–33]. Read-depth method-

ologies are powerful for detecting copy number changes

greater than 10 kbp and are dependent on sequence

coverage, which limits the number of genomes that can

be analyzed [29,30,34–37]. This leaves a gap in our
Figure 2
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detection abilities between about 1 kbp and 50 kbp

where performance is suboptimal (Figure 1b).

Despite these challenges, studies are beginning to

approach the gap in genetic variation from both ends.

In addition to point mutations and indels [38��,39�],
exome sequencing data can be used to discover larger

events of potential relevance to disease [40,41]. Similarly,

higher resolution and targeted array studies have ident-

ified numerous candidate CNVs well below 500 kbp [42–
46]. Some recent prominent examples include a small

duplication of VIPR2 in schizophrenia, and focal partial

deletions of TMLHE in ASD [44,47,48]. Smaller CNVs

also confer the advantage of reducing the smallest region

of overlap for large CNV regions, such as the potential

refinement of the 15q13.3 microdeletion to CHRNA7, the

17q21.31 microdeletion to MAPT/KANSL1 [1��], and the

16p11.2 deletion to SEZ6L [49,50,51�]. Importantly, small

CNVs are converging at sites where other events such as

rare point mutations and translocation breakpoints have

highlighted candidate genes. One such example is the

2q23.1 deletion syndrome, which has been associated

with intellectual disability, seizures, microcephaly, and

speech delay. Recently, the minimal region has been fine

mapped via deletions as small as 37 kbp to a single gene

— MBD5 [1��,52–55]. This gene has also been discovered

to contain both a rare mutation and common variants as
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well as translocation breakpoints by sequencing studies of

ID, epilepsy, and ASD (Figure 2) [52,53].

These results hint that smaller CNVs are a promising

direction for future studies complementing screens for

disruptive point mutations by providing stronger priors

for rare singleton mutations in the limited populations

studied. This is especially important given our current

abilities to apply arrayCGH in a clinical and basic research

setting to tens of thousands of individuals, while sequen-

cing is typically restricted to smaller cohorts (hundreds)

for any given disease. Eventually, as we progress to more

affordable sequencing of larger populations, a more com-

prehensive view of all forms of genetic variation will

emerge. Integrating both CNV and sequence data will
Figure 3
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be mutually beneficial in pinpointing the most likely

candidate genes.

A genetic model of neurodevelopmental
disease
An interesting observation to emerge from CNV research

has been the distinction between syndromic CNVs (e.g.

Williams Syndrome deletion at 7q11.23) and CNVs that

are much more variable in their outcome. The 15q13.3

microdeletion, for example, is significantly enriched in

cases of autism, schizophrenia, and epilepsy being found

in as many as 1% of IGE cases but absent in ethnically

matched controls [1��,2��,22–24,56,57�,58,59]. These and

other observations imply that seemingly diverse disease

states may share some common genetic, and perhaps
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A model for neurodevelopmental disease. Two paths are shown

involving either mutation events of singularly large effect (e.g. a de novo

CNV) resulting in disease or rare mutations that compound to lead to

disease of varying severity and expressivity. The intersection of CNV,

indel, and point mutation can be used to readily identify primary genes

where imbalance is sufficient to cause disease. In the second pathway,

multiple events will need to co-exist in an individual to elicit a disease

phenotype. Mutations in both converge on common protein interaction

networks and genetic pathways important in neurodevelopment.
neurodevelopmental, etiology. Moreover, the syndromic

CNVs are most frequently de novo indicating that they are

necessary and sufficient while the variable expressive

CNVs are much more likely to be inherited from less

severely affected parents. This indicates that they are, by

themselves, insufficient to determine disease outcome

[1��,60�]. The mechanisms for this variable expression are

not clear but there is compelling evidence of an oligo-

genic model where multiple rare private variants of

moderate to large effect compound to determine final

phenotypic outcome [52,60�,61]. This model is perhaps

strongest for the 16p12.1 microdeletion. In this case, the

deletions are almost always inherited; developmental

delay patients carrying this microdeletion are significantly

enriched for additional CNVs — so-called second-site

hits; and carrier parents of the 16p12.1 deletion are more

likely to suffer from neuropsychiatric disease than non-

carrier parents for the deletion [60�]. These results

suggest that the 16p12.1 microdeletion creates a sensi-

tized state and that additional modifier loci (i.e. CNVs)

are required to result in a child that is more severely

developmentally disabled.

The implication of this model is both sobering and

exciting. CNV and early genome sequencing experiments

both implicate hundreds to thousands of different genes

underlying various neurological phenotypes [22,39�].
Analyses of candidate genes, however, are beginning to

converge on a subset of protein–protein interaction net-

works or biological processes, many of which are strongly

tied to neurodevelopment [18,52,62,63,64��]. Genes

involved in synaptic function have been repeatedly

shown to play a role in neurological disorders

[62,63,65,66]. Recent studies of ASD have identified

overrepresentation of CNS development genes in

addition to several other pathways [21,65,67]. In our

own recent analysis of 209 exomes from patients with

sporadic autism, we found that 39% of the de novo dis-

ruptive mutations formed a highly interconnected

protein–protein interaction network involving beta-cate-

nin upstream and downstream regulation (Figure 3) [52].

Notably, this pathway was not observed to be enriched in

unaffected siblings and ranked significantly with respect

to other autism candidate genes. Interestingly, several

cases demonstrated multiple disruptive de novo events

within this same network.

Future directions
The development of the human brain is complex invol-

ving thousands of different genes. With respect to dis-

ease, we envision that this process can be perturbed either

by individual mutations of singularly large effect or by a

few disruptive mutations in different genes (oligogenic)

that compound at the molecular level to lead to variable

outcomes with respect to neurodevelopmental disease.

The former mutations are largely sporadic in origin while

the latter are more likely to be inherited. In both cases, we
www.sciencedirect.com 
propose that individual pathogenic or modifier loci are

extremely rare but collectively common in the popu-

lation. Under this model, the focus should be on the

discovery of disruptive mutations in cases that are largely

absent from the general population. The extreme locus

heterogeneity implies that most initial sequencing stu-

dies will be woefully underpowered to prove pathogen-

icity of any given gene [52]. Power will arise from first, the

integration of both CNV and SNV data to triage specific

regions or candidate genes; secondly consideration of

disruptive mutations across different diseases (e.g.

meta-analyses of epilepsy, schizophrenia, autism cohorts,

etc.); and finally, pathway and functional analyses that

converge on specific networks (Figure 4). Once ident-

ified, pathways of clinical significance will become the

target of both better diagnostics and, ultimately, thera-

peutics.
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