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In eukaryotes, chromosomal rearrangements, such as

inversions, translocations and duplications, are com-

mon and range from part of a gene to hundreds of genes.

Lineage-specific patterns are also seen: translocations

are rare in dipteran flies, and angiosperm genomes seem

prone to polyploidization. In most eukaryotes, there is a

strong association between rearrangement breakpoints

and repeat sequences. Current data suggest that some

repeats promoted rearrangements via non-allelic hom-

ologous recombination, for others the association might

not be causal but reflects the instability of particular

genomic regions. Rearrangement polymorphisms in

eukaryotes are correlated with phenotypic differences,

so are thought to confer varying fitness in different

habitats. Some seem to be under positive selection

because they either trap favorable allele combinations

together or alter the expression of nearby genes. There

is little evidence that chromosomal rearrangements

cause speciation, but they probably intensify reproduc-

tive isolation between species that have formed by

another route.

Darwin’s theory of natural selection [1,2], required that
there must be naturally occurring variation among
individuals of a species, and that this variation was stably
inherited from parent to child. However, the nature of this
genetic variation was a mystery until the discovery [3]
that the chromosomes of Drosophila melanogaster and D.
simulans differ by a large inversion in chromosome III.
Then Dobzhansky reported that flies in wild populations
of D. pseudoobscura have numerous gross rearrange-
ments in their chromosomes that are polymorphic
between strains. He realized that these rearrangements
provided crucial evidence for Darwin’s theory because
chromosomal changes can ‘supply the raw materials for
evolution’, thereby enabling populations to evolve rapidly
as environmental conditions change [4].

Common types of ‘gross’ chromosomal rearrangement
(usually several megabases long) can be detected at the
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microscope level and include deletions, inversions, dupli-
cations and translocations (Box 1). Rearrangements often
occur in complex combinations of these basic types.

Advances in molecular biology enabled the detection of
fine-scale changes in chromosomal structure, shifting
researchers’ interest from gross rearrangements to
smaller changes, such as single base pair substitutions
and indels. Recently, with the sequencing of many
eukaryotic genomes, the pendulum has swung back,
bringing a renewed appreciation of how frequently
chromosomal rearrangements occur, and how rearrange-
ment rates vary between species. The rearrangements can
reshuffle genes relative to regulatory elements, delete
several genes or part of a single gene or even duplicate the
entire genome (i.e. polyploidization – associated with
changes in organism size and fitness [5]).
Patterns of chromosomal rearrangement

Fungi

The whole-genome sequences (WGS) of w20 species of
yeasts and filamentous fungi either are, or soon will be,
available. These organisms cover a wide evolutionary range:
the hemiascomycetes are more evolutionarily diverged than
the chordate phylum of the animal kingdom [6]. Within the
fungi, the yeasts (e.g. Saccharomyces clade) represent
excellent subjects for chromosome evolutionary studies.
Saccharomyces, Kluyveromyces and Candida are all
members of the hemiascomycete fungi that adopt, in at
least part of their life cycle, a unicellular or yeast-like form.
Kluyveromyces has a smaller genome than the other two
genera and has 50% fewer chromosomes in its haploid
complement than Saccharomyces [7]. This difference
reflects the whole-genome duplication that occurred in an
ancestor of Saccharomyces some point after it split with the
lineage leading to Kluyveromyces. Candida has a genome
size w30% larger than that of Saccharomyces but, similar to
Kluyveromyces, has only eight chromosomes. (Although a
large-scale genome duplication event might have occurred
in the evolution of Candida, this was a separate and distinct
event to that in the Saccharomyces lineage [7–10]).

It is unclear whether the Saccharomyces duplication was
the result of autopolyploidization or allopolyploidization
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Box 1. Gross rearrangements – a primer

Gross rearrangements are large-scale changes in chromosome

structure between species or between individuals in a species. Large

rearrangements can be seen in light microscope examinations of

chromosomal spreads. Smaller rearrangements can be identified by

genetic mapping or genome sequencing.

Deletions: are the loss of a piece of chromosome, and can range in

size from microdeletions of a few base pairs to the deletion of a

chromosome arm or even an entire chromosome.

Duplications: are the creation of an extra copy of a piece of

chromosome. These are further subclassified into tandem dupli-

cations, in which the copy is adjacent to the original segment and has

the same orientation, and inverted duplications in which the copy is

reversed in orientation relative to the original.

Inversions: occur when a region of the chromosome is flipped ‘head

to tail’ but its position is unchanged.

Translocations: occur when a region of the chromosome moves

from one location to another. The two most common type of

translocation are reciprocal translocations, when two non-homolo-

gous chromosomes exchange chunks of DNA, and transpositions,

when a chromosomal region simply moves from one location to

another without a reciprocal change.

Chromosomal fusions and fissions: occur when two chromosomes

fuse together, forming a single chromosome, or, conversely, when a

single chromosome splits, forming two new chromosomes.

Polyploidization: occurs when the entire genome is duplicated,

doubling or trebling the number of chromosomes. It can be followed

by an evolutionary period in which the genome is gradually reduced in

size, sometimes back to its pre-polyploidization size and chromosome

count, a process known as diploidization. However, the traces of

ancient polyploidization are preserved in the form of multiple copies

of genes. Polyploidization can occur by either autopolyploidization, in

which the genome is duplicated within a single species, or

allopolyploidization, in which the genome is duplicated when two

closely related species cross-hybridize [7–11].
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(Box 1; [8,11]). However, several forces have remodeled the
genomes of Saccharomyces yeasts since this ancient
duplication event and, in other yeast clades, extensive
genome expansions have occurred by segmental rather than
whole-genome duplication [10]. Smaller scale inversions,
translocations and duplications, involving segments con-
taining only a few genes, are also commonin fungal genomes
[9]. For further information on the organisms discussed in
this article, see Table 1.

Invertebrates

The genomes of five invertebrate species have been
sequenced: two nematodes (Caenorhabditis elegans and
C. briggsae) and three arthropods (D. melanogaster,
Anopheles gambiae and Bombyx mori). Most is known
about gross chromosomal rearrangement in Drosophila
because rearrangements are easily detected in the
chromosomes of their giant salivary glands. The most
common type of gross chromosomal rearrangement are
paracentric inversions, which do not span the centromere.
Paracentric inversions are common polymorphisms
within the fly species: different populations of
D. melanogaster alone harbor O500 inversion polymorph-
isms [12]. Most other Drosophila species also have many
known paracentric inversion polymorphisms [13].
Paracentric inversions are also common as fixed
Table 1. Genomes sizes and karyotypes of model organismsa

Species Genome size

Drosophila melanogaster [124] 180 Mb (including heterochromatin)

Anopheles gambiae [125] 278 Mb

Bombyx mori [126] 429 Mb

Caenorhabditis elegans [127] 100 Mb

Caenorhabditis briggsae [16] 104 Mb

Homo sapiens [59,128] 3100 Mb

Mus musculus [56] 2500 Mb

Rattus norvegicus [60] 2750 Mb

Gallus gallus [61] 1100 Mb

Takifugu rubripes [129] 365 Mb

Arabidopsis thaliana [37] 125 Mb

Oryza sativa [130,131] 420–470 Mb

Saccharomyces cerevisiae [73] 12.1 Mb

aThe karyotype is given in terms of the haploid number of autosomes (A) and sex chro
bThe sex chromosome has not yet been identified for Takifugu rubripes.
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differences between fly species [14]. Comparison of the
WGS of D. melanogaster and A. gambiae has revealed
that, although their chromosomal arms have retained
similar gene content since they diverged, numerous gross
and fine-scale paracentric inversions have occurred within
each arm [15]. Thus, the same pattern of frequent
paracentric inversions is seen within Drosophila species
and between Drosophila and other dipterans, such as
Anopheles.

Little was known about the evolution of nematode
chromosomes until recently, when the genome of Caenor-
habditis briggsae was sequenced and compared with that
of C. elegans [16]. As in fly genomes, fine-scale inversions
are common in these nematodes’ genomes (although their
inversions cannot be classified as paracentric because
nematode chromosomes lack localized centromeres). Con-
versely, translocations of whole chromosome arms or small
segments of arms are mysteriously rare in fly genomes,
but have occurred frequently in the Caenorhabditis
genomes – there has been almost one translocation for
every five inversions [16].

Polyploidy is relatively rare in animals (compared with
plants); however hundreds of polyploid invertebrates are
known, including arthropods, nematodes, molluscs and
flatworms [5]. Indeed, two diploid species that have been
chosen for sequencing – the root knot nematode
Number of chromosomes Number of genes

3 A, XY w13 600

2 A, XY w13 600

28 A, ZW w18 500

5 A, X w19 100

5 A, X w19 500

22 A, XY w20 000–25 000

19 A, XY w22 000

20 A, XY w21 000

38 A, ZW w20 000–23 000

22 Ab w31 100

5 A w25 500

12 A w32 000–55 600

16 A 5538 (genes of R100 codons) [132]

5773 [133]

mosomes (X,Y,Z or W)

http://www.sciencedirect.com


Review TRENDS in Genetics Vol.21 No.12 December 2005 675
Meloidogyne hapla and the water flea Daphnia pulex –
have both diploid and polyploid populations in the wild
([17,18]; D. Bird and J. Colbourne, personal
communication).

Vertebrates

With the exception of teleost fish and some amphibian
species [19,20] whole-genome duplications are not a
common occurrence in the recent evolution of most
vertebrate lineages. Most vertebrate genome sequence
analyses, however, support at least one ancient whole-
genome duplication occurring w500 million years ago
(Mya).

Instead, chromosomal rearrangements (including fis-
sions, fusions and translocations) and the differential
expansion of repetitive sequences have been the primary
forces of chromosomal change among the vertebrates [21].
Several studies have revealed numerous short intrachro-
mosomal rearrangements in mammals [22]. For example,
comparisons of the human, mouse and rat genome
sequences uncovered thousands of tiny ‘microrearrange-
ments’, which range from part of a gene or intergenic
region to several genes long. Although a small proportion
of these might be artefacts stemming from errors in the
draft genome assemblies of mouse and rat [22], the
number of intrachromosomal rearrangements observed
is consistent with studies showing that inversions are
common in invertebrate animals [14,16]. Even if we
disregard putative microrearrangements, mammalian
genomes contain far more short syntenic blocks than we
would expect to see if rearrangement breakpoints
occurred at random sites throughout the genome [23].
This has led to the controversial suggestion that chromo-
somal breakages tend to reoccur at ‘fragile sites’ or
‘hotspots’ in mammalian chromosomes [22,24]. This
hypothesis is also supported by evidence that several
other types of rearrangement tend to recur at particular
sites (e.g. movements of centromeres [25,26] and seg-
mental duplications [27–29]).

Plants (angiosperms)

Polyploidization and subsequent diploidization seem to
have a greater role in the evolution of angiosperms than in
other eukaryotes [30]. It has long been suspected that
many angiosperms have undergone polyploidization
events during their evolutionary history [31], and recent
findings suggest that virtually all angiosperms are ancient
polyploids. Early evidence for ancient segmental dupli-
cations in Arabidopsis [32,33], Oryza [34,35] and Sorghum
[36] has been confirmed by analysis of the nearly
completed Arabidopsis [30,37–41] and Oryza [42,43]
genome sequences. In Arabidopsis, there seem to have
been three different episodes of duplication [30,44], but
only 30% of the genes duplicated by the most recent event
(!83 Mya) still retain a duplicate copy. Similarly, in
Oryza, only w21% of genes have retained duplicate copies
since the polyploidization event that occurred w70 Mya
[43,45].

Polyploidization can obscure other types of rearrange-
ment in plant genomes because the loss of different copies
of a duplicated gene in different lineages will lead to
www.sciencedirect.com
incongruities in the comparative maps of plant taxa [45].
However, computer programs can reconstruct the ances-
tral gene order that probably existed before polyploidiza-
tion, thereby enabling the identification of regions of
synteny and colinearity between distantly related plants
[30]. After reconstruction of the ancestral state, we see
striking parallels in the gene order among diverse plants,
which are peppered by many exceptions. These changes in
gene order have arisen because of transpositions of single
genes (generally to positions nearby on the chromosome),
movements of transposable elements (which in some cases
have carried unrelated sequences with them) and diploi-
dization of ancient segmental duplications [46]. Compari-
sons of the sequences of BACs from genomes that have not
yet been fully sequenced have provided further insights
into recent plant chromosomal evolution [46–53]. For
example, analysis of sequenced BACs from a pair of Zea
mays inbred strains that diverged !1 Mya showed the
loss of colinearity in 27/72 (30%) of protein-coding genes,
representing a dramatic rate of genomic change [54].

Dramatic expansion in the genome sizes of plants has
occurred over short evolutionary times as a result of
amplification of rapidly evolving repeat families, without
destroying the underlying synteny [48]. Plant repetitive
DNA seems to be different from that of many other taxa, in
that individual repeat families only have a life span of a
few million years [55]. This is in sharp contrast with
mammalian repeat families: for example, 70% of L1
elements have been retained since humans diverged
from mice 75 Mya [56].

Rearrangement rates

Although difficult to estimate reliably (Box 2), the rates of
genomic rearrangement appear to vary between different
species and can vary significantly throughout the evol-
utionary history of a species.

Invertebrates

The rate of chromosomal rearrangement in invertebrates
is almost twice that in vertebrates: Drosophila has w0.05–
0.07 breakpoints per Mb per million years (Myr) [14],
compared with only w0.03 breakpoints per Mb per Myr in
rodents (including both gross and fine-scale rearrange-
ments [22]). This difference is probably largely because of
life history traits. Drosophila species have a larger
effective population size than rodents (w106 versus
w105), and more generations per year than rodents
(wten generations per year versus wtwo generations
per year [57]). There are also large differences in rate
among other invertebrates. Caenorhabditis has a surpris-
ingly high rate of w0.5–0.7 breakpoints per Mb per Myr
[16], which could be due to an even larger effective
population size and shorter generation time in Caenor-
habditis than in Drosophila. However, chromosomal
rearrangements can be less deleterious in nematode
genomes because nematodes have holocentric chromo-
somes [58].

Vertebrates

The availability of WGS from several vertebrate species
[56,59–61] has provided unprecedented resolution in
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Figure 1. Using chicken as an outgroup, Burt et al. [63] distinguished three phases in

vertebrate chromosomal evolution. During the initial phase (100–300 Mya)

chromosome rearrangement was slow. This was followed by an episode of

elevated rearrangement (65–100 Mya). Since the mammalian radiation, rates have

varied radically in a lineage-specific fashion.

Box 2. Estimating the rate of chromosomal rearrangement

To estimate the rate of chromosomal rearrangement, we can divide

the number of rearrangements that have occurred since two species

diverged by their divergence date. However, genome size and the type

of chromosomal rearrangement vary between lineages, so Ranz et al.

[14] estimated the rate of rearrangement as the number of

chromosomal breakages caused by rearrangements (rather than the

number of rearrangements itself) per Mb per Myr. Each reciprocal

translocation causes two breakpoints, each inversion two breakpoints

and each transposition three breakpoints [121]. Using this approach,

Ranz et al. [14] estimated that fly genomes evolve two orders of

magnitude faster than those of mammals, and at least fivefold faster

than the most dynamic plant genomes, in the Arabidopsis–Brassica

clade.

The calculation of rearrangement rates is fraught with problems.

The scarcity of fossils means that dates must often be estimated using

the unreliable molecular clock assumption, leading to errors in

divergence date estimates (discussed in detail by Graur and Martin

[122]). The estimate of the number of rearrangements can also have

large margins of error, sometimes because of low data quality, and

sometimes because of ascertainment issues. For example, rearrange-

ment rates estimated using genetic maps will miss rearrangements

that are smaller than the spacing between markers. Conversely,

partially sequenced genomes might miss large rearrangements that

are larger than the average contig. When two finished genomes are

compared, assembly errors can incorrectly inflate the apparent

number of rearrangements.

Even when comparing two finished, high-quality genomes, it can be

difficult to accurately estimate the number of rearrangements owing to

inaccuracy in the methods used to detect syntenic regions. A standard

approach is to make nucleotide-level alignments, and to merge

contiguous alignments into larger syntenic regions, but the number

of syntenic regions found depends on the alignment and ‘merging’

algorithms used. Furthermore, estimating the number of rearrange-

ments from a set of syntenic regions is not trivial, because it can be

impossible to distinguish a transposition from overlapping inversions

[123] or a translocation from a fusion followed by a fission event.

Improved methods for finding syntenic regions, and inferring

rearrangements from them, can reduce these sources of error.
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studies of vertebrate chromosomal evolution. For
example, a four-way comparison of the human, mouse,
rat and chicken genomes revealed that rearrangements in
the chicken lineage have been relatively infrequent and
mainly intrachromosomal in nature (Figure 1). A similarly
slow rate of chromosomal evolution was observed in fish,
by comparing gene order in Tetraodon and Fugu to that in
human [61,62]. In contrast to chicken and fish, the rate of
interchromosomal rearrangements in mammals has
accelerated [61]. Rodent lineages, in particular, have
undergone far more rapid evolutionary change than
primates since the two lineages diverged (3.2–3.5
rearrangements per Myr in rodent versus 1.6 rearrange-
ments per Myr in humans). Consequently, the gene order
is more highly conserved between the human and chicken
genomes than between humans and rodents. It is possible
to reconstruct the gene order along the chromosomes of
the ancestral placental mammal with considerable confi-
dence [22,61]. For example, from sequence and compara-
tive mapping data, we know that human chromosomes 3
plus 21; 4 plus 8; 12 plus 22a; and 12 plus 22b were
originally part of larger chromosomes that later under-
went fissions in several mammalian lineages.

Comparative gene maps indicate that the rate of
rearrangement in vertebrates has varied by more than
an order of magnitude during the past 500 Myr [61,63].
Using chicken as an outgroup, Burt et al. [63] distin-
guished three different phases in vertebrates’ chromosome
evolution. During the initial phase (100–300 Mya)
chromosome rearrangement was slow (0.2 fixed
rearrangements per Myr). This was followed by an episode
of elevated chromosomal rearrangement (65–100 Mya),
during which the rate increased to O1.1 rearrangements
per Myr. Since the mammalian radiation, rates have
varied radically in a lineage-specific fashion. In some
lineages (e.g. the human branch), chromosomal
rearrangement has slowed to a crawl (w0.1 events per
Myr), whereas in others (e.g. the New World Monkeys and
hylobatid primate branches), rates of chromosomal
rearrangement have suddenly surged (1.5–2.3 events
per Myr).
www.sciencedirect.com
Plants

The extensive variation in angiosperm genome sizes
makes it challenging to devise rate estimates that are
directly comparable to those of taxa with smaller size
variation. For example, rice and wheat differ by at least 20
major rearrangements; they last shared common ancestry
w50 Mya and have genome sizes of 420 Mb and
w15 000 Mb, respectively. The 40-fold difference in
genome size means that the comparison of rice with
wheat can be used to make two rate estimates that are 40-
fold apart (0.0008 breakpoints per Mb per Myr, or 0.00002
breakpoints per Mb per Myr). This is an extreme case, but
by no means the only one. For example, rate estimates for
the more rapidly rearranging plant genomes, Arabidopsis
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and Brassica, vary by approximately fivefold (0.002 –
0.009 breakpoints per Mb per Myr).
Mechanisms of chromosomal rearrangement

Fungi

Even in the relatively small yeast genomes, there are
several repeated sequences: rRNA genes, tRNA genes,
telomeres, telomere-associated genes and transposons (Ty
elements). These repeated sequences can act as regions of
homology that can promote gene duplication or genome
rearrangement events. For example, recombination
between the long terminal repeats (LTRs or delta
sequences) of two Ty elements on the same chromosome
arm will result in the excision of a chromosomal segment,
which might be subsequently reinserted into another
chromosome through delta!delta recombination. Mating
events could then result in the duplication of the segment
(a so-called chromosome homology region or CHR), with
the gene order frequently being circularly permuted (see
Refs [64,65]). Unequal meiotic crossing-over between Ty
elements located at different sites within a chromosome
arm will produce a duplication-deletion event, with the
chromosome bearing the tandem duplication usually
surviving [66–68].

Repeated sequences can also promote major karyotypic
changes through ectopic homologous recombination
[66,69]. Rearrangements in Saccharomyces cerevisiae are
frequently associated with Ty elements or their LTRs
[70–72]; a survey of interspecific chromosomal transloca-
tions in species of the Saccharomyces ‘sensu stricto’ clade
[70] revealed that the breakpoints were always associated
with repeated sequences, such as Tys, their LTRs or tRNA
genes in the paradigmatic S. cerevisiae genome sequence
[73]. Studies on filamentous fungi also point to a key role
for transposable elements in promoting chromosomal
rearrangements [74,75].
Invertebrates

Several lines of evidence suggest that repetitive elements
also trigger chromosomal rearrangements in invert-
ebrates. Cáceres et al. [76] found compelling evidence
that repetitive elements are responsible for Drosophila
species’ rich inversion polymorphisms, when they
sequenced the breakpoints of the 2j polymorphic inversion
from D. buzzattii. They found that chromosomes carrying
the 2j inversion contained transposon insertions at both
breakpoints, and hypothesized that the inversion arose by
unequal meiotic crossing-over between the two copies of
the transposon. They subsequently sequenced the 2j
region in 39 different flies, and found that the inversion
breakpoints are genetically unstable hotspots that are
rapidly accumulating transposons and other microre-
arrangements [77]. Inversion polymorphisms in D. melano-
gaster and in Anopheles species probably originate by a
similar mechanism [78,79]. There is evidence that
repetitive elements also generate chromosomal rearrange-
ments in nematodes: the breakpoints of translocations
that have occurred since the divergence of C. elegans and
C. briggsae are associated with repetitive elements in the
C. elegans genome (although it is not known which species
www.sciencedirect.com
they occurred in), and most of these rearrangements occur
in the repeat-rich chromosome ends [16,80].

Vertebrates

Similar to fungi and invertebrates, mammalian break-
point regions also tend to be enriched for various classes of
repeats [27,81,82]. For example, breakpoints in conserved
synteny between chicken and mammalian chromosomes
map to repeat-dense centromeric locations [61]. Similarly,
an analysis of conserved synteny between human and
mouse for human chromosome 19 revealed that ten out of
fifteen breakpoint regions examined mapped to clusters of
tandem gene duplications [81].

There is also a striking association between synteny
breakpoints and large segmental duplications. Global
analyses of human and mouse breakpoints have found
that 25–53% of all breakpoints map to regions
of segmental duplication within either species’ genome
[29,82]. This association is equally prevalent among
interchromosomal and intrachromosomal rearrange-
ments. A similar trend is seen among great-ape and
human chromosomes, where sites of chromosome fusion
(human chromosome 2), reciprocal translocation [gorilla
chromosome t(4:19)] and pericentric inversion (human
chromosomes 12, 15 and 18) are enriched for segmental
duplications [83–87].

It is tempting to explain the association of large-scale
rearrangements and segmental duplications by speculat-
ing that such regions promote such events by non-allelic
homologous recombination. However, comparisons among
the mouse, human and rat genomes do not support such a
model [29]. When only rodent or primate lineage-specific
breakpoints are considered, the association between
rearrangement breakpoints and segmental duplications
disappears. In other words, chromosomal rearrangements
and segmental duplications are associated with each other
between different lineages but not within the same
lineage. This suggests that segmental duplications do
not themselves cause chromosomal rearrangements, but
that both are manifestations of the instability of particular
chromosomal regions.

Plants

Inversions of entire chromosome arms are found even in
closely related angiosperm taxa, such as Lycopersicon
(tomato family), Solanum (potato) [88–90] and recently
diverged diploids of the Gossypium (cotton) genus [91,92].
A variety of mechanisms have been proposed to explain
gene gain, loss, inversions and tandem duplications in
plants, including transposition and illegitimate recombi-
nation [46,47,50,51]. Local regions of repetitive DNA, such
as centromeres, have also been implicated in many large-
scale rearrangements. Indeed, the difficulty of detecting
any traces of ancient duplication in the centromeric
regions of both Arabidopsis and Oryza might be due to
the instability of these regions.

Functional consequences of rearrangement

Are chromosomal rearrangements merely a nuisance for
the genome, or do they have functional significance in the
short term (e.g. by enabling a species to adapt to changing
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(a)  Polymorphic inversions in A. gambiae 2R
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environmental conditions) or in the long term (e.g. by
facilitating speciation)?
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Savanna : 2R b or 2R cu or 2R bcu or 2R +

Bamako : 2R jcu or 2R jbcu

Mopti : 2R bc or 2R u or 2R + (standard)

2Rj

2Rl 2Rbk 2Rd

2Rb 2Rc 2Ru

(b)  Inversion genotypes of non-interbreeding populations in Mali

Figure 2. Do chromosomal rearrangements contribute to speciation in Anopheles

gambiae? (a) The main polymorphic paracentric inversions in A. gambiae

chromosome arm 2R [96]. All inversions are based on the standard 2R genotype,

except for inversion 2Rk, which is based on a pre-existing 2Rb inversion. For

example, a chromosome with arrangement 2Rjcu has inversions j, c and u. (b)

Coluzzi et al. [96] observed three non-interbreeding populations of A. gambiae

(named Bamako, Savanna and Mopti) that live in the same region of Mali (shown in

red). The three populations differ by chromosomal inversions that might be

contributing to speciation in A. gambiae.
Fungi

In fungi, chromosomal rearrangements might be expected
to promote speciation by imposing post-zygotic isolation
between strains (each translocation event results in a 50%
drop in spore viability in hybrids of strains with wild-type
and rearranged genomes). However, there is no corre-
lation between the incidence of chromosomal transloca-
tions and the sequence-based phylogeny of Saccharomyces
‘sensu stricto’ species. Instead, it appears that species
arise through another mechanism, although chromosomal
translocations can intensify the reproductive isolation
between species that has already formed by another route
[70]. The problem with such retrospective surveys is that
it is not possible to distinguish the impact on fertility of
genetic differences caused by sequence divergence, from
that of chromosome rearrangements. However, in the
genetically malleable S. cerevisiae, it has proved possible
to separate the contribution of these two factors, using an
interventionist strategy. Delneri et al. [11] inserted loxP
sites into specific regions of S. cerevisiae chromosomes and
mediated chromosome breakage by inducing the Cre
nuclease [93]. Next, they screened for survivors in which
the same chromosomal translocations found in S. mikatae
[70] had been produced in S. cerevisiae. They found, using
inter-specific crosses, that the rearrangement of the S.
cerevisiae genome so that it was collinear with that of S.
mikatae resulted in the elevation of spore viability from !
3% to 20–30% in some zygote clones. Thus chromosomal
rearrangements have a significant, although not domi-
nant, role in the reproductive isolation between yeast
species. Moreover, analysis of the engineered S. cerevisiae
strains [94], and evidence from natural isolates [95],
shows that such chromosomal rearrangements can have
adaptive significance, thus accelerating the speciation
process.
Invertebrates

Coluzzi et al. [96] observed three non-interbreeding
populations of A. gambiae that live in the same region of
Mali (and differ by chromosomal inversions) and specu-
lated that chromosomal rearrangements might be con-
tributing to speciation in the A. gambiae species complex
(Figure 2). This is difficult to prove: even a highly
significant coincidence in time between chromosomal
rearrangements and speciation does not prove a causal
relationship. However, some evidence suggests that
inversions have contributed to speciation between the
close relatives D. pseudoobscura and D. persimilis,
because inversions are found within the genomic regions
associated with hybrid sterility [97]. There are also some
hints that chromosomal inversions might be contributing
to speciation in the apple maggot fly (Rhagoletis pomo-
nella), because genic differences between two reproduc-
tively isolated races of fly seem to be disproportionately
located within inversions [98]. These observations suggest
that chromosomal rearrangements reduce recombination
between the genomes of incipient species, thereby
www.sciencedirect.com
enabling genetic differences to accumulate within the
rearranged regions [99].

Some inversion polymorphisms in Drosophila and
Anopheles species are correlated with seasonal changes
and altitude, and so are thought to confer varying fitness
in different habitats [100,101]. Other Drosophila inver-
sions are associated with variations in body size and shape
[102], whereas A. gambiae has polymorphic inversions
associated with differences in Plasmodium infection rates
[103]. In the Australian grasshopper Keyacris scurra, two
inversion polymorphisms located on different chromo-
somes are associated with differences in body size and
viability (Figure 3; [13]).

At the molecular level, Schaeffer et al. [104] have shown
that some Drosophila inversions are under positive
selection because they keep favorable allele combinations
together. However, at least one Drosophila inversion
seems to be adaptive because it alters the expression
level of a nearby gene [105].
Vertebrates

Among vertebrates, the relationship between chromo-
somal rearrangement and speciation has been the subject
of considerable speculation [106]. The observation that
closely related vertebrate species frequently differ in
chromosome number or morphology (as shown by a
change in the centromere position) might be viewed as
weak, indirect evidence of a cause-and-effect relationship.
Direct evidence, particularly experimental data, is sparse
for vertebrates. Most of the advances in this area have
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Figure 3. The Australian grasshopper Keyacris scurra carries two inversion

polymorphisms. Individuals carrying the nine possible genotypes of these

polymorphisms differ in body size and viability [13]. This is one of the most striking

examples known of an inversion polymorphism with a visible phenotype.
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been theoretical, with a particular emphasis on modeling
the reduced evolutionary fitness of chromosomal hybrids
thought to form as a result of such events. In one model by
Pardo-Manuel de Villena and Sapienza [107], a bias in the
segregation of rearranged chromosomes during maternal
meiosis helped to explain the rapidity with which such
events become fixed. Navarro and Barton [108] argued for
another model (parapatric speciation), in which the
suppression of recombination that results from chromo-
somal rearrangement serves as a genetic barrier that
leads to the accumulation of post-zygotic isolation genes –
genes that have alleles that are compatible within species
but incompatible across species – as suggested for
Rhagoletis. The finding of an increased number of
positively selected genes on rearranged as opposed to
collinear chromosomes between chimpanzee and human
[109] provides some controversial [110,111] support for
this new model of chromosomal speciation. Studies of
natural large-scale structural variation (50 kb–1000 kb)
within the human genome [112,113] suggest that
rearrangements (deletions and duplications) are common
in the human population. It is possible that the deleterious
effects of chromosomal rearrangements and their role in
speciation have been over-estimated and that such
rearrangements might confer a selective advantage on
evolving populations [114,115].
Plants

The exact relationship between chromosomal rearrange-
ment and speciation remains unclear in plants; but, in at
least one example, recombination between two divergent
diploid species appears to have provoked a speciation
event in sunflowers [116]. Although there is little direct
evidence for the impact of gene or chromosomal rearrange-
ments on phenotype in angiosperms, the occurrence (even
in large genomes) of ‘gene-rich’ regions that lack repetitive
DNA [117] might reflect selection against rearrangement
events (e.g. gain of repetitive DNA) near certain genes.
www.sciencedirect.com
Alternatively, repeat-rich regions might arise because the
invasion of a chromosomal region by repetitive DNA tends
to lead to a cascade, as recently activated transposable
elements continually jump into older transposable
elements [55]. That is, the formation of non-random
concentrations of repetitive DNA might leave other
genomic regions ‘gene-rich’ by default rather than by
selection.

A related observation in plants is that quantitative
trait loci (QTLs) are frequently found concentrated in
common genomic regions that affect different traits [118].
Computer simulations have suggested that domestication
can confer a selective advantage to the de novo evolution of
tightly linked combinations of genes or ‘supergenes’ [119].
Rearrangement by mechanisms such as transposition and
illegitimate recombination might increase the opportunity
for such supergenes to form. However, there are several
plausible alternatives to the hypothesis of de novo
evolution of tightly linked combinations of domesti-
cation-related supergenes, such as ancient evolution of
QTL clusters and non-random distribution of allelic
variation [118].

Concluding remarks

Despite 80 years of research, many gaps remain in our
understanding of the mechanisms of both small-scale and
large-scale chromosomal rearrangements and the role
that they have in evolution.

Although there are many similarities among the
eukaryotic kingdoms with respect to the characteristics
of chromosomal rearrangements and their tendency to co-
localize with repetitive DNA and duplicated regions, there
are also significant differences. Polyploidization, a domi-
nant force in the evolution of plants and fungi, occurs far
less frequently in invertebrates, and is a rare event in
most vertebrate lineages. Chromosomal rearrangements
can vary by more than an order of magnitude both within
and between kingdoms, and the rate of rearrangement
within a lineage appears to be a variable that can change
over time. What evolutionary pressures are responsible
for these dramatic rate changes?

Over the next few years, our understanding of these
phenomena will be greatly aided by sequencing deeply
into the evolutionary tree. The National Human Genome
Research Institute (http://www.genome.gov/10002154)
and the US Department of Energy (http://www.jgi.doe.
gov/sequencing) together list w20 fungal species, w40
invertebrates and w25 vertebrates that are in various
phases of preparation for or execution of whole-genome
sequencing. In plants, sequencing is under way for the
maize (http://www.jgi.doe.gov/sequencing/) and Medicago
trunculata (legume) genomes.

This collection of sequenced genomes, together with
those that are already published, will provide us with a
tremendous range of variation in genome size and
rearrangement rate both within and between species.
For example, among the 12 species of the genus
Drosophila scheduled for sequencing are those with
numerous fixed and polymorphic inversions (e.g. D.
willistoni), those with few (D. simulans) and some that
have chromosomes with disparate numbers of inversions
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on different chromosomes (e.g. D. grimshawi [13]).
Analysis of these genomes might reveal why inversions
proliferate in some species and often cluster along
dipteran chromosomes [13,120]. The Drosophila
sequences should also shed light on the evolution of
genome size, which varies from w150 Mb (D. erecta) to
w330 Mb (D. virilis) among the twelve species. In plants,
it will be of great interest to compare the genome of rice, a
450-Mb diploid, with that of maize, an ancient tetraploid
with a repeat-rich 2.2-Gb genome. Another project that is
likely to help elucidate the biology of genome organization
is the Oryza Map Alignment Project (http://www.omap.
org), an effort to develop genome maps of 11 wild relatives
of domestic rice. The collection of species to be sequenced
is evenly split between tetraploids (e.g. O. minuta), and
their diploid relatives (e.g. O. punctata), thereby enabling
multiple independent polyploidization events to be
studied.
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