ADDITIONAL FILE 1

Supplementary Figure 1. *HYDIN* and associated chromosome 1 duplications. The segmental duplications that led to the formation of *HYDIN2* are seen in the context of larger genomic rearrangements on chromosome 1. Duplications are visualized using Miropeats (s = 800; Parsons, 1995). The central sequence represents chromosome 1q21.1-1q21.2 (chr1:146061572-150028860) with the *HYDIN* duplication in light blue. Also highlighted is the new *HYDIN2* promoter. The homology with chromosome 16q22.2 (chr16:70611384-71368670) and chromosome 1p22.3 (chr1:87315068-87609100) shown above the 1q21 region is the same as in Figure 1e. Shown below the 1q21 region is additional homology to chromosome 1p12-1p11.2 (chr1:119530046-121401465). This region is shown twice for clarity. Locations of the core duplicon gene *NBPF*, by GENCODE annotation, are highlighted as red boxes and are found at or near the breakpoints of most observed rearrangements, including the palindromic duplication shown at the bottom right (also described in O'Bleness, 2014).

Supplementary Figure 2A. Timing of first duplication of the 5' and 3' segments flanking *HYDIN2.* We estimate that the segmental duplication (65 kbp) that was bisected by the *HYDIN2* duplication underwent an earlier duplication from chromosome 1p22 to chromosome 1q21 approximately 21.0 mya (95% CI: 20.6-21.6 mya). This is consistent with the observation that this segment is at haploid single-copy in marmoset, macaque, and baboon, and at haploid copy number 2 in gibbon and orangutan.

Sequences. Sequences homologous to the three human loci were identified in primates and in mouse using BLAT and the UCSC Genome Browser. A single homologous locus was identified in marmoset, which was used to root the tree. One homologous locus was identified in marmoset, representing New World monkeys, and one homologous locus was identified in both the rhesus macaque and baboon, representing Old World monkeys. This suggests the duplication occurred after the divergence of apes from Old World monkeys. Within apes, two homologous loci were identified in gibbon and orangutan each, suggesting that the duplication occurred within the common ancestor of hominoids (lesser and greater apes). Multiple homologous loci of varying lengths were identified in chimpanzee, suggesting this region has undergone further rearrangement and amplification in that lineage.

Alignment and tree building. A 30,872 bp multiple sequence alignment (MSA) was generated using MAFFT with sequences deriving from the single locus in mouse and marmoset, the two loci in orangutan, and the three loci in human. The phylogenetic tree was inferred using the maximum-likelihood method with distances estimated using the Tamura-Nei model and tested with 50 bootstrap replicates. Branches are labeled with the number of substitutions per site and nodes are labeled with bootstrap support.

Timing the duplication. The two loci on human 1q21 pass the relative rate test (p = 0.65, outgroup orangutan), as do either with their ortholog in orangutan (p = 0.89 for 1q21.1 and p = 0.61 for 1q21.2, outgroup marmoset). The locus on human 1p22.3 and its closest orangutan

ortholog also pass the relative rate test (p = 0.25). However, the 1q and 1p clades appear to be evolving at different rates (p < 0.00001 for both, outgroup marmoset), and neither clade passes the relative rate test with marmoset (p = 0.004 for 1q and p < 0.00001 for 1p, outgroup mouse). In marmoset, the derived sequence sits on the long arm of chromosome 7, consistent with known translocations that differentiate the species (Sherlock, 1996). All in all, we cannot assume the same local rate of neutral substitution between any pair in these three clades (marmoset, 1p clade, 1q clade).

We use the 1p22.3 clade to estimate the timing of the duplication since that region is syntenic to the original sequence in marmoset. These estimates are based on the proportion of genetic distance since divergence from marmoset that occurred since the duplication of our segment of interest.

clade 1p $D_{human 1p22.3 branch} = 0.013632$ $D_{orangutan 141M branch} = 0.015181$ Average($D_{orangutan 141M branch}$, $D_{human 1p22.3 branch}$) = 0.014407 $D_{1p until human-orang split} = 0.012466$ $D_{from divergence from marmoset to duplication} = 0.015257$ (Distance after duplication)/(Total distance since divergence from marmoset) = (0.014407 + 0.012466)/(0.014407 + 0.012466 + 0.015257) = 0.63785

Time of human–marmoset divergence (Glazko and Nei 2002) = 33 mya (range 32-36)

Estimate based on *clade 1p* 0.63785 * 33 mya = **21.0 mya** (95% CI: 20.6-21.6 mya)

We calculated 95% confidence intervals around our duplication timing estimate above using branch length error estimates and the following approach. First, for each branch in the tree, we set the branch length to a randomly chosen value between the actual branch length minus the branch length error (or zero if that value is negative) and the actual branch length plus the branch length error, inclusive. Second, we recomputed the timing estimate above using the same calculations as for the original tree except using the modified branch length values. For these calculations, we assumed a human–marmoset divergence of 33 mya. Third, we repeated the above two steps until we obtained one million modified trees and corresponding timing estimates. Finally, we sorted the estimates and reported the 25,000th and 975,000th sorted timing estimate values as the 95% confidence interval around the corresponding timing point estimate: 20.6-21.6 mya. Note that this error is less than the error that results from uncertainty in the timing estimate for human–marmoset divergence (Glazko and Nei, 2003).

This range of estimates, which places the duplication just after the divergence of apes and Old World monkeys (23 mya, range 21-25), is consistent with where we place the duplication in evolutionary history based on its presence and absence in reference genomes. It is important to note, however, that nonhuman primate reference genomes may be incomplete, especially in these duplicated regions.

Supplementary Figure 2B. Timing of second duplication of the 5' and 3' segments flanking *HYDIN2.* To time the more recent duplication of the sequence immediately flanking *HYDIN2*, which occurred between 1q21.1 and 1q21.2, a new MSA was generated with sequence from the two human loci, the homologous chimpanzee locus, and the homologous orangutan locus. The sequences for the two human loci and the orangutan locus are the same as used in Figure S2a. Because this region appears to have undergone further duplication in chimpanzee (data not shown), we identified and sequenced a BAC containing homologous chimpanzee sequence (CH251-231E10). A 209,299 bp MSA was generated using MAFFT and manually edited for obvious alignment errors. The phylogenetic tree was inferred using the maximum-likelihood method with distances estimated using the Kimura 2-paramter model and tested with 50 bootstrap replicates. Branches are labeled with the number of substitutions per site and nodes are labeled with bootstrap support.

Timing the human-specific duplication. We similarly estimate the timing of the human-specific duplication of the segments that flank *HYDIN2* using orangutan as the outgroup, and a divergence time of 6 mya (Glazko and Nei, 2003), based on the proportion of genetic distance since divergence from chimpanzee that occurred since the duplication of our segment of interest. The human branches pass the relative rate test (p = 0.18).

$$\begin{split} D_{\text{average human } 1q21.1/1q21.2 \text{ branch}} &= (0.002032 + 0.001846)/2 = 0.001939 \\ D_{1q \text{ human until } 1q21.1/1q21.2 \text{ split}} = 0.002932 \\ D_{1q \text{ human total}} &= (0.002032 + 0.001846)/2 + 0.002932 = 0.004871 \\ (\text{Distance after duplication})/(\text{Total evolutionary distance since divergence from chimpanzee}) = 0.001939/(0.004871 + 0.005213) = 0.1923 \\ 0.1923 * 2 * 6 \text{ mya} = 2.31 \text{ mya} (95\% \text{ CI: } 2.17\text{-}2.45 \text{ mya})* \end{split}$$

This estimate is more recent than the estimate of the *HYDIN2* duplication, however it must necessarily have preceded the insertion of the duplicated *HYDIN2* sequence. We think it most likely that interlocus gene conversion is responsible for reducing the genetic divergence between these segments and distorting this timing estimate.

Supplementary Figure 3. Paralog-specific copy number estimates for 236 individuals from the Human Genome Diversity Project (HGDP). Whole-genome sequencing data from the HGDP were mapped to the *HYDIN* segmental duplication, and SUNK-based read depth was used to assess paralog-specific diploid copy number. Both paralogs are found at copy number 2 in all individuals shown, including 41 Africans, 21 Native Americans, 45 East Asians, 21 Oceanians, 27 South Asians, 22 Siberians, and 59 Europeans.

Supplementary Figure 4. HYDIN internal structural variation and interlocus gene conversion. Examples of structural variation within HYDIN paralogs and a putative interlocus gene conversion event. Each point shows a paralog-specific copy number estimate (red, HYDIN; blue, HYDIN2) based on sequencing data corresponding to a single MIP targeting sequence that distinguishes HYDIN paralogs. Sequencing reads were analyzed to compute paralog-specific read count relative frequencies for each MIP, which were multiplied by the aggregate estimated copy number at each target site to infer paralog-specific copy number. Shown are an ~ 212 kbp duplication affecting HYDIN2 (upper left), an ~289 kbp duplication affecting HYDIN2 (lower left), a putative ~3 kbp deletion affecting HYDIN2 in a 1q21 microdeletion patient (orange highlight, upper right), and an ~2 kbp interlocus gene conversion event (lower right). Note that the putative HYDIN2 deletion shown might instead reflect interlocus gene conversion—all reads for 11 consecutive MIPs over the highlighted interval mapped to HYDIN, consistent with zero copies of HYDIN2 and either two or three copies of HYDIN. Also note that the interlocus gene conversion event identified in AU1188303 is the same as that discovered in 11094.s1 (Figure 2C, bottom right), indicating this event likely segregates at very low frequency. 153 MIPs were used for genotyping all individuals shown except CMS_9492, a 1q21 microdeletion patient genotyped with 717 MIPs. All events shown were detected by an automated caller. Duplicated exons based on the canonical HYDIN gene model are indicated at the bottom of each plot.

Supplementary Figure 5. 1q21 rearrangement breakpoint variability. a) 717 MIPs targeting regions that distinguish HYDIN paralogs were employed to genotype HYDIN paralog-specific copy number in 48 1q21 microdeletion and 25 1q21 microduplication patients. Points show HYDIN paralog-specific copy number estimates (red, HYDIN; blue, HYDIN2) for three microdeletion patients (14852.x3, CB 081113, and RB 078381) and three microduplication patients (14862.x7, 14813.x9, and 14881.x3). These estimates were calculated as the product of the paralog-specific read count relative frequency for a particular MIP and the aggregate estimated copy number at the corresponding target site. The MIP results indicate that 1q21 rearrangements do not always include HYDIN2. b) The segmental duplication organization of a 4.5 Mbp region at chromosome 1q21 (GRCh38 chr1:145,500,001-150,000,000) is shown along with array CGH profiles for the individuals in panel a. Thin colored boxes indicate sequences duplicated between this region and another genomic locus, with colors corresponding to sequence identity (orange = 99% or above, yellow = 98%-99%, gray = 90%-98%) and markings showing orientation (right-pointing, directly oriented; left-pointing, inversely oriented) between duplication pairs. Thick colored boxes highlight locations of several duplicated genes. Orange triangles indicate high-identity, directly oriented *NOTCH2NL-NBPF* duplications, with putative breakpoints of the canonical 1q21 rearrangement shown as vertical gray dashed lines. Shown below are the locations of *NBPF* core duplicons. Array CGH confirms 1q21 rearrangements in these individuals, and array data over HYDIN2 (blue highlight) indicate a loss or gain in some (14852.x3 and 14862.x7) but not others (all other individuals shown), validating the MIP data shown in panel a.

Supplementary Figure 6. The *HYDIN2* **promoter corresponds to a peak of chromatin accessibility in fetal brain.** Reads indicating sites of chromatin accessibility as determined by sensitivity to DNase I digestion from various fetal brain time points (day 58 – day 142) were mapped using mrsFAST-Ultra (Hach, 2014) to allow for measurement over duplicate sequence. Shown is a ~14 kbp region (chr1:146479496-146493419) surrounding the acquired promoter and first exon of *HYDIN2*, with a peak is visible at all time points. See Table S8 for sample information.

Supplementar	<u>y Table 1.</u>	MIP-based	copy-number	<u>genotyping</u>	<u>of HYDIN2</u> ,
Number of indi	viduals				

HYDIN2 HYDIN2 HYDIN2 HYDIN2 Individuals Cases or deletions normal duplications complex (CN = 1)Cohort controls (CN = 2)(CN = 3)event genotyped SVIP 16p both 16p triplications 16p duplications 16p normals 16p deletions SVIP 1q21 both 1q21 duplications 1q21 normals 1q21 deletions HapMap/1KG controls AGRE Probands cases SSC Probands cases **TASC** Probands cases TASC Siblings controls AGRE Siblings controls SSC Siblings controls SSC Parents controls Cell Lines controls All Combined both Cases (excluding SVIP) cases Controls (excluding SVIP) controls SVIP cohorts both

Number of unrelated chromosomes

			HYDIN2	HYDIN2	HYDIN2	HYDIN2
	Chromosomes	Cases or	deletions	normal	duplications	complex
Cohort	genotyped	controls	(CN = 1)	(CN = 2)	(CN = 3)	event
HapMap/1KG_YRI	117/117	controls	1/1	115/115	1/1	0/0
HapMap/1KG_GBR	185/186	controls	0/0	185/186	0/0	0/0
HapMap/1KG_FIN	190/190	controls	0/0	190/190	0/0	0/0
HapMap/1KG_CHS	4/4	controls	0/0	4/4	0/0	0/0
HapMap/1KG_CHB	96/96	controls	0/0	96/96	0/0	0/0
HapMap/1KG_PUR	4/4	controls	0/0	4/4	0/0	0/0
HapMap/1KG_IBS	190/190	controls	0/0	190/190	0/0	0/0
HapMap/1KG_KHV	10/10	controls	0/0	10/10	0/0	0/0
HapMap/1KG_CDX	2/2	controls	0/0	2/2	0/0	0/0
HapMap/1KG_GWD	10/10	controls	0/0	10/10	0/0	0/0
HapMap/1KG_PJL	2/2	controls	0/0	2/2	0/0	0/0
HapMap/1KG_ESN	10/10	controls	0/0	10/10	0/0	0/0
HapMap/1KG_MSL	6/6	controls	0/0	6/6	0/0	0/0
HapMap/1KG_ITU	8/8	controls	0/0	7/7	0/0	1/1
HapMap/1KG_CEU	237/243	controls	0/0	237/243	0/0	0/0
HapMap/1KG_JPT	102/102	controls	0/0	102/102	0/0	0/0
HapMap/1KG_LWK	140/151	controls	0/0	140/151	0/0	0/0
HapMap/1KG_ASW	115/131	controls	0/0	113/129	2/2	0/0
HapMap/1KG_MXL	112/115	controls	0/0	112/115	0/0	0/0
HapMap/1KG_TSI	174/174	controls	0/0	174/174	0/0	0/0
HapMap/1KG_GIH	2/2	controls	0/0	2/2	0/0	0/0
HapMap/1KG_MKK	150/150	controls	0/0	150/150	0/0	0/0
HapMap/1Kg_all_combined	1866/1903	controls	1/1	1861/1898	3/3	1/1

*First number (before slash) is minimum number of unrelated chromosomes, second number (after slash) is maximum number of unrelated chromosomes.

							Number of	Transmission	Previously
Variant*	Carrier(s)	Carrier status(es)	Called by	Alignment location	Genic location**	Minimum size	supporting MIPs	observed?*	known?
HYDIN internal duplication	03C16388	case	automated caller	225785-240797	intron 42 to intron 45	15 kbp	6	DO 10	DI
HYDIN2 internal deletion	CMS_9492	case (chromosome 1q21 deletion)	automated caller	51702-55192	intron 9 to intron 10	3 kbp	11	00	Ю
HYDIN2 internal deletion	SSC 11176.s1	control	automated caller	138752-141883	intron 19 to intron 20	3 kbp	s.	00	по
HYDIN2 internal duplication	217-14244-3680	case	automated caller	1-212135	intron 5 to intron 39	212 kbp	92	00	Ю
HYDIN2 internal duplication	HG03976	control	automated caller	49583-338591	intron 9 to intron 80	289 kbp	129	ou	ou
HYDIN2 internal duplication	SSC 11422.p1	case	automated caller	54502-212135	intron 10 to intron 39	158 kbp	70	DO	no
HYDIN -> HYDIN2 conversion	SSC 11094.s1, AU1188303	control, control	automated caller	156380-158432	intron 23	2 kbp	5	no	ou
HYDIN deletion	SSC Si1295	case	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	ou	yes
HYDIN duplication	05C47106	case	automated caller	1-357274	intron 5 to intron 84	357 kbp	153	00	yes
HYDIN duplication	Ag449	case	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	DO	yes
HYDIN2 deletion	NA19190	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	по	yes
HYDIN2 duplication	NA19201	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	yes	yes
HYDIN2 duplication	NA19703	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	yes	yes
HYDIN2 duplication	NA19705	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	153	yes	yes
HYDIN2 duplication	NA20127	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	272	yes	yes
HYDIN2 duplication	215-13135-1523	case	automated caller	1-357274	intron 5 to intron 84	357 kbp	153	yes	yes
HYDIN2 duplication	SSC 12325.s2	control	automated caller	1-357274	intron 5 to intron 84	357 kbp	153	yes	ycs
*For interlocus gene conversion va-	riants, the conversion donor is liste	d before the arrow and the conversion acc	eptor after the arrow						

Supplementary Table 2. HYDIN duplication, deletion, and interlocus gene conversion events.

For this and the courtes have a networks or to work as a new or work as an use vertures or accuration accurates a new and the courtes have accurate and the courtes have a new and the courtes have accurate and the courtes have accurate and the new and the courtes have accurate and the courtes have accurate and the new accurate have a new accurate have accurate have

Supplementar	y Table 3: Loca	ations of other	copies of the	HYDIN2 pron	noter-associated d	uplication, their relation	iship to NBPF, a	nd evidence for t	ranscription	
				associated		distance	s to orientation	relationship of		
BLAT				NBPF	distance to EV15	distance to CM NBPF	3' (promoter/	promoter to	spliced	
result chr	start	end	% identity	member	promoter (kbp)	promoter (kbp) UTR	NBPF)	NBPF	ESTs*	tissue source(s) of spliced EST(s)**
1 chr1	146427435	147030676	100.0%	NBPF12	451	472	+/+	upstream	ycs	hippocampus (3), brain (1), fetal brain (1)
2 chr1	148088687	148263630	99.5%	NBPF11	98	118	-/-	upstream	yes	fetal brain (1)
3 chr1	145239245	145540744	91.5%	NBPF20	49	69	-/+	upstream	yes	hippocampus (1)
4 chr1	148002800	148304299	91.4%	NBPF11		52	-/+	downstream	yes	hippocampus (1), NE lung carcinoid (2), carcinoid (2)
5 chrl	145973900	146728039	90.8%	NBPF10		222	-/-	upstream	yes	cerebellum (2)
6 chr1	148471458	148681704	90.2%	NBPF14		2.1	-/-	downstream	ycs	pooled tissues (1)
7 chr1	144393920	144469916	90.3%	NBPF15		2.1	-/-	downstream	ou	
8 chr1	145239245	145540744	90.2%	NBPF20		2.1	-/-	downstream	ou	
9 chr1	149354590	149691092	90.6%	NBPF19		2.1	-/-	downstream	yes	germinal center B-cell (1), embryonic 1st PA (1)
10 chr1	120795255	120894554	90.0%	NBPF26		2.8	+/+	downstream	yes	brain (1), spleen (1)
*Are spliced hu	uman ESTs prest	ent with 5' ends	contained w	ithin the promot	er?					

**When >5 spliced ESTs were present, only tissue sources for 5 were recorded, chosen by order of display on the UCSC genome browser. NE: neuroendocrine; PA: pharyngeal arch.

Supplementary Table 4. Pairwise dN/dS values for HYDIN in primates.

Species/Paralog	Human duplicate	Human ancestral	Chimpanzee	Gorilla	Gibbon	Macaque	Marmoset
Human duplicate	-						
Human ancestral	0.47	-					
Chimpanzee	0.39	0.29	-				
Gorilla	0.28	0.23	0.24	-			
Gibbon	0.29	0.28	0.28	0.26	-		
Macaque	0.25	0.24	0.25	0.23	0.26	-	
Marmoset	0.31	0.30	0.30	0.30	0.31	0.31	-

Supplementary Table 5: Likely gene disruptive events detected in HYDIN/HYDIN2 by MIP-based sequencing of exons.

Paralog*	Variant	Exon	Intron	Protein position	Amino acid	Samples	Frequency	Number genotyped**
HYDIN	splice_donor	-	29/85	-	-	1	0.04%	2603
HYDIN	stop_gained	11/86	11/86	1330	R/*	1	0.04%	2599
HYDIN2	splice_acceptor	-	14/85	-	-	2	0.08%	2605
HYDIN2	frameshift	19/86	-	2531-2532	A/X	1	0.04%	2607
HYDIN2	splice_donor	-	28/85	-	-	1	0.04%	2600
HYDIN2	frameshift	41/86	-	2115-2116	VI/VSX	10	0.38%	2598
HYDIN2	splice_donor	-	42/85	-	-	1	0.04%	2599
HYDIN2	frameshift	46/86	-	2485	A/X	1	0.04%	2600
HYDIN2	frameshift	48/86	-	2680	G/X	1	0.04%	2598
HYDIN2	splice_acceptor	-	54/85	-	-	1	0.04%	2595
HYDIN2	splice_acceptor	-	67/85	-	-	6	0.23%	2601
HYDIN2	stop_gained	80/86	-	4563	W/*	1	0.04%	2599
unknown	splice_donor	-	8/85	-	-	1	0.04%	2601
unknown	frameshift	17/86	-	766-768	LVL/X	1	0.04%	2597
unknown	splice_donor	-	31/85	-	-	1	0.04%	2595
unknown	frameshift	35/86	-	1771	P/X	24	0.92%	2595
unknown	frameshift	37/86	-	1885	N/X	1	0.04%	2603
unknown	splice_donor	-	43/85	-	-	3	0.12%	2602
unknown	stop_gained	45/86	-	2352	R/*	1	0.04%	2597
unknown	splice_donor	-	50/85	-	-	1	0.04%	2598
unknown	frameshift	51/86	-	2876	T/NX	1	0.04%	2604
unknown	stop_gained	52/86	-	2928	Q/*	1	0.04%	2595
unknown	splice_acceptor	-	52/85	-	-	5	0.19%	2594
unknown	splice_donor	-	53/85	-	-	2	0.08%	2601
unknown	stop_gained	62/86	-	3504	E/*	1	0.04%	2604
unknown	stop_gained	70/86	-	3970	R/*	1	0.04%	2604
unknown	splice_donor	-	75/86	-	-	1	0.04%	2602
unknown	splice_acceptor	-	83/85	-	-	1	0.04%	2598
unknown	stop_gained	84/86	-	4846	Q/*	1	0.04%	2602

*Paralog determined by presence of SUN on variant-containing MIP reads, variants identified by MIP reads that did not intersect a SUN could not be assigned; Variants in *HYDIN2* are annotated with the exon numbering scheme from *HYDIN*

**Number of samples successfully genotyped for this variant (Freebayes)

Supplementary Table 6. Phenotypes for patients having atypical chromosome 1q21 rearrangements.

Supprementa	y Table 0. r	nenotypes i	HYDIN2conv	y atypical curomosome aq21 rearrangements.	
Individual	Cohort	1q21 CNV	number (MIP)	Phenotype	Notes
14813.x10	SVIP	duplication	2	The patient is a 6-year-old Cancasian male. Facial features include macrocephaly, mild bilateral down slaming papierela fissures and small ears with thickneed/verfolded helices and large lobes that are posteriorly rotated. Additional facial features include mild plagiocephaly, small mouth, and tented upper lip. Physical examination reveals left 5th and right 4th-5th clinodacityl of fingers as well as 4th and 5th bilateral clinodacityl of tees. Patient has an anterior hair whort, a hypopigmented spot on his right adhomen and a Caf6-au-bit colord macule on his left inner tnee. Examination also reveals loted 5th and right 4th-5th clinodacityl of fingers as well as 4th and 5th bilateral left inner tnee. Examination also reveals loted 5th and right 4th-5th clinodacityl of fingers as well as 4th and 5th bilateral extrange height and weight, but has a normal BMI of 21.4 (72 months: height - 127.5 cm, z - 2.36 weight - 34.74 kg, z - 2.83). Patient was diagnosed with Autistic Dionoter (confirmed with ADOS, ADI, and clinical judgment using DSM-1V criteria) as well as Mild Mental Retardation (based on diagnostic history, cognitive and adaptive assessment, parent report of symptoms and clinical judgment). He uses mostly single words with occasional phrases. Patient hows a sutime-related impairments in language and social communication, including odd intonation/pitch, exballa, stereotyped language, limited spontaneous use of gestures and eye contact, limited range of facial expressions, limited response to social smile and name, difficulties with joint attention, initiation of social interaction and pretend play. Finger flapping and repetitive use of play objects are also noted. Patient's cognitive abilities fall in the Very Low range (Mullen Verbal (Q - 38, DAS-II) Nerverbal (Q - 51) Adaptive abilities fall in the Low range (Vineland Adaptive Composite = 64). Patient used his first single words as 45 morths, falleg. Earlier in his history, he did spontaneously gin/bable severe language, but mother reports to sos of babblin	
14813.x9	SVIP	duplication	2	The patient is a 37-year-old Caucasian male. Physical examination reveals pupillary hippus bilaterally, as well as an oral cafa au-lait brown macule on the left cheek. Patient has an irregular bordered light brown macule on his right upper back, as well as an oval cafa au-lait soot on his left butteck. Patient has wide-spaced 18-2nd toes bilaterally, and very mild left concere toractics collosis. Patient also has mild plagicoephaly. Additionally, he has a mild left deviation of the gluteal cleft at the top, but no dimple. Patient has a head circumference of 60.0m. Patient has a height of 177.5m and a verified to 122-92(ag, with a RMI indicative of obstity. Patient has a diagnostic of Depressive Disorder Not Otherwise Specified (confirmed with rating scales, clinical judgment using DSM-IV criteria) for which he takes Sertraline. Patient does not meet diagnostic criteria for ASD or other related disorders, but is observed to have a flat affect and flat/monetone speech. He self- reports som scotial difficulties, level close friendships, and has moderately low scores on Vineland Socialization scale (Standard Score = 85). As a child he notes he was shy, stayed to himself and did not talk much. Patient's cognitive abilities fall in the Average range (WASI Verbal IQ = 111, Nonverbal IQ = 105). Besides the aforementioned scores on Socialization, his adaptive abilities fall in the Adequate range (Adaptive Composite = 90). Academic skills are Average to High Average (WIAT-III Rading Comprehension = 12). Sentence Compositien = 92; Word Reading = 114; Namerical Operations = 106). Patient is right-hand = 37.68). Patient was horn vaginally at full-term (exazt gestational weeks unknown). No pregnancy or labor complications were reported. Patient was glasses to correct vision to noral. Patient has macrocephaly, but no other neuroological problems are noted. Patient was glasses to correct vision to noral. Batient and macrocephaly, but no other neuroological problems are noted. Patient was glasses to correct vision to noral. Bat	father of 14813.x10
14881.x3	SVIP	duplication	2	Patient is a 36-year old male. Physical examination reveals presence of a café au lait (location not specified). Patient also exhibits rapid and fast postnail termor. Patient currently meets criteria for macrocephaly (435 months: HC = 59.2 cm, z = 2.86). Patient has an above average beight, an above average weight (435 months: height = 186.4 cm, z = 1.34, weight = 91 kg, z = 1.40) and a BMI indicative of being overweight (BMI = 26.2). Patient does not meet diagnostic criteria for ASD or other psychiatric disorders. Patient's cognitive abilities fall in the Average to Above Average ranges (WASI verbal 10 = 107, Nonverbal IQ = 102, Patient Blocal LQ = 118, Patient Composite = 107). Patient is right-hand dominant and has Low Average finge motor coerdination (Pardus Pegboard T scores, Dominant = 40, Non-dominant = 38, Boht Hands = 38). Patient was born vaginally at 41 weeks gestation. While labor complications were endorsed. no specifies were obtained. Patient was diagnosed with recurrent ottis media (> 8 total occurrences) at 8 years of age, and hypertension at 10 years of age. Additionally, patient was diagnosed with heart problems at 28 years of age, and hypertension at 10 years of age, but no other neurological problems are noted. No gastrointestinal conditions or sleep problems were reported.	
CB_081113	Manchester	deletion	2	Patient has similar problems and facial features as proband RB_078381. Learning disability is milder but did not do well at school. Short with a small bead size on 3rd centile.	father of RB_07838 1
RB_078381	Manchester	deletion	2	Born at term weighing 3.16 kg. Poor growth; now short stature 0.4th – 2nd centile. Microcephalic with OFC below 3rd centile. Heart murmur investigated by echocardiogram and found to be innocent. Dysmorphic facial features; long columella, prominent incisors with wide gap between front teeth. Broadish thumbs and great toes, prominent fetal pads on fingers. Learning disability with IQ of 65 (mild MR), attends special school. Poor concentration. Normal echocardiogram. Exophoria. Normal neurologic examination.	
SAL_703574	Salisbury	deletion	2	Referred extrodactyly, eetodermal dysplaxia, clefting syndrome; re-referred for array CGH with ectrodactyly on left hand, absent left foot. Mild global delay. Height, weight, and OFC all <0.4th percentile for age. Epicanthic folds, mild micrognathia, high palate, bifid uvula, tarricephaly. Talipes of the right foot. Normal heart. Duane anomaly. Truncal hypotonia. Also have photos.	

Supplementary Table 7. Primers used in RACE and RT-PCR experiments.

a) RACE primers grouped by target region (GSP: gene-specific primer; 5' GSP refers to positive control primer) 5' RACE

5 RACE			
target name	outer GSP	inner GSP	5' GSP
4.1	TTTGTGCCTGCAGAAATGCCA	GCCTCTGGGGTAGAAGAAATGT	GCGATTAGAGCGGTTCAAACAA
4.2	ATGGCAGCTCCATAGAGAGA	ACAAACACCTTTTCACCTGTGT	ATGTGGGAGAGTCCATGCAA
4.3	AATGTGCCCCCAAATTGAGTTC	TGGAGCAAAGGGCTTATCTGAA	GACGATTGAACCCAATGAAGGC
4.4	GTGTTTTTGCCAGTCTCTGCTC	TGAGGGTGTAAGCATTCGGTTT	GCTGTTCAGATGGGATTGGTCA
3' RACE			
target name	outer GSP	inner GSP	
6.1	CTAGCCATAACTTGGTTGCATT	CTTGGTTGCATTCTCTAATCCG	
6.2	GGCTTTGAGTTCAAGGTTCTGAC	AGTTCAAGGTTCTGACTGACCA	
6.3	AACAGAGGCGAAACACAAATCC	CCTGGAGGAAAAGGCCTTGAA	
6.4	CTTTGCCACGGTGTCCTTCA	CGCAGATCATGCAGAACTACCA	
6.5	CCAAGAACCGGAAAGGCATC	GGCATCGCCATTATCATTCACG	
6.6	TATAGGGCCTGTGATGATCTGA	AGAGGAGAAGGATGAGACTGATGA	
6.7	TCTGGGAATGGAGGAAGAGACT	CCTCAAGCTGTCCTGCCTTC	
6.8	GGTGACCTTCTCCATCATCGTG	GATAACCCAGCCTTCACCATTC	

b) Primers used in nested targeted RT-PCR of HYDIN2 transcripts

Targeted RT-PCR

	outer fwd	inner fwd	outer rev	inner rev
SMRT cell 1	CATCCCTTCCAGCCTCAG	GGCCTTGGAAAATCGGAGC	CAGTGTGTCATTCAGGTTGG	TGGGTTCAATCGTCCAAAGG
	AGGACTACTGAGCAAGGC	GGCCTTGGAAAATCGGAGC	TTGAGTTCTGGAGCAAAGGG	TGGGTTCAATCGTCCAAAGG
SMRT cell 2	CATCCCTTCCAGCCTCAG	GGCCTTGGAAAATCGGAGC	CTTCATGGCTGCGTAATCC	TCCGAGCAAAGAGAGTGTCG
	CCCTTTGGACGATTGAACC	AGCAGTACCTATCGGATTCC	CTTCATGGCTGCGTAATCC	TCCGAGCAAAGAGAGTGTCG
	CCAAGAACCGGAAAGGCATC	GGCATCGCCATTATCATTCACG	AGAAGACTCCTAGCTCATCC	CATTGTTCTTGAGGATGAGAGG
	GCAACGTGGGAAAGATCACC	TGTGCATTGCCAGTCATTCC	AGTTCCATCATCTTCCAGCC	TGTATAGGCCTGAGAGCTGC
	GCAACGTGGGAAAGATCACC	TGTGCATTGCCAGTCATTCC	AAGCTCCAGACATCCTCAGG	TCACCAGGAACCTTTGCC

c) Primers used for tissue expression measurements of HYDIN and HYDIN2

Expression RT-PCR GAPDH_fwd TGAAGGTCGGAGTCAACGGATTTGGT GAPDH_rev CATGTGGGCCATGAGGTCCACCAC ex46_fwd1 CATGTACTGGGACCGGAAGC ex46_rev2 CCTTCAAAGTCTGGTGTCTGG

Supplementary Table 8. Fetal brain DNase I hypersensitivity samples with GEO accession numbers. I. ID D

Sample ID	Issue	Imepoint	Sex	Sequencing	Project	Accession
DS16302	fetal brain	d142	F	se	Roadmap	GSM665819
DS11877	fetal brain	d122	Μ	se	Roadmap	GSM595913
DS11872	fetal brain	d122	Μ	se	Roadmap	GSM723021
DS14464	fetal brain	d117	F	se	Roadmap	GSM595920
DS15453	fetal brain	d112	U	se	Roadmap	GSM665804
DS20231	fetal brain	d109	F	se	Roadmap	GSM878652
DS23638	fetal brain	d105	Μ	pe	ENCODE	ENCBS493ZWQ
DS20780	fetal brain	d105	Μ	se	Roadmap	GSM1027328
DS20226	fetal brain	d104	Μ	se	Roadmap	GSM878651
DS20221	fetal brain	d101	Μ	se	Roadmap	GSM878650
DS14803	fetal brain	d96	F	se	Roadmap	GSM595926
DS14815	fetal brain	d96	F	se	Roadmap	GSM595928
DS14717	fetal brain	d85	F	se	Roadmap	GSM595922
DS14718	fetal brain	d85	F	se	Roadmap	GSM595923
DS23849C	fetal brain	d80	U	pe	ENCODE	ENCBS694XIX
DS24711A	fetal brain	d76	Μ	pe	ENCODE	ENCBS980LUR
DS24872A	fetal brain	d72	Μ	pe	ENCODE	ENCBS489VFT
DS24775A	fetal brain	d58	Μ	pe	ENCODE	ENCBS852UJL
DS23813A**	fetal brain	d56	U	pe	ENCODE	ENCBS539WGT

*pe:paired end, se:single end

**shown in Figure 1e

Supplementary Tables 9 and 10, which contain a list of MIP sequences used, can be found in additional file 3.