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ABSTRACT
Background Genomic copy number variants have been
shown to be responsible for multiple genetic diseases.
Recently, a duplication in septin 9 (SEPT9) was shown to
be causal for hereditary neuralgic amyotrophy (HNA), an
episodic peripheral neuropathy with autosomal dominant
inheritance. This duplication was identified in 12
pedigrees that all shared a common founder haplotype.
Methods and results Based on array comparative
genomic hybridisation, we identified six additional
heterogeneous tandem SEPT9 duplications in patients
with HNA that did not possess the founder haplotype.
Five of these novel duplications are intragenic and result
in larger transcript and protein products, as
demonstrated through reverse transcription-PCR and
western blotting. One duplication spans the entire SEPT9
gene and does not generate aberrant transcripts and
proteins. The breakpoints of all the duplications are
unique and contain regions of microhomology ranging
from 2 to 9 bp in size. The duplicated regions contain
a conserved 645 bp exon within SEPT9 in which
HNA-linked missense mutations have been previously
identified, suggesting that the region encoded by this
exon is important to the pathogenesis of HNA.
Conclusions Together with the previously identified
founder duplication, a total of seven heterogeneous
SEPT9 duplications have been identified in this study as
a causative factor of HNA. These duplications account
for one third of the patients in our cohort, suggesting
that duplications of various sizes within the SEPT9 gene
are a common cause of HNA.

Hereditary neuralgic amyotrophy (HNA) is a rare
autosomal dominant disorder characterised by
recurrent episodes of sudden-onset, severe pain,
weakness and sensory impairment, primarily
affecting nerves in a brachial plexus distribution.1

Episodes can last for weeks to months, and are
often followed by residual weakness and sensory
deficits in the affected limbs or muscles. Dysmor-
phic features, including hypotelorism, circumfer-
ential skin folds seen in infants or toddlers, and
cleft palate have also been associated with HNA.2 3

The pathophysiology of HNA is poorly understood.
At least half of the pain attacks are precipitated
by events such as immunisations, infections,
trauma, pregnancy and stress, implying a potential
autoimmune aetiology.4

A locus for HNAwas previously mapped to chro-
mosome 17q25,5e9 and three point mutations were
found in the SEPT9 gene in patients with HNA.10

Two missense mutations reside in a conserved

region of SEPT9, are present in 22% (12/55) of
the families in our HNA cohort and have been
identified in additional cohorts.1 2 5 11 12 In our
initial study, large duplications or deletions in SEPT9
were not detected through microsatellite geno-
typing or semiquantitative PCR analysis. However,
using array comparative genomic hybridization
(CGH), we recently identified a 38 kb intragenic
microduplication within SEPT9 in 12 pedigrees
with HNA that were known to harbor a common
founder haplotype. These pedigrees account for an
additional 22% (12/55) of the families in our
cohort.13

SEPT9 is a member of the large family of septin
proteins that interact with the cytoskeleton,
including microtubules and actin, functioning in
cellular processes such as cytokinesis, motility and
cell polarity.14 SEPT9 produces multiple mRNA
transcripts through alternative 59 splicing.15 The
three longest transcripts, SEPT9_v1, SEPT9_v2 and
SEPT9_v3, produce proteins containing a proline-
rich region and unique N-termini of 25, 18 and 7
amino acids, respectively. The majority of the
proline-rich region is encoded by a 645 bp exon in
which the two missense HNA-linked mutations are
located. Also, the previously published intragenic
microduplication results in an in-frame tandem
duplication of this exon predicted to generate
protein products with two proline-rich regions,
suggesting that this region is important in the
molecular pathology of HNA.
Here, we report six additional HNA pedigrees

(K4001, K4013, K4023, K4032, K4040 and K4045)
containing duplications within the SEPT9 gene.
These duplications are heterogeneous in nature,
varying in size and location. However, all of the
duplications encompass the 645 bp exon, and
lymphoblastoid cell lines from affected individuals
express modified protein products similar to those
previously observed in the founder pedigrees.13

These data further support the hypothesis that
alterations of the proline-rich region of SEPT9 play
a role in the pathogenesis of HNA.

PATIENTS, MATERIALS AND METHODS
Patients
The clinical presentation of HNA patients in this
study was consistent with the classic phenotype
previously reported.3 5 Blood samples were obtained
by venipuncture under a protocol of informed
consent (Human Subjects Division, University of
Washington, Seattle, Washington, USA) that was
approved by the institutional review board.
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DNA sequencing and reverse transcription-PCR
Genomic DNAwas isolated from permanent lymphoblastoid cell
lines established through EpsteineBarr virus transformation and
maintained under standard conditions as previously described.5 16

To identify breakpoint locations, outward facing PCR primers
were designed on either side of the predicted genomic breakpoint
region and the cDNA duplication junction (additional table 1).
Reverse transcription-PCR was performed using Superscript III
polymerase (Invitrogen, Carlsbad, California, USA) and an oligo
dT20 primer, according to the manufacturer ’s instructions.
Junction PCRs were completed for all individuals in the six
pedigrees. PCR conditions consisted of an initial 958C for 2 min,
followed by 35 cycles of 958C for 1 min, 608C for 1 min and
728C for 3 min, with a final extension at 728C for 10 min. Prod-
ucts were sequenced by the DNA Sequencing Facility at the
University of Washington, Department of Biochemistry.

Microsatellite genotyping
Genotyping was completed for all individuals from the six
duplication pedigrees for which DNA was available using eight
short tandem repeat markers (D17s801, D17s802, 7sGT1, GT1,
D17s939, D17s937, MSFtri and 380058) spanning SEPT9 and the
surrounding region, as previously described.5 Reactions were
analysed on an ABI 3130xl Genetic Analyser (Applied Biosys-
tems, Austin, Texas, USA).

Array CGH
Array CGH was performed using a custom oligonucleotide array
consisting of 385 000 isothermal probes (Roche NimbleGen, Inc.,
Madison, Wisconsin, USA) as previously described.13 The array
included 1311 probes spanning a 300 kb region encompassing
the SEPT9 gene (chr17: 72 800 000e73 100 000) with approxi-
mately one probe every 229 bp. DNA from individuals in K4001

Figure 1 Six hereditary neuralgic
amyotrophy (HNA) pedigrees possess
duplications within SEPT9. Pedigrees
for K4001, K4013, K4023, K4032, K4040
and K4045 are shown. Junction PCR
analysis on available samples
demonstrates that the duplication
segregates with disease in each family.
The presence or absence of
a duplication is shown as positive (+)
or negative (�) for each individual.
Circles represent women. Squares
represent men. Filled symbols represent
HNA-affected individuals. Empty
symbols represent unaffected
individuals. Dotted symbols represent
non-penetrant individuals. Cross-
slashed symbols represent deceased
individuals. Question marks represent
individuals for whom no clinical data
was available. Asterisk indicates
individual was genotyped (additional
figures 1 and 2).
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and K4045 were also analysed on a whole-genome tiling array
(Roche NimbleGen) containing 2.1 million probes with a median
probe spacing of 1169 bp.

Western blots
Western blots were completed using lymphoblastoid cell lines
from HNA-affected patients and unaffected family members.
Blotswere probedwith anti-SEPT9 isoforms 1e3 and 5/6-reactive
antibodies or an anti-SEPT9_i1-specific antibody as previously
described.13 17 An anti-actin antibody (Sigma, St Louis, Missouri,
USA) was used as a control to verify equivalent loading.

RESULTS
To date, sequence analysis of SEPT9 in larger cohorts of HNA
families has not identified any additional mutations beyond
those previously reported.10 12 After identification of the founder
duplication, probands from pedigrees lacking SEPT9 mutations
were screened for duplications within SEPT9 using array CGH.
Individuals with HNA in pedigrees K4001, K4013, K4023, K4032,
K4040 and K4045 (figure 1) carried SEPT9 duplications; however,

the size and breakpoints were different in each pedigree, ranging
from approximately 30 to 110 kb in size (figure 2A and table 1).
The duplications in K4001 and K4045 were further characterised
using a whole-genome tiling array as the 59 breakpoints extended
outside the region covered by the custom array (figure 2B). These
duplications were 200 and 330 kb, respectively. The 330 kb
duplication in K4045 included a portion of the gene 59 to SEPT9,
SEC14L1. The smallest common region shared by all of the
duplications encompasses the 645 bp exon in which HNA-linked
mutations have been identified, providing further evidence that
this region is involved in the pathogenesis of HNA.
To identify the location of the breakpoints, PCR was carried

out using primers flanking the array-predicted breakpoint
regions (figure 3 and additional table 1). These breakpoint PCRs
confirmed that the tested individuals in each pedigree have
tandem genomic duplications similar to that observed in the
founder haplotype, although they vary in duplication size and
breakpoint location (figure 2 and table 1). The six pedigrees
appear to have simple duplications, yet the possibility of
complex rearrangements, with duplicated regions separated by

Figure 2 Hereditary neuralgic
amyotrophy (HNA) duplications in
SEPT9 are heterogeneous. (A) Array
comparative genomic hybridization
targeted to SEPT9 shows that the
duplications identified in pedigrees
K4023, K4032, K4013, K4040, K4001
and K4045 are heterogeneous in size
and location. (B) Two duplications,
K4001 and K4045, extended beyond the
SEPT9-specific array and were further
analysed using a whole-genome array.
All six duplications showed increased
copies of the 645 bp exon (red dotted
lines) in which previous point mutations
and a founder duplication have been
identified.
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non-duplicated regions, cannot be excluded. Additional potential
junction PCRs were attempted and did not reveal evidence for
complex duplications (data not shown). Examination of the
duplication breakpoints revealed possible microhomology of
2e9 bp (table 1).

Although there are multiple Alu sequences and other repeti-
tive sequences near the duplication breakpoints, no duplication
had the same repetitive sequence at its distal and proximal
breakpoints. The 59 and 39 breakpoint sequences of K4013 are
not an exact match d the 59 sequence contains an additional C
(figure 3). In addition, the 59 sequence of the duplication appears
to have been inverted across the breakpoint, and an AAAA was
inserted.
To further characterise the duplication mechanism, micro-

satellite genotyping spanning SEPT9 and the surrounding region
was carried out in the six duplication pedigrees as previously
described.5 10 All pedigrees demonstrated segregation of a family-
specific disease chromosome (additional figures 1 and 2). Pedi-
grees K4023 and K4032 showed segregation of the diseased
chromosome, although no microsatellite markers were located
within the duplicated regions. K4013 and K4040 show segrega-
tion of three markers within their respective duplications,
implying that the duplications were intrachromosomal.
However, the number of individuals genotyped in K4040 was

Table 1 SEPT9 duplication characteristics

Families with
duplication

Duplication
size (kb)

Proximal
breakpoint
location*

Distal
breakpoint
location*

Breakpoint
sequence

Founder haplotype
duplicationy

38 72876638 72914241 G

K4023 33 72901921e5 72934912e6 GAAGA

K4032 54 72904532e3 72958680e1 CA

K4013 65 72846731 72912123 CTC(C)AC

K4040 111 72824925e6 72935850e1 CT

K4001 201 72783590e2 72984253e5 AGG

K4045 329 72722677e85 73051609e17 TCAGGGTGG

*Numbering refers to hg18/Build 36.1.
yPreviously reported by Landsverk et al.13

Figure 3 Characterization of SEPT9 duplications. To further refine the SEPT9-duplicated regions, primers were designed to span the duplication
junctions. Genomic DNA from pedigrees K4023, K4032, K4013, K4040, K4001 and K4045 was screened for the presence of intragenic duplications.
The shared regions at the proximal and distal ends of the duplicated regions are shown in red. In sequences across the breakpoints, the 39 sequence of
the duplicated region is shown in bold, the 59 sequence in italics and the shared region in lowercase. Duplicated regions are not shown to scale. The
overlapping regions of K4013 are not exact (the 59 sequence contains an extra C) and there appears to be an inversion of the sequence at the
breakpoint in addition to an AAAA insertion. Sequence analysis shows that the breakpoints of the duplications are unique. Shared regions are boxed in
sequence traces.
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limited. For pedigree K4045, the markers in the duplicated region
represent two alleles from one parent and a single allele from the
other, indicating an interchromosomal insertion of the region
from the homologous chromosome. The duplication in K4001 II-
1 results from a more complex chromosomal rearrangement
(figure 4). While a single allele is inherited from the mother
for each of four markers in the duplicated region (MSFtri,
D17S937, 380058 and D17S939), both paternal alleles are
inherited for markers MSFtri and D17S937. In contrast, only
a single allele from one paternal chromosome is inherited for
marker 380058, while a single allele from the other paternal
chromosome is inherited for marker D17S939. These data
provide evidence for a combination of interchromosomal and
intrachromosomal rearrangements leading to SEPT9 duplications
in HNA.

Previous studies have shown that a duplication within SEPT9
leads to altered protein products of increased size.13 To deter-
mine if SEPT9 protein was altered in these pedigrees, we
examined the expression of SEPT9_i1, i2, i3 and i5/6 (also
known in the literature as i418) by immunoblotting of
lymphoblastoid cell lines with anti-SEPT9 antibodies.13 17 In
addition to wild-type bands, pedigrees K4001, K4013, K4023 and

K4040 all expressed SEPT9-reactive bands migrating at around
100 and 80 kDa, consistent with those previously observed in
the founder haplotype pedigrees (figure 5A).13 Additional SEPT9-
reactive bands migrating at approximately 70 and 55 kDa were
observed in pedigree K4001. The identity of these bands is
unknown, yet they are similar in size to those observed when
SEPT9 protein isoforms are overexpressed in cell culture,
indicating possible protein degradation products.19 However,
these bands are not SEPT9_i1 reactive, suggesting that other
SEPT9-reactive transcripts may be expressed in this family.
Interestingly, SEPT9 protein expressed in K4045 is indistin-
guishable from that expressed in unaffected control samples
(figure 5B). Tandem duplication of the 645 bp exon leading to
altered protein products was confirmedby junction PCRof cDNA
from these pedigrees (figure 5C and additional table 1). Duplica-
tion of the 645 bp exon was not observed in K4045,
confirming the lack of additional protein products, and
sequence analysis revealed no missense mutations. Therefore,
these data indicate that a duplication of the entire SEPT9 gene
leads to the same clinical phenotype as do duplications limited
to the 645 bp exon and single missense mutations within
this exon.

Figure 4 Hereditary neuralgic
amyotrophy (HNA) pedigree K4001
contains a de novo duplication in
SEPT9. Genotyping was completed for
pedigree K4001 using short tandem
repeat markers (D17S801, 72GT1,
MSFtri, D17S937, 380058, D17S939,
GT1 and D17S802) spanning SEPT9 and
the surrounding region, as previously
described.5 10 Microsatellite PCR
product lengths are shown in order of
chromosomal location. K4001 II-1
represents a de novo mutation involving
duplicated regions from both of the
paternal chromosomes. The duplicated
region is noted by a box. Yellow
indicates the chromosomal region
inherited from both paternal alleles.
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DISCUSSION
The heterogeneous duplications described here are non-recurrent
genomic rearrangements without common breakpoints. Also,
microsatellite genotyping of the de novo duplication in pedigree
4001 indicates interchromosomal and intrachromosomal rear-
rangements. Therefore, the duplications observed in our HNA
families could be generated by a number of different proposed
mechanisms.20 Non-allelic homologous recombination is gener-
ally mediated by low-copy repeats and can occur on the same
chromatid, between sister chromatids or between homologous
chromosomes.21 Non-homologous end-joining is a repair mech-
anism for double-stranded breaks and results in junctions with
microhomology of a few base pairs and/or insertion of other
sequences.22 In serial replication slippage or Fork Stalling and
Template Switching models, the replication machinery slips
backwards along the chromosome, resulting in a tandem
duplication, or slips forward, creating a deletion.20 23 24 This
slippage can also create complex rearrangements when repeated,
or multiple slippage events occur, creating blocks of deleted or
duplicated sequence with intervening single-copy sequence.
More recently, this model has been expanded in the break-
induced serial replication slippage and microhomology-mediated
break-induced replication models to include template
breakage.25 26 The occurrence of one mechanism or another may
be dependent on nearby genomic sequence and specialised
elements. Interestingly, SEPT9 was initially identified in acute
myeloid leukaemia as a fusion partner of the mixed-lineage
leukaemia gene (MLL).27 cDNA encoding the fusion protein has
been examined in several studies and has shown that a majority
of the MLL fusions are to the 645 bp exon, indicating that the
genomic breakpoints for the fusion protein are in the same

genomic region as five of the seven heterogeneous
duplications.28e32

How point mutations and duplications in the SEPT9 gene are
causative factors of HNA remains unknown. The present data
suggest that alterations in the proline-rich region encompassed
by the 645 bp exon are linked to HNA. The two missense
mutations are located in this exon, and five intragenic duplica-
tions generate larger protein products produced by tandem
duplication of this exon. This region has also been shown to
interact with other proteins33 34 and possess a number of
confirmed phosphorylation sites.35 36 In contrast, the entire gene
duplication in pedigree K4045 apparently does not alter the
protein, suggesting that HNA may also be caused by increased
dosage of the wild-type protein. Due to the complexity of
expression on the various SEPT9 transcripts, we were unable to
determine if an increase in genomic copy number leads to
a concomitant increase in levels of SEPT9 mRNA transcripts.
However, because SEPT9 produces so many transcripts that are
nearly identical, our results were inconclusive (data not shown).
Also, it is possible that the expression of SEPT9 transcripts in
lymphoblastoid cell lines does not represent expression in other
tissues. Pedigree K4045 has a known non-penetrant generation
before the affected generation, suggesting that there may be
other gene modifiers or factors affecting the clinical character-
istics of HNA. To date, we have identified SEPT9 gene defects in
55% (30/55) of our cohort. At least three families in this cohort
do not link to 17q25, providing further evidence that additional
HNA-linked genes exist.37 Therefore, it is possible that other
genes responsible for HNA are cell-type-specific SEPT9 binding
partners. Further work is required to determine the function of
the proline-rich region of SEPT9 and to identify additional genes

Figure 5 Heterogeneous duplications result in in-frame
duplication of 645 bp exon. (A) Lymphoblastoid cell lines
from an unaffected individual; an affected individual with
the founder haplotype; and affected individuals from
pedigrees K4001, K4013, K4023 and K4040 were lysed
and probed with antibody specific for SEPT9_i1, i2, i3
and i5/6, or SEPT9_i1 alone. K4001, K4013, K4023 and
K4040 expressed additional SEPT9-reactive proteins
migrating at around 100 and 80 kDa, consistent with the
founder individuals previously observed.13 Additional
SEPT9-reactive bands migrating at approximately 70 and
55 kDa were observed in pedigree K4001. An anti-actin
antibody was used as a control to verify equivalent
loading. (B) Pedigree K4045 expresses wild-type SEPT9
protein and does not express SEPT9-reactive proteins of
larger size observed in other duplication families.
(C) cDNA from an unaffected individual, founder
haplotype individual and affected individuals from the
heterogeneous duplication pedigrees (K4001, K4013,
K4023, K4040 and K4045) were screened for tandem
duplication of the 645 bp exon using primers on either
side of the predicted junction. PCR over the cDNA
645 bp duplication junction confirms that an enlarged
transcript, seen in the founder individual, is present in all
pedigrees carrying intragenic duplications; however, this
transcript is not present in K4045. A control region
within SEPT9 was amplified simultaneously to verify
template and PCR conditions.
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that may be involved in HNA in families who do not show
linkage to 17q25.
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