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SUMMARY

Gene duplication is an important source of pheno-
typic change and adaptive evolution. We leverage
a haploid hydatidiform mole to identify highly iden-
tical sequences missing from the reference genome,
confirming that the cortical development gene
Slit-RoboRhoGTPase-activatingprotein 2 (SRGAP2)
duplicated three times exclusively in humans. We
show that the promoter and first nine exons of
SRGAP2 duplicated from 1q32.1 (SRGAP2A) to
1q21.1 (SRGAP2B) �3.4 million years ago (mya).
Two larger duplications later copied SRGAP2B to
chromosome 1p12 (SRGAP2C) and to proximal
1q21.1 (SRGAP2D) �2.4 and �1 mya, respectively.
Sequence and expression analyses show that
SRGAP2C is the most likely duplicate to encode a
functional protein and is among the most fixed
human-specific duplicate genes. Our data suggest a
mechanism where incomplete duplication created a
novel gene function—antagonizing parentalSRGAP2
function—immediately ‘‘at birth’’ 2–3 mya, which is a
time corresponding to the transition from Australopi-
thecus to Homo and the beginning of neocortex
expansion.
INTRODUCTION

Several genes have been implicated as being important in spec-

ifying unique aspects of evolution along the human lineage.

These include genes involved with the development of language

(FOXP2) (Enard et al., 2002), changes in the musculature of the
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jaw (MYH16) (Stedman et al., 2004), and limb and digit speciali-

zations (HACNS1) (Prabhakar et al., 2008). Despite these

intriguing candidates, the bulk of the morphological and behav-

ioral adaptations unique to the human lineage remains geneti-

cally unexplained. Not all genes, however, have been amenable

to standard genetic analyses. This is particularly true for genes

embedded within recently duplicated sequences (Bailey et al.,

2002), which are frequently missing or misassembled from the

reference genome (Eichler, 2001). Genes residing in these

complex regions are important to consider for three reasons:

(1) duplicated genes have been recognized as a primary source

of evolutionary innovation (Lynch and Katju, 2004; Ohno, 1970);

(2) the human and great-ape lineages have experienced a surge

of genomic duplications over the last 10 million years (Marques-

Bonet et al., 2009); and (3) human-specific duplications are

significantly enriched in genes important in neurodevelopmental

processes (Fortna et al., 2004; Sudmant et al., 2010).

Among these human-specific duplicated genes, SRGAP2was

recently shown to be important in cortical development (Guerrier

et al., 2009; Guo and Bao, 2010). The gene encodes a highly

conserved protein expressed early in development when it

acts as a regulator of neuronal migration and differentiation by

inducing filopodia formation, branching of neurons, and neurite

outgrowth. Analysis of the human reference genome revealed

that SRGAP2 was misassembled and that most of its duplicate

copies were not yet sequenced or characterized. We developed

an approach by using genomicmaterial devoid of allelic variation

(from a complete hydatidiform mole [Kajii and Ohama, 1977]) to

completely sequence and characterize the missing loci corre-

sponding to this human-specific gene family. These data allowed

us to reconstruct the complex evolutionary history of this

gene family since humans diverged from nonhuman primates

(�6 million years ago [mya]; Patterson et al., 2006), understand

the potential of these loci to generate functional transcripts,

and assay the extent of human genetic variation. We put forward
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Figure 1. Genomic Characterization and

Sequence Resolution of SRGAP2 Loci

(A) FISH analysis shows three distinct copies of

SRGAP2 on metaphase human chromosome 1,

compared to a single copy in chimpanzee and

orangutan (see Figure 2A for location of FISH

probe; Figure S1 and Table S1 for details of

additional FISH assays).

(B) SRGAP2 genomic loci were sequenced

and assembled using a BAC library (CHORI-17)

created from human haploid genomic source

material (complete hydatidiform mole). The

absence of allelic variation allowed paralogous

sequences to be resolved with high confidence

based on near-perfect sequence identity overlap

(>99.9%).

(C) Regions highly identical to the reference

genome (GRCh37/hg19) are colored in red (iden-

tity = 99.8%–100%) and orange (99.6%–99.8%),

whereas regions completely absent from the

current assembly are shaded gray (with region

sizes indicated). Arrows show the orientation of

the reference genome sequence with respect

to the contigs (e.g., a left directional arrow indi-

cates the reverse strand). Overall, this indicates

that even the ancestral (SRGAP2A) gene locus

was missing sequence data, misassembled, and

incorrectly orientated over 400 kbp of the current

high-quality reference assembly. Genomic coor-

dinates correspond to the representative human

reference region with corresponding genes within

these regions mapped along each contig.
amodel for gene evolution in which incomplete segmental dupli-

cation creates derivative copies that antagonize the ancestral

function.

RESULTS

Genome Sequencing
We confirmed that SRGAP2 was specifically duplicated in the

human lineage by fluorescent in situ hybridization (FISH) by using

a probe corresponding to the human SRGAP2 (spanning exon 3,

Table S1). We identified three map locations on chromosome 1

(1q32.1, 1q21.1, and 1p12), as compared to a single chromo-

somal signal at 1q32.1 among other ape species (Figure 1A).

An analysis of the segmental duplication content of 11 additional

mammalian genomes (see Extended Experimental Procedures)

showed no evidence of recent duplication in any lineage other

than human and established 1q32.1 as the ancestral copy.

FISH analysis of cell lines derived from humans of diverse

ethnicity consistently showed a pattern of three distinct signals

on each chromosome 1 corresponding to paralogs that were

all incompletely sequenced in the human reference genome

(GRCh37/hg19).

We reasoned that the recent nature of the duplications

resulted in high-identity duplications with little genetic variation.

As a result, allelic and paralogous copies became difficult to
disentangle during genome assembly (Lander et al., 2001). To

resolve the different genomic copies, we constructed a large-

insert bacterial artificial chromosome (BAC) library from DNA

derived from a complete hydatidiform mole (CHORI-17).

Because a complete hydatidiform mole originates from the

fertilization of an enucleated human oocyte with a single

spermatozoon (Fan et al., 2002; Kajii and Ohama, 1977), the cor-

responding DNA represents a haploid, as opposed to a diploid,

equivalent of the human genome (Figure 1B). We leveraged the

absence of allelic variation to unambiguously distinguish

SRGAP2 copies despite their high sequence identity. We

selected clones with homology to SRGAP2 and subjected

them to high-quality capillary-based sequencing, requiring

>99.9% sequence identity of the overlap between sequenced

inserts for assembly into the same contig.

We generated three sequence contigs corresponding to

SRGAP2 paralogs at 1q32.1 (562,704 bp; SRGAP2A), 1q21.1

(441,682 bp; SRGAP2B), and 1p12 (603,678 bp; SRGAP2C)

(Figure 1C), generating over 1.6 Mbp of high-quality finished

sequence. During the assembly process, we identified a single

BAC clone (CH17-248H7) that harbored sequence for aSRGAP2

paralog (exons 7–9) but did not share >99.9% identity with any of

the three contigs, suggesting that a fourth SRGAP2 duplicate

existed (SRGAP2D). Upon this discovery, we repeated our

FISH analysis using a probe mapping across exon 1 of SRGAP2
Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc. 913



Table 1. Percent Sequence Divergence of SRGAP2 Paralogs

SRGAP2A SRAGP2B SRGAP2C SRGAP2D

SRGAP2A – 0. 015 0. 016 0.069

SRAGP2B 0.525 – 0. 014 0.038

SRGAP2C 0.584 0.451 – 0.065

SRGAP2D 0.452 0.136 0.400 –

Kimura two-parameter model of genetic distance computed as base

substitutions per site (left diagonal) and standard error (right diagonal).

Pairwise distances are computed across 244,200 sites representing the

complete shared genomic region between SRGAP2 paralogs. Values

forSRGAP2D represent pairwise distances computed across 9,541 sites.

As a reference, the genetic distance between SRGAP2A and its chim-

panzee ortholog locus is 0.852 ± 0.019, whereas that of chimpanzee to

human paralogs SRGAP2B and SRGAP2C (0.901 ± 0.019 and 0.960 ±

0.020) are consistent with the accelerated mutation rate for these chro-

mosomal regions.
and discovered four distinct signals on chromosome 1, with

SRGAP2D mapping proximally to SRGAP2B on chromosome

1q21.1 (Figure S1 available online, Table S1). The absence of

this signal from the initial FISH assay (Figure 1A) suggested

that a genomic region containing exon 3 was deleted from

SRGAP2D.

The new local assemblies resolved the sequence and struc-

ture of three copies, adding 379,665 bp of new sequence com-

pletely absent from the human reference, including 40,233 bp

within the ancestral SRGAP2A (Figure 1C). Additionally, we

discovered 559,693 bp of sequencemapped incorrectly in orien-

tation or chromosomal location within the human reference.

Combined, we added or correctedmore than 0.4%of the human

chromosome 1 euchromatic sequence (Gregory et al., 2006). All

finished sequence data, as well as the new human genome

assemblies, have been deposited into GenBank and will be

integrated into subsequent human genome reference assem-

blies (see Extended Experimental Procedures for accession

numbers).

Comparisons between the three sequence contigs revealed

large, interspersed segmental duplications of high-sequence

identity (99%–99.5%) that were incomplete with respect to the

ancestral locus (Table 1). We determined that the original dupli-

cation event (258,245 bp) encompassed the promoter, other cis

regulatory elements, and the first nine exons of the 22-exon

ancestral SRGAP2A (Figure 2A). Clusters of Alu repeat elements

mapped precisely at the boundaries of this duplicated segment

(Figure S2), confirming previous observations that Alu repeats

are strongly associated with primate genomic duplications

(Bailey et al., 2003; Zhou and Mishra, 2005). A larger, secondary

duplication event (>515 kbp) was shared between the SRGAP2B

(1q21.1) and SRGAP2C (1p12) loci and included the entirety of

the original duplication, although the SRGAP2B locus was sub-

jected to subsequent larger deletions (102.6 and 49.0 kbp)

upstream of the gene (Figure S2). Using multicolor FISH assays,

we determined that the ancestral SRGAP2A paralog at 1q32.1 is

transcribed toward the telomere, whereas the duplicate paralogs

SRGAP2B and SRGAP2C are oriented such that gene transcrip-

tion would proceed toward the centromere (Figure S1).
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Evolutionary History of SRGAP2

To reconstruct the evolution of the duplication events, we gener-

ated amultiple-sequence alignment for a 244.2 kbp region that is

shared among the three contigs by using orthologous sequence

from chimpanzee (build GGSC 2.1.3/panTro3) and orangutan

(build WUGSC 2.0.2/ponAbe2) as outgroups (Figure 2B). Phylo-

genetic analysis provides strong support (>99%) for distinct

duplication events occurring at different time points during

human evolution. Notably, we find that the duplicated sequences

have evolved much more rapidly (Tajima’s relative rate test; p =

0.00001–0.0249) than the ancestral 1q32.1 locus (p = 0.5345).

Mutation rates are known to vary significantly depending on

chromosomal location and context (CSAC, 2005). Based on

analysis of unique orthologous sequence adjacent to the

SRGAP2C duplicate region, we determined that the distal

1p12 region shows a 20%–46% higher substitution rate when

compared to 1q32.1. If we adjust for this difference, calibrating

to the estimated 1q32.1 substitution rate, we predict that the

initial duplication occurred �3.4 mya and that the secondary

event occurred �2.4 mya. We note that estimates of molecular

divergence between the paralogs are robust (e.g., 0.451 ±

0.014% substitutions per site between the SRGAP2B and

SRGAP2C loci), owing to the large number of substitutions

discovered in the high-quality sequence used in these compari-

sons (Table 1). Some uncertainty in our estimates comes from

our correction factor for differing substitution rates, but most

uncertainty arises from ambiguity in the evolutionary timing

of the divergence of chimpanzee and human (estimated at

�6 mya) (Patterson et al., 2006). If we take into account previ-

ously reported human and chimpanzee divergence times

ranging from �5–7 mya, based on fossil records (Brunet et al.,

2002, 2005; Vignaud et al., 2002) as well as recent genetic anal-

yses (Patterson et al., 2006), we estimate that the initial duplica-

tion occurred 2.8–3.9 mya, followed by the secondary duplica-

tion at 2.0–2.8 mya. We also performed phylogenetic analysis

of the 9,541 bp region shared among the SRGAP2A–C paralogs

and the incompletely sequenced SRGAP2D and determined

that this copy was derived from the SRGAP2B locus �1 mya

(0.4–1.3 mya assuming a 6 mya divergence time for human

and chimpanzee). Using comparative FISH analysis and probes

mapping outside of the original duplication (Figure 2C), we deter-

mined the likely order of events: the ancestral SRGAP2A region

duplicated first to 1q21.1 (SRGAP2B), and later the 1q21.1 copy

duplicated to chromosome 1p12 (SRGAP2C) and within 1q21.1

(SRGAP2D).

Based on the gene structure of the ancestral SRGAP2A,

sequence analysis predicts that SRGAP2B and SRGAP2C

would produce transcripts maintaining an open-reading frame

(ORF). These two duplicate copies, however, are predicted

to produce a truncated form of SRGAP2, carrying nearly the

entire F-BAR domain that lacks the final 49 amino acids

(Figure 2A) (Guerrier et al., 2009). The ancestral SRGAP2

protein sequence is highly constrained based on our analysis

of ten mammalian lineages. We find only a single amino acid

change between human and mouse and no changes among

nonhuman primates within the first nine exons of the SRGAP2

orthologs. This is in stark contrast to the duplicate copies, which

diverged from ancestral SRGAP2A less than 4 mya but have



Figure 2. Evolutionary Characterization of

SRGAP2 Duplications

(A) A depiction of the gene structure of SRGAP2

with respect to the three assembled contigs.

Homologous segments are shown using

Miropeats (Parsons, 1995) where green lines indi-

cate nearly identical segments (s = 1,000) shared

between SRGAP2A and the duplicate SRGAP2

paralogs, and the blue lines delineate the larger

(>515 kbp) extent of homology betweenSRGAP2B

and SRGAP2C. The 244.2 kbp genomic region

shared among all three contigs is highlighted (red

box) with clusters of Alu repeats at the breakpoints

(arrows). Also see Figure S2 for a detailed repre-

sentation of Alu elements and segmental duplica-

tions across duplicated regions.

(B) An unrooted neighbor-joining tree was con-

structed based on a 244.2 kbp multiple sequence

alignment of the three loci. Both 1p12 and 1q21.1

branches show accelerated rates of substitution

(p = 0.00001 and p = 0.0249; Tajima’s relative rate

test). The actual (no parentheses) and adjusted

(parentheses) number of substitutions for locus-

specific acceleration is indicated above each

branch along with the bootstrap support at each

node. We estimate the timing assuming chim-

panzee and human diverged 6mya. Also see Table

S2 for molecular evolution of the shared SRGAP2

coding regions.

(C) FISH experiments on metaphase human chro-

mosome 1, as well as the orthologous chimpanzee

and orangutan chromosomes, were performed to

discern the order of duplication events. Locations

of probes with respect to the contigs are shown in

(A). A probe (yellow) targeting the sequence adja-

cent to the original SRGAP2 duplicate region

hybridizes to 1q21.1 in chimpanzee and orang-

utan, suggesting that the original SRGAP2 dupli-

cate paralog maps to the region homologous with

nonhuman primate 1q21.1. A probe (green) tar-

geting the unique sequence on the p arm of chro-

mosome 1 proximal to SRGAP2C hybridizes to the

chromosome 1p arm in orangutan, refuting the

possibility that SRGAP2C moved to the p arm via

a simple pericentromeric inversion (Szamalek

et al., 2006) and distinguishing the p arm from the

genomic region at 1q21.1 where the original

SRGAP2 duplicate paralog maps. A probe (blue)

was used to distinguish the chromosome 1q arm.
accumulated as many as seven amino acid replacements (five

for SRGAP2C and two for SRGAP2B), compared to one synon-

ymous change.

We used a likelihood ratio test (Yang, 2007) to evaluate differ-

ences in selective pressures acting on SRGAP2 and found that

the best model of selection allows an increased nonsynonymous

(dN) to synonymous substitution (dS) ratio of the SRGAP2 dupli-

cate paralogs while maintaining purifying selection in the remain-

ing lineages (compared with the fixed dN/dS model, p = 1.32 3

10�11, Table S2). This difference is consistent with an increased

substitution rate of the 1q21.1 and 1p12 chromosomal regions

and a relaxation of selective pressure on the duplicate copies.

Overall, this mechanism provides a means for rapid evolutionary
change of an otherwise constrained developmental gene (Lynch

and Conery, 2000).

SRGAP2 mRNA Expression and Paralog Gene Structure
We assayed for expression of SRGAP2 paralogs by designing

specific reverse-transcriptase PCR (RT-PCR) assays that distin-

guish the duplicate paralogs from the ancestral copy based on

the presence of a duplicate-specific 30 untranslated region

(UTR) present in a previously sequenced cDNA mapping to the

SRGAP2C locus (GenBank accession BC112927). A total of 96

transcripts were sequenced from RNA derived from the SH-

SY5Y neuronal cell line, pooled fetal brain, a single fetal brain,

and a single adult brain (Figure 3A and Table S3). Comparing
Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc. 915



Figure 3. Paralog-Specific SRGAP2 Gene Expression
(A) Long-range RT-PCR products from pooled fetal brain RNA are shown next to the gene models. A single band was amplified from the ancestral paralog,

whereas three bands were amplified from duplicate paralogs by using primers (black triangles) designed to target alternative isoforms. Ninety-six cDNA tran-

scripts were cloned and sequenced.

(B) Fixed paralog-specific variants were used to assign transcripts to respective genomic loci, allowing both polymorphic and fixed putative amino acid changes

to be deduced. Exonic sequence specific to the ancestral copy (SRGAP2A; green) and the duplicate loci (SRGAP2B/C/D; purple) are shown. The locations of stop

codons encoded by isoformsmissing exons are representedwith an ‘‘x.’’ Exonsmissing from transcripts are indicated (diagonal lines) and likely correspond to the

genomic deletion within SRGAP2D in the case of the exon 2 and 3 deleted isoform.

(C) Paralog-specific expression profiling was performed by using RNA-Seq data mapped to unique sequence identifiers. The mean RPKM of each SRGAP2

paralog is shown for a variety of primate tissue types, with error bars representing ±SEM. The specificity of next-generation sequence data and the determination

of single base-pair differences between the copies were necessary to tease apart the expression profiles of these virtually identical copies. Chimpanzee and

macaque RNA-Seq data affirm the specificity of this assay. Also see Figure S3 and Table S3 for additional expression results.
genomic and cDNA sequences, we assigned the transcripts to

their respective copies and identified the exon/intron structure,

alternative splice forms, as well as fixed and polymorphic

paralog-specific variants (PSVs) (Figure 3B). We found that

all SRGAP2 paralogs are transcribed, though at different

relative proportions. We identified transcripts containing exons

1 through 9 that map specifically to SRGAP2C (n = 47) and

SRGAP2B or SRGAP2D (n = 4). Using capillary sequencing of

these transcripts and focusing our analysis on two fixed PSVs,

we show that relative expression of the SRGAP2B/D transcript

is markedly low (14%–25% and 30%–72% of SRGAPC tran-
916 Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc.
script abundance in fetal and adult brain, respectively) (Fig-

ure S3). The most abundant duplicate transcript is expressed

from SRGAP2C and predicts an ORF that would encode a trun-

cated SRGAP2 protein (458 amino acids), including a partial

F-BAR domain (Guerrier et al., 2009) and seven unique residues

at the carboxyl terminus.

We also observed numerous transcripts and putative splice

isoforms that are unlikely to encode functional proteins. The

most abundant of these map to SRGAP2B/D (n = 31) missing

exons 2 and 3 and result in a transcript that would encode a

premature truncated protein (23 amino acids). These transcripts



Table 2. SRGAP2A and SRGAP2C Copy Number Variation Genotyping of Cases and Controls

Genotype Method Size Resolution Cohorta Total Genotyped Deletions Duplications

SRGAP2Ab

Custom array CGH platforms >50 kbp intellectual disability (Signature Genomics)

(Cooper et al., 2011)

15,767 3 3

SNP arrays >50 kbp controls (Cooper et al., 2011) 8,329 none none

qPCRc n/a intellectual disability 1,602 none none

controls (NIMH and ClinSeq) 1,794 none none

Illumina sequencing >100 kbp controls (1000 Genomes Project) 661 none none

SRGAP2Cd

qPCRe n/a intellectual disability 1,602 none 1

controls (NIMH and ClinSeqg) 1,794 none 1

Custom array CGHf >300 kbp idiopathic autism (SSC) 2,294 none 2

familial autism (AGRE) 579 none none

controls (NIMH and ClinSeqg) 580 none none

Illumina sequencing >100 kbp controls (1000 Genomes Project) 661 none none

All detected deletions and duplications of SRGAP2A and SRGAP2C were >1 Mbp and include additional genes. Data from the Cooper et al. (2011)

study could not be used to assess CNVs for SRGAP2C, as there was insufficient probe coverage on the microarrays used in those studies. See

also Figure S4 and Table S4 for details of CNV breakpoints, phenotypes, and inheritance status.
aAbbreviations: SSC, Simons Simplex Collection (Fischbach and Lord, 2010); AGRE, Autism Genetic Resource Exchange (Geschwind et al., 2001);

NIMH, National Institute of Mental Health (https://www.nimhgenetics.org/available_data/controls/); ClinSeq, Clinical Sequencing Pilot Project

(Biesecker et al., 2009).
bCases, n = 17,369; Controls, n = 10,784.
cThe assay targeted intron 11 of SRGAP2A.
dCases, n = 4,475; Controls, n = 2,662.
eTwo assays were used targeting introns 6 and 7 of SRGAP2C, respectively.
fUsing probes targeting the chromosome 1p11.2 region proximal to SRGAP2C, we identified duplications and determined that a subset of them

extended into SRGAP2C by using qPCR assays. Notably, all duplications of SRGAP2C identified from the qPCR assay alone extended into the

1p11.2 proximal region and would have been detected using this same method.
gClinSeq controls (n = 373) were screened both with array CGH and qPCR assays.
are consistent with our genomic sequence analysis, indicating

that SRGAP2D has acquired a 115 kbp deletion including

exons 2 and 3 (described later). Moreover, our analysis suggests

that this transcript may be subjected to nonsense-mediated

decay.

Using diagnostic PSVs to distinguish copies, we interrogated

the expression of specific SRGAP2 paralogs in various human

and nonhuman primate tissues using RT-PCR (Figure S3) and

RNA-Seq data (Figure 3C). The tissue profile reveals that the

paralogs show similar broad patterns of expression, including

expression in the developing human fetal brain concurrently

with SRGAP2A. We observe higher expression in multiple

regions of the human cortex and cerebellum when compared

to other tissues including lung, kidney, and testis. As expected,

we did not detect expression of the duplicate copies in any of

the nonhuman-primate-derived tissues.

SRGAP2 Copy Number Variation
Because SRGAP2 has been shown to play an important role in

brain development, we initially focused on the ancestral

SRGAP2A gene by examining a large cohort of pediatric cases

with developmental delay (1,602 individuals tested using a quan-

titative PCR [qPCR]) assay specifically targeting SRGAP2A and

15,767 individuals reported by Cooper et al. [2011]) for potential

copy number variation. We identified six large (>1 Mbp) copy
number variants (CNVs), including three deletions of the ances-

tral 1q32.1 region (Table 2), with no similar large CNVs observed

among 10,123 controls. Because the CNVs are large and

encompass multiple candidate genes, this observation does

not prove pathogenicity of dosage imbalance of SRGAP2A.

We note, however, that in one patient the proximal breakpoint

maps within the first intron of SRGAP2A, potentially disrupting

the gene (Figure S4 and Table S4). The patient is a ten-year-

old child with a history of seizures, attention deficit disorder,

and learning disabilities. An MRI of this patient also indicates

several brain malformations, including hypoplasia of the poste-

rior body of the corpus callosum. Recently, a de novo-balanced

translocation t(1;9)(q32;q13) breaking within intron six of

SRGAP2A was reported in a five-year-old girl who was diag-

nosed with West syndrome and exhibited epileptic seizures,

intellectual disability, cortical atrophy, and a thin corpus cal-

losum (Saitsu et al., 2011). Although much more work needs to

be done, the neurological phenotypes observed in these two

cases are consistent with neuronal migration deficits implicated

in forms of developmental delay and epileptic encephalopathies

(Saitsu et al., 2011).

We next focused on assessing copy number variation of

each SRGAP2 paralog in the human population. This is particu-

larly challenging because most recently duplicated genes are

typically highly copy number polymorphic (Sharp et al., 2005;
Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc. 917
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Figure 4. SRGAP2 Copy Number Diversity

in Human Populations

(A) Diploid copy number estimates of SRGAP2

paralogs for 661 sequenced human genomes

from 14 distinct populations (1000 Genomes

Project) and from nonhuman primates are graphi-

cally represented as boxplots (the box contains

the 25th to 75th percentile of the distribution, and

the black dots represent outliers). The solid vertical

and dashed lines represent the median copy

number estimate and ±SD, respectively, of each

paralog across all populations.

(B) SRGAP2A and SRGAP2C paralogs clearly are

fixed at a copy number of two, while SRGAP2B is

polymorphic showing four distinct copy number

states. Note, we also detect polymorphism for

SRGAP2D and have identified individuals homo-

zygously deleted for this paralog.

(C) FISH validation of three HapMap individuals

genotyped for SRGAP2B (circled in red in

part [A]). All samples falling at the lower and upper

tails of copy number distributions for all three

paralogs were experimentally genotyped by using

a paralog-specific qPCR assay; in all cases,

SRGAP2A and SRGAP2C were validated as

diploid copy number two. Also refer to Figure S5.
Sudmant et al., 2010), and experimental assays for accurately

predicting copy number are problematic. For this purpose, we

took advantage of diagnostic singly unique nucleotide (SUN)

identifiers (n = 3,535) determined using our high-quality

sequence of the three loci (see above). We mapped genome-

sequencing data from 661 human individuals corresponding to

14 populations (1000 Genomes Project) and estimated the

diploid copy number for each paralog by measuring read depth

to these SUNs (Figure 4A) (Sudmant et al., 2010).

We find that both the ancestral SRGAP2A and the derived

SRGAP2C copy are fixed at diploid copy number two across

all humans assayed. In contrast, the SRGAP2B and SRGAP2D

copies varied from 0–4 copies among the individuals tested

(Figures 4B–4C). Importantly, we identified three individuals

that are homozygously deleted for SRGAP2B. Notably, we also

identified normal individuals that were homozygously deleted

for SRGAP2D, the granddaughter copy with an acquired internal

deletion of exons 2 and 3 (see Figure S5 for characterization of

this internal deletion). We prepared cDNA from lymphoblastoid

cells corresponding to one of these SRGAP2B-deletion homozy-
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gotes and observed no full-length

SRGAP2B transcript by RT-PCR, which

is in contrast to samples carrying the

paralog (Figure S3). Because the fre-

quency of homozygotes is consistent

with Hardy-Weinberg Equilibrium expec-

tation and these individuals are repre-

sentatives of the sample populations,

the discovery of SRGAP2B-homozygous

deletions in a ‘‘normal’’ population argues

against a critical functional role of this

copy in brain development. We addition-
ally applied our method to 34 nonhuman primates and the

Denisova and Neanderthal genomes (Green et al., 2010; Reich

et al., 2010) and found that, consistent with our sequence-based

estimations of the timing of the duplication events, SRGAP2B,

SRGAP2C, and SRGAP2D copies are absent from all assayed

nonhuman great apes yet are present in both the Neanderthal

and Denisova genomes. We conclude that no new SRGAP2

duplications have occurred since Homo sapiens and Homo

neanderthalensis diverged about 1 mya.

Although it is common to observe a functional progenitor

duplicated gene fixed in copy number, the discovery that

a gene as recently evolved as SRGAP2C is fixed at a diploid

copy number state is striking. When compared to the 23 genes

duplicated specifically in the human lineage, we previously found

that SRGAP2 is among the six least copy number polymorphic

gene families under a naive analysis that does not distinguish

paralogs (Sudmant et al., 2010). When we extend this analysis

to human-specific duplicates for which complete sequence is

available and limit our analysis solely to those genes (n = 23),

we find that SRGAP2C is the least copy number variable gene



Figure 5. Model for SRGAP2 Evolution

Schematic depicts location and orientation (blue triangles) of SRGAP2 paralogs on human chromosome 1 with putative protein products indicated above each

based on cDNA sequencing. Asterisks indicate a 49 amino acid truncation of the F-BAR domain. Note that the orientation of SRGAP2D remains uncertain, as the

contig containing this paralog has not yet been anchored. Arrows trace the evolutionary history of SRGAP2 duplication events. Copy number polymorphism and

expression analyses suggest both paralogs at 1q21.1 (SRGAP2B and SRGAP2D) are pseudogenes, whereas the 1q32.1 (SRGAP2A) and 1p12 (SRGAP2C)

paralogs are likely to encode functional proteins.
duplicate. Using qPCR assays that specifically assess copy

number variation of SRGAP2C, we investigated this experimen-

tally and found one individual harboring an �1 Mbp duplication

containing numerous genes in an additional set of 1,794 controls

(Table 2 and Figure S4). Applying this same assay to patients

with intellectual disability and/or autism spectrum disorder (n =

4,475), we identified three additional individuals carrying large

duplications of this locus. Strikingly, in our cumulative analysis

of 7,137 individuals (cases and controls), we detected no dele-

tions of SRGAP2C. In total, our combined analyses indicate

that both SRGAP2A and SRGAP2C copies are nearly fixed at

a copy number of two in all human populations assayed, with

rare deletions and duplications observed only in cases with intel-

lectual disability for SRGAP2A (p = 0.055, Fisher’s exact test)

and rare duplications observed at a frequency of �0.06% for

SRGAP2C.

DISCUSSION

SRGAP2 has been highly conserved over mammalian evolution,

and human is the only lineage wherein gene duplications have

occurred. Our analysis indicates that the duplications spread

across 80 Mbp of chromosome 1 at a time corresponding to

the transition from Australopithecus to Homo (Figure 5). This

included an initial large interspersed duplication (258 kbp) from

chromosome 1q32.1 to 1q21.1, creating SRGAP2B �3.4 mya.

The initial duplication was followed by larger (>515 kbp),

secondary duplications of the 1q21.1 locus, creating SRGAP2C

and SRGAP2D (�2.4 and 1 mya, respectively). Consistent with

these timing estimates, archaic Homo species, including Nean-

derthal and Denisova, carry these SRGAP2 paralogs (Figure S5).

It is intriguing that the general timing of the potentially functional

copies, SRGAP2B and SRGAP2C, corresponds to the emer-

gence of the genus Homo from Australopithecus (2–3 mya).

This period of human evolution has been associated with the

expansion of the neocortex and the use of stone tools, as well

as dramatic changes in behavior andculture (Jobling et al., 2004).

Our analysis provides insight into one mechanism by which

gene duplicates evolve. We find that the initial genomic duplica-

tion of SRGAP2 was incomplete, encompassing the promoter

and first nine exons of a 22 exon gene. Because SRGAP2 has
been shown to homodimerize via its F-BAR domain (Guerrier

et al., 2009), we propose that incomplete segmental duplication

of the gene�3.4 mya created an antagonistic functional state. In

fact, functional evidence suggests that these partial SRGAP2

copies produce protein with a nearly complete F-BAR domain

but are missing other functional domains. These copies also het-

erodimerize with the full-length SRGAP2, creating a de facto

dominant negative interaction equivalent to a knockdown of

the ancestral copy (Charrier et al., 2012 [this issue of Cell]). The

large size of the segmental duplication included the putative

cis regulatory machinery of this gene and ensured that the dupli-

cate genes would be developmentally coexpressed with the

parental copy. Experimental analyses indicate (Guerrier et al.,

2009; Charrier et al., 2012) that if the segmental duplication

had been slightly larger (i.e., included exon 10), such antagonism

would not be possible.

The incomplete nature of the segmental duplication was,

therefore, ideal to establish this new function by virtue of its

structure, which arose at the time of its ‘‘birth.’’ This model of

gene duplication that involves an ‘‘instantaneous’’ dominant

negative function at birth stands in stark contrast to the favored

model that involves duplication of a complete gene followed by

the gradual accumulation of adaptive mutational events leading

toward subfunctionalization or neofunctionalization (Lynch and

Katju, 2004). We suggest that SRGAP2C ultimately assumed

the antagonistic function of the SRGAP2B duplicate, which

shows evidence of pseudogenization in contemporary humans.

Although all four SRGAP2 paralogs show evidence of transcrip-

tion, it is unlikely that the two copies at 1q21.1 are now functional

for several reasons. SRGAP2B has a markedly reduced expres-

sion in human brain compared to SRGAP2C. Likewise, the tran-

scripts produced by SRGAP2D lack two internal exons, leading

to a premature termination codon. Therefore, this copy is unlikely

to produce a functional protein. Both SRGAP2B and SRGAP2D

are highly copy number polymorphic, with normal individuals

identified that completely lack these paralogs. This argues that

if there is a phenotypic consequence to their complete deletion,

it is likely to be relatively minor.

In stark contrast, both the SRGAP2A (progenitor) and

SRGAP2C (granddaughter) paralogs are nearly fixed at a diploid

state based on our analysis of 28,153 and 7,137 human DNA
Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc. 919



samples, respectively. If we assume that the original SRGAP2B

function was acquired by SRGAP2C, there is a possibility that

both paralogs were functional at some point during human

evolution. It is interesting that the comparison of the >515 kbp

of duplicated sequence shared between SRGAP2B and

SRGAP2C indicates that SRGAP2B has been subjected to

large upstream deletions (103 kbp and 49 kbp in size), whereas

SRGAP2C has not. Thus, the genomic instability of the

SRGAP2B locus and its reduced expression in the contemporary

human brain imply that the 1q21.1 locusmay have been a subop-

timal environment for gene transcription. The duplication event

that yielded SRGAP2C �2.4 mya may have provided a means

of escape, transporting this truncated gene to a much more

stable genomic environment for robust, long-term expression.

One cannot, of course, definitively exclude the possibility that

SRGAP2B and SRGAP2D transcriptsmay still confer some func-

tion (Charrier et al., 2012), perhaps via transcript regulation, but

the finding of apparently normal individuals completely missing

these duplicate copies would suggest that they are not critical

for normal development.

We have identified larger deletions of the ancestral locus,

SRGAP2A, only among children with developmental delay.

Although the deletion intervals are large and other genes contrib-

uting to the disease phenotype cannot be excluded at this time,

the absence of structural variation in the normal population and

the discovery of a de novo translocation (Saitsu et al., 2011), as

well as a second patient with a duplication breakpoint mapping

within SRGAP2, provide some evidence of its role in brain devel-

opment. In this light, the fixation of the duplicated SRGAP2C is

especially noteworthy. SRGAP2C was found to be the least

copy number polymorphic of all human-specific duplicate

genes, despite the fact that it is embedded in a complex region

prone to nonallelic homologous recombination. Our data, thus,

point to two functional SRGAP2 copies at 1p12 and 1q32.1,

consistent with experimental characterization (Charrier et al.,

2012). Based on these data, we propose more systematic

screening of these genes for mutations in children with develop-

mental delay and brain malformations that include West

Syndrome, agenesis of the corpus callosum, and epileptic

encephalopathies. This will be particularly challenging because

most commercial SNPmicroarrays have failed to include probes

from these duplicated regions, and reads from next-generation

sequencing platforms are typically too short to assign to

a specific paralog (Eichler et al., 2010). Nevertheless, final proof

of the functional significance of these genes will rest on the

discovery of disruptive mutations associated with human

phenotypes.

Finally, we emphasize that much of the genomic sequence

corresponding to the ancestral and duplicate gene copies was

missing or misassembled in the current human reference

genome. In this study, we sequenced, corrected, and annotated

�0.4% of the euchromatin of chromosome 1 more than 6 years

after the ‘‘finished’’ human genomewas declared (IHGSC, 2004).

This was possible because the clone-based resource we devel-

oped using a complete hydatidiform mole essentially provides

a haploid version of the human genome. Because this resource

is devoid of allelic variation, we can rapidly distinguish even

highly identical duplicate genes, thus providing a clear path
920 Cell 149, 912–922, May 11, 2012 ª2012 Elsevier Inc.
forward for the characterization of other complex duplicated

regions. It is worthwhile noting that we ensured the hydatidiform

mole primary cell line (CHM1hTERT) we used did not contain any

large CNVs that could confound our analysis (Fan et al., 2002). It

is especially intriguing that SRGAP2 is only one of several

human-specific duplicate genesmissing or incompletely assem-

bled in the human genome (Sudmant et al., 2010). A number of

remaining genes (e.g., GPRIN2, GTF2IRD2, and HYDIN) in this

category have been implicated in neurodevelopment, neurite

outgrowth, and behavior (Brunetti-Pierri et al., 2008; Chen

et al., 1999; Dai et al., 2009). Additionally, human-specific

protein-coding genes derived de novo from noncoding DNA

merit further exploration (Wu et al., 2011). We propose that these

uncharacterized human-specific genes constitute important

pieces in the puzzle underlying the genetic basis of human brain

evolution.

EXPERIMENTAL PROCEDURES

Fluorescent In Situ Hybridization

Metaphase spreads were prepared from lymphoblastoid human cell lines

(NA12878, NA19317, NA20334, NA19901, NA19700, and NA19005; Coriell

Cell Repository, Camden, NJ), a chimpanzee cell line (Douglas, provided by

Dr. Mariano Rocchi), and an orangutan cell line (PR01109, a.k.a. Susie; Coriell

Cell Repository, Camden, NJ). FISH experiments were performed using

fosmid clones (Extended Experimental Procedures) as described previously

(Antonacci et al., 2010).

Cloning Using a Complete Hydatidiform Mole Library

A large-insert BAC library (CHORI-17) was generated from a well-character-

ized complete hydatidiform mole primary cell culture (CHM1hTERT) using

a modified protocol (Osoegawa et al., 1998) (http://bacpac.chori.org/library.

php?id=231). To ensure the quality of CHM1hTERT, a karyotype analysis

and extensive SNP genotyping with 1,494 SNP markers (Fan et al., 2002)

and array comparative genomic hybridization (CGH) using the NimbleGen

2.1 M whole-genome array were performed. We generated paired-end

sequences (n = 169,022) by using Sanger dideoxy methods, and we

mapped sequence reads to the human reference genome. This provided

a haplotype-resolved tiling path of clones for selection and sequencing (Kidd

et al., 2008).

Sequencing and Assembly

We selected BAC clones with at least one sequenced end mapping to

a SRGAP2 region in the human reference genome and completely sequenced

and assembled the insert (see Extended Experimental Procedures for

detailed clone order, sequence assembly, and annotation). Inserts overlapping

with >99.9% sequence identity were assembled into distinct contigs corre-

sponding to SRGAP2 loci at 1q32.1, 1q21.1, and 1p12.

Phylogenetic Analysis

We created a 244.2 kbp multiple sequence alignment from three completely

sequenced SRGAP2 genomic loci (ClustalW; Thompson et al., 2002) and con-

structed an unrooted phylogenetic tree (MEGA; Tamura et al., 2011) by using

the neighbor-joiningmethod (Saitou and Nei, 1987) with the complete-deletion

option. Genetic distances were computed with the Kimura two-parameter

method (Kimura, 1980) with standard error estimates (an interior branch test

of phylogeny [Dopazo, 1994; Rzhetsky and Nei, 1994]; n = 500 bootstrap repli-

cates). For the incompletely sequenced SRGAP2D paralog and the 1p12 chro-

mosomal distal region, we created phylogenetic trees by using a 9.5 kbp and

50 kbp multiple species alignment, respectively (see Extended Experimental

Procedures for details). The orthologous SRGAP2 exons were extracted

from different mammalian reference genomes without segmental duplications

and were used to test various models of selection using amaximum-likelihood

framework (codemL; PAML statistical software package [Yang, 2007]).

http://bacpac.chori.org/library.php?id=231
http://bacpac.chori.org/library.php?id=231


SRGAP2 Transcript Analysis

Total RNA was isolated using Trizol reagent (Invitrogen) and the RNeasy

Mini Kit (QIAGEN) from SH-SY5Y neuronal cell line. Total RNA was analyzed

from human fetal brain (collected from spontaneously aborted fetuses,

50–60 pooled samples, 20–33 weeks of development; ClonTech S2437)

as well as a single fetal (R1244035, BioChain) and adult brain sample

(M1234035, BioChain) (see Extended Experimental Procedures for details

regarding RT-PCR, cDNA cloning, and sequencing). We also analyzed

RNA-Seq data from 17 different human tissues (Illumina’s Human BodyMap

2.0), seven human cell lines (Wang et al., 2008), and both chimpanzee and

macaque cerebellum and liver tissues (Blekhman et al., 2010). Briefly,

RNA-Seq data sets were mapped to the human reference genome (NCBI36/

hg18) and our described SRGAP2 contigs. Expression levels for specific

paralogs were calculated in units of RPKM (reads per kilobase of exon

model per million mapped reads) (Liu et al., 2011) with transcribed PSVs,

which allowed RNA-Seq data to be unambiguously assigned to a specific

paralog.

Paralog-Specific Copy Number Genotyping

CNVs in cases with intellectual disability and controls for SRGAP2Awere iden-

tified from previously published array CGH data and SNP microarray data,

respectively (Cooper et al., 2011). Copy number estimates of specificSRGAP2

paralogs by using SUNswere determined using previously describedmethods

(Sudmant et al., 2010). Custom qPCR assays were performed in triplicate

using variants specific to each SRGAP2 paralogous locus (see Extended

Experimental Procedures for a description of variant detection and primer

sequences). Validations of deletions and duplications, as well as identification

of CNVs in the autism cohorts and some controls, were performed by

array CGH using custom microarrays (Agilent) and a HapMap individual

(NA18507) as a reference.
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