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Maternal Modifiers and Parent-of-Origin Bias
of the Autism-Associated 16p11.2 CNV

Michael H. Duyzend,! Xander Nuttle,! Bradley P. Coe,! Carl Baker,! Deborah A. Nickerson,!
Raphael Bernier,2 and Evan E. Eichler!.3.*

Recurrent deletions and duplications at chromosomal region 16p11.2 are a major genetic contributor to autism but also associate with a
wider range of pediatric diagnoses, including intellectual disability, coordination disorder, and language disorder. In order to investigate
the potential genetic basis for phenotype variability, we assessed the parent of origin of the 16p11.2 copy-number variant (CNV) and the
presence of additional CNVs in 126 families for which detailed phenotype data were available. Among de novo cases, we found a strong
maternal bias for the origin of deletions (59/66, 89.4% of cases, p = 2.38 X 1071, the strongest such effect so far observed for a CNV
associated with a microdeletion syndrome. In contrast to de novo events, we observed no transmission bias for inherited 16p11.2 CNVs,
consistent with a female meiotic hotspot of unequal crossover driving this maternal bias. We analyzed this 16p11.2 CNV cohort for the
presence of secondary CNVs and found a significant maternal transmission bias for secondary deletions (32 maternal versus 14 paternal,
p = 1.14 x 107?). Of the secondary deletions that disrupted a gene, 82% were either maternally inherited or de novo (p = 4.3 x 107%).
Nine probands carry secondary CNVs that disrupt genes associated with autism and/or intellectual disability risk variants. Our findings
demonstrate a strong bias toward maternal origin of 16p11.2 de novo deletions as well as a maternal transmission bias for secondary

deletions that contribute to the clinical outcome on a background sensitized by the 16p11.2 CNV.

Introduction

Duplication and deletion of an ~550 kbp region on chro-
mosome 16p11.2 accounts for ~1% of autism cases, repre-
senting one of the most common contributors to autism
spectrum disorder (ASD) in the human population.'~”
Unlike many other syndromic disorders, such as Smith-
Magenis or Prader-Willi syndromes, detailed studies of in-
dividuals with the 16p11.2 copy-number variant (CNV)
have revealed marked phenotypic variability.””'' Pheno-
typic studies indicate different phenotypes associated
with the CNV, and opposite phenotypes are sometimes
associated with 16p11.2 deletion and duplication. For
example, the deletion has been associated with seizures,”
obesity,'” intellectual disability," and macrocephaly,”
whereas the duplication has been associated with schizo-
phrenia,'® reduced BMI,'* and microcephaly.® Although
it is clear that the 16p11.2 CNV confers a strong risk for
neurodevelopmental disease,'*'® it is likely that other fac-
tors, including genetic background, are key in determining
the severity of the phenotypic outcome.'”?"

Recently, a cohort of over 120 families, including at least
one proband carrying a 16p11.2 CNV, was assembled as
part of the Simons Variation in Individuals Project (Simons
VIP).?! This collection is one of the largest cohorts for the
16p11.2 CNVand is distinctive in its comprehensive pheno-
typicassessment of participants. It offers a useful resource for
studying genetic differences on a background sensitized by a
known pathogenic CNV and for studying how these differ-
ences affect phenotype severity. In this analysis, carriers of
the 16p11.2 CNV are either probands or other family mem-
bers who are heterozygous for the deletion or duplication, ir-

respective of diagnostic ascertainment or inheritance status.
The goal of this study was 2-fold: (1) to provide genetic detail
regarding the extent and transmission characteristics of the
CNV in these families and (2) to investigate the presence of
CNVs in addition to the role of the 16p11.2 CNV in modi-
fying the severity of the phenotype. For clarity and to distin-
guish from the ascertained 16p11.2 CNV, we will refer to the
rare additional CNVs (present in <0.1% of control individ-
uals) as secondary CNVs. In this study, we assess the parent
of origin and mechanism of unequal crossing over for the
16p11.2 de novo CNVs and examine transmission bias for
secondary CNVs within these families.

Subjects and Methods

Samples

DNA samples were derived from peripheral blood obtained from
482 individuals from 141 families affected by the 16p11.2 CNV as
part of the Simons VIP. Exclusion criteria included the presence of
any additional pathogenic CNVs or other neurogenetic or neurolog-
ical diagnoses unrelated to 16p11.2.>' More than 80% of probands
were of full European ancestry (Table S1). We utilized the Simons
VIP September 30, 2014 release of phenotypic information for these
individuals. All procedures for clinical assessment and blood ex-
traction were approved by the institutional review boards of
participating institutions, and informed consent was obtained for
participation in this research.

Phenotypic Assessment

As part of participation in the Simons VIP,*' standardized assess-
ments, including psychiatric, neurocognitive, behavioral, motor,
and neurologic evaluation, were conducted at three Simons VIP
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Table 1. Clinical Characteristics of Screened Probands

Probands with Deletions (40 F and 50 M)

Probands with Duplications (16 F and 20 M)

Median Range Number Reported Median Range Number Reported

Age (years) 7.83 0.83-20.75 89/90 5.83 (1.42-23.42) 35/36
FSIQ 86 46-122 87/90 77 (28-114) 33/36
FSIQ decrement 25.5 —9-68.5 49/90 22 (6.5-89) 23/36
Social Responsiveness 74.5 37-90 78/90 76 (42-90) 25/36
Scale score

Autism Diagnostic 11 2-30 60/90 11.5 (2-26) 18/36
Interview Revised score

Head circumference (cm) 54 45-59.7 86/90 51.05 (44.4-58) 34/36
BMI 19.2 13.35-37.13 86/90 16.17 (13.36-28.37) 34/36
Number of diagnoses® 3 1-5 80/90 2 (1-5) 32/36

Abbreviations are as follows: F, female; M, male.

This includes ASD, ADHD, communication disorders, anxiety disorders, mood disorders, intellectual disability, tic disorders, elimination disorders, learning dis-
orders, and behavioral disorders, totaling 27 diagnostic codes. 21/89 deletion-carrying probands and 8/35 duplication-carrying probands for whom data was

reported have been diagnosed with clinical autism.

clinical sites; additionally, detailed medical histories were
collected through interviews and review of medical records for
each participant. Psychiatric and neurodevelopmental conditions
were diagnosed by experienced, licensed clinicians using all avail-
able information, including clinical observation, caregiver history,
and records review, and in accordance with DSM-IV-TR (Diag-
nostic and Statistical Manual of Mental Disorders, 4™ edition,
text revision) criteria.?? Diagnostic foci included ASD, attention
deficit hyperactivity disorder (ADHD), communication disorders,
anxiety disorders, mood disorders, intellectual disability, tic dis-
orders, elimination disorders, learning disorders, and behavioral
disorders, totaling 27 diagnostic codes. Full-scale intelligence quo-
tient (FSIQ) was determined by the developmentally appropriate
cognitive measure (Mullen Scales of Early Learning®’), the Differ-
ential Abilities Scale, Second Edition,?* or the Wechsler Abbrevi-
ated Scales of Intelligence.”® For our phenotype analysis, we
defined the FSIQ decrement as the average of the FSIQ of the par-
ents subtracted from the FSIQ of the proband (Table 1).

CNV Detection

SNP microarray data were generated from the Illumina
HumanOmniExpress v.1 (104 probands, 280 family members)
and v.2 (26 probands, 72 family members) microarray platforms.
Each microarray contains over 715,000 probes and has the power
to detect CNVs >100 kbp with >95% sensitivity (Figure S1).
CNVs were detected with the cnvPartition algorithm (see Web Re-
sources). We chose this algorithm because its performance (as deter-
mined by the cnvPartition score) had previously been optimized by
comparison against CNVs detected by deep whole-genome
sequence data.?® For both array designs, we generated a cluster defi-
nition file from only the individuals who did not carry the 16p11.2
CNV by using the Illumina Genome Studio software (see Web Re-
sources). Samples in the extremes for call rate and autosomal
LogR SD were manually inspected. We assessed one family with
anindividual carryinga 16p11.2 triplication and removed this fam-
ily (Simons VIP family 14752), as well as families in which the pro-
band did not have the expected 16p11.2 CNV identified in the
clinic (14905 and 14925), from subsequent analysis. Familial rela-

tionships were assessed with the program KING,?” and samples
that did not match expected pedigree membership were removed
(Table S1). The analysis showed that the probands were unrelated,
except for two probands (14710.x7 and 14877.x7) who have a
possible third-degree relationship. To ensure accurate comparisons
between OmniExpress platforms, we required a minimum of seven
probes within unique regions for both platforms and excluded the
call if it contained >50% segmental duplication. Calls with the
same state in the same individuals within 500 kbp of one another
were merged if appropriate after manual inspection, and all calls
identified as de novo were manually inspected. A subset of the
calls >100 kbp were validated with an array comparative genomic
hybridization (CGH) platform (Tables S2 and S3). After this cura-
tion, 102 probands and 264 family members were analyzed on
the HumanOmniExpress v.1 platform, and 24 probands and 68
family members were analyzed on the HumanOmniExpress v.2
platform. Secondary CNVs intersecting genes associated with
autism risk variants were defined with the SFARI gene list (June
2015, see Web Resources). We used the two-sided binomial test in
this study and all genomic coordinates are listed in the UCSC
Genome Browser (hg19), unless otherwise indicated.

CNV Inheritance and Validation

For each CNV call in a proband, we genotyped parents and siblings
(if present), computed the median log ratio across these regions,
and used this information to genotype across the family. We
further validated a subset of large (>100 kbp) CNVs by using a
custom array CGH platform (Table S3). We utilized a previously de-
signed custom 12-plex NimbleGen array with a total of 135,000
probes targeted to genomic hotspots for CNV detection.”® The
hotspot array consists of a high density of probes (approximately
2.6 kbp apart) targeting 107 genomic hotspot regions and a probe
spacing of approximately 36 kbp in the genomic backbone. Array
hybridization experiments and analysis were performed as
described previously.”® All signal intensities from the array CGH
experiments were loaded onto a UCSC Genome Browser mirror
and manually visualized. 26/34 secondary CNVs >100 kbp called
by the SNP microarray were validated by array CGH. The eight
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events that did not validate had insufficient coverage on the array
CGH platform (<5 probes spanning the region).

Analysis of Control Cohorts

To assess the population frequency of each secondary CNV, we
used two sets of curated control samples. Set I focuses on larger
CNVs from 19,584 previously published control individuals'
whose ethnicity is similar to that of our case individuals (79.2%
with known ethnicity are of European descent). Set II is a curated
set of 4,092 samples from the Welcome Trust Case Control Con-
sortium (WTCCC, see Web Resources) and analyzed with a custom
[lumina 1.2 million SNP microarray. Because of a higher density
of probes, set II has increased sensitivity for smaller events as
compared to set I. Set I CNVs were recalled with the cnvPartition
algorithm in order to improve the comparison with the case indi-
vidual calls. We called CNVs on 2,920 samples from the WTCCC
58C cohort and 2,698 samples from the WTCCC UKBS (UK Blood
Service) cohort. The ethnicity of the UKBS cohort is 100% Euro-
pean ancestry. Although the ethnicity of the 58C cohort is not
available, this is a 1958 British Birth Cohort and therefore likely
to primarily contain individuals of European descent. Control in-
dividuals were not ascertained specifically for neurological disor-
ders, but all control samples were obtained from adult individuals
providing informed consent, so severe developmental phenotypes
should be exceedingly rare.

Samples with a SNP call rate <0.98 and/or an autosomal LogR
SD <0.37 were removed.'””> We utilized an outlier detection
method for skewed data®’ to identify and remove additional sam-
ples with an excess of calls and/or an excess of larger calls
(>100 kbp or >500 kbp). Finally, we applied this outlier method
to exclude CNVs within these size ranges when their median
LogR value subtracted from their mean LogR value was greater
than 0.2 or less than —0.15, which are known characteristics of
false-positive calls. 4,092 samples passed quality control (2,025
samples from the 58C cohort and 2,067 from the UKBS cohort).
Similarly to our analysis of case CNVs, we required at least seven
unique probes for each CNV call. Calls with the same CNV state
and mapping within 500 kbp of one another were manually in-
spected and merged if appropriate. To assess the frequency of
CNVs in case individuals, we computed the number of state-
matched events that have a 50% reciprocal overlap with a control
event in both set I and set II. Because of the probe density, set II
offered greater sensitivity for assessing the frequency of smaller
CNVs in case individuals. In addition, set II uses the same tech-
nology as the case platforms, and CNV calls were made with
the same algorithm. We only considered secondary CNVs as
rare if there were sufficient probes to call the variant in either
set I or set II and the estimated control frequency was <0.1%
(Table S3).

De Novo 16p11.2 CNV Parent-of-Origin Analysis

We used the signal intensity data (LogR) to confirm the presence of
the 16p11.2 CNV and B-allele frequency (BAF) across the critical
region to infer the parent of origin for 79 families in which a de
novo 16p11.2 CNV had been identified (Figures 1A and 1B, Tables
S4 and S5). This included 64 individuals from the Simons VIP
(58 deletions, 6 duplications) as well as 15 individuals from the
Simons Simplex Collection (SSC) who were previously assessed
with SNP microarrays®’ (8 deletions, 7 duplications, Table S6). In
total, 34 quads (families for which data from both parents, a sib-
ling, and a proband are available), 22 trios (families for which

data for both parents and a proband [but no sibling] are available),
and 10 probands with data available from only one parent were
used to assess de novo deletion cases (Table S4). A total of 8 quads
and 5 trios were used to assess de novo duplication cases (Table S5).
We restricted this analysis to probes mapping within the 16p11.2
critical region (112 for the OmniExpress arrays). For deletions,
only two genotypes are possible for each probe (A or B), with cor-
responding BAFs of O or 1, whereas for duplications, four geno-
types (AAA, AAB, ABB, and BBB) with corresponding BAFs of 0,
1/3, 2/3, and 1, respectively, are possible (see Supplemental Ap-
pendix). For case individuals for whom we had SNP microarray
data from both parents (trios), we computed the probability that
the unaffected haplotype came from the mother versus from the
father by using parental SNP genotypes. In the case individuals
with a 16p11.2 deletion previously confirmed as de novo and for
whom only one parent’s data was available, we estimated the
probability of the genotypes for the unobserved parent by using
the known allele frequencies for particular probes from the 1000
Genomes Project.?’ To test the fidelity of this approach for families
affected by deletions and with incomplete data, we estimated
the false discovery rate by removing a parent from a subset of
the families for which we had information from both parents
(Table S7). Using this approach, we found that 78/88 parent-of-
origin estimates matched our inferences (a false discovery rate of
11.4%).

Mechanism of Unequal Crossover and Recombination
Analyses

To determine the mechanism of unequal crossover of de novo
16p11.2 CNV events, we phased the haplotypes in the unique re-
gions flanking the 16p11.2 critical region in the proband by using
the sibling (if present) or dbSNP (if absent)** (see Supplemental Ap-
pendix for details and calculation). An exchange of flanking SNP
markers suggests an interchromosomal mechanism (nonallelic ho-
mologous recombination [NAHR] during meiosis I), whereas main-
tenance of the haplotype phase (i.e., no exchange) suggests an
intrachromosomal or interchromatidal mechanism (most likely
NAHR during meiosis II). Because this method cannot differentiate
between intrachromosomal and interchromatidal mechanisms, we
refer to both as an intrachromosomal mechanism. Male and female
recombination rates for the critical region were obtained from Kong
et al.** The genetic distance between the leftmost and rightmost
markers in our analysis is 6.20 cM for the female versus 0.45 cM
for the male, which corresponds to a probability of crossover of
6.2% and 0.45%, respectively. We also used the recombination
rate data to estimate the average difference between male and fe-
male recombination rates within the 16p11.2 critical region, and
in 550 kbp regions genome wide, for comparison. We sampled
10,000 regions of 550 kbp (the size of the 16p11.2 critical region),
excluding regions containing segmental duplications or gaps and
the sex chromosomes, and determined that the region ranks in
the 87 percentile for mean difference between male and female
recombination rates genome wide (Figure S2).

Results

Characterization of 16p11.2 CNVs in the Simons VIP
Cohort

We confirmed the presence or absence of the 16p11.2
deletion or duplication by using a SNP microarray
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Figure 1. Maternal Origin of 16p11.2 De Novo CNVs

Genomic Coordinate Genomic Coordinate

(A) We assigned SNPs on the unaffected critical region haplotype to either a paternal or maternal haplotype by using B-allele frequency
(BAF) data. Informative or partially informative markers for parent of origin are shown.

(B) LogR (lines) and BAF (dots) plots for all de novo deletion and duplication categories. Colors correspond to the inferred parent of
origin of the 16p11.2 CNV from each type of SNP marker highlighted in (A). Green bars indicate the location of segmental duplications

associated with BP4 and BP5S—collapsed here for ease of display.

(C) Approximately 90% of de novo 16p11.2 deletions and duplications originate on the maternal haplotype, a significant maternal bias
(p = 2.38 x 107! deletions, 3.42 x 1073 duplications, two-sided binomial test). Such a bias was not observed for inherited

16p11.2 CNVs.

(Ilumina OmniExpress) in a total of 459 individuals from
126 families in which a proband with either a duplication
(n = 36) or deletion (n = 90) had been identified (Table 2).
For 81% of the probands (102/126), DNA was available
from at least one parent, and 60% (76/126) had DNA
available from both parents (Table S1). We confirmed
the presence of the canonical breakpoint 4 to breakpoint
5 (BP4-BPS5) deletion or duplication for most of the pro-
bands (125/126), corrected familial transmission status
for one Simons VIP family (14784, Figure S3), and
confirmed the presence of a de novo deletion in a set of
monozygotic twins (in family 14824, Figure S4). In one
severely affected proband (14720.x7), we identified a
larger 2 Mbp deletion extending from BP2 to beyond
BPS (Figure $5).° In addition to the phenotype informa-
tion for the 70 case individuals with available DNA who
were screened, phenotype information (but no DNA) is
available for a larger set of 150 probands and their family
members. Among Simons VIP case individuals for whom
both parents were also screened for the 16p11.2 CNV
(109/150) (either via clinical microarray, fluorescence
in situ hybridization, and/or the present analysis), 90%
of deletion cases (65/72) were de novo or mosaic in the
germline. In contrast, only 24% (9/37) of duplication
cases were confirmed as de novo.

Maternal Parent of Origin of the 16p11.2 CNV

We observe a striking maternal bias for the parent of
origin of 16p11.2 de novo deletions (Figure 1). 89.4%
(59/66) occur on the maternal haplotype, representing a
significant departure from expectation (p = 2.38 X
107! (Figure 1C). A similar result was observed for dupli-
cations (12 maternal versus 1 paternal, p = 3.42 x 107%).
For individuals with inherited 16p11.2 CNVs and for
whom we have information from both parents, we
observed no significant parental transmission biases for
either duplication (15/29 maternal, p = 1) or deletion
(2/5 maternal, p = 1) cases (Figure 1C, Table S8). We
also used the microarray data to assess the relative propor-
tion of interchromosomal (between homologs) and intra-
chromosomal (within homolog) NAHR events by phasing
haplotypes of the unique regions flanking the critical re-
gion (see Subjects and Methods and Supplemental Appen-
dix). We observed no preference for a particular mecha-
nism of crossover for either maternal events (29 inter-
versus 28 intrachromosomal, p = 1) or paternal events
(1 inter- versus 4 intrachromosomal, p = 0.375) (Figure 2).
If we restrict the analysis to families for which we have
high-confidence phasing information as a result of the
presence of unaffected siblings, there is a trend toward
maternal interchromosomal unequal crossover events for
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Table 2.

Number of 16p11.2 CNV Carriers and Non-carrier Family Members Analyzed

Female Other Family

Male Probands Probands Mother Father Sibling Member® Total Trios Quads
16p11.2 Deletion Carriers
De novo” 37 24 0 0 1 0 62 22 27
Inherited 3 6 0 0 4 0 13 1 2
Unknown 10 10 3 4 0 0 27 NA NA
Total 50 40 3 4 5 0 102 23 29
16p11.2 Duplication Carriers
De novo 3 5 0 2 0 0 10 3 3
Inherited 16 7 2 4 6 13 48 9 9
Unknown 1 4 9 8 0 4 26 NA NA
Total 20 16 11 14 6 17 84 12 12
Non-carriers
Total NA NA 94 69 73 27 263 NA NA

Abbreviation is as follows: NA, not applicable.

2Other family members include grandparents, half-siblings, aunts, uncles, and cousins.
PIncludes one proband with a confirmed deletion resulting from germline mosaicism.

deletions (19 inter- versus 8 intrachromosomal, p = 0.052)
(Tables S9 and S10).

Secondary CNVs and Maternal Transmission Bias
We considered the presence of secondary rare CNVs
(<0.1% frequency in control individuals) as a potential
modifier of phenotype severity within the context of
each family. The SNP microarray used to detect CNVs in
this study has >95% sensitivity for detecting events
>100 kbp throughout the genome, although we note
that events as small as 2 kbp can be detected (Figure S1).
Despite the Simons VIP exclusion criteria for additional
pathogenic CNVs, 70% of assessed probands (88/126) car-
ried at least one secondary CNV, and 35% (44/126) of pro-
bands had two or more secondary CNVs. The percentage of
deletion and duplication probands carrying a secondary
CNV is similar (69% and 69.5%, respectively), and no sig-
nificant differences in secondary CNV presence were
observed between males and females (65% and 75%,
respectively) (Table 3 and S11). Overall, only five of the sec-
ondary CNVs were determined to be de novo (4 deletions
and 1 duplication), although in 40% of the families (50/
126), inheritance status could not be determined due to
the absence of DNA from both parents. Over a third (50/
126) of all probands carried a secondary CNV >100 kbp
in size (Tables 3 and S11). 81 secondary CNVs disrupted
an annotated exon of a gene. 11 of these corresponded
to genes associated with autism risk variants (Table S12),
consistent with their potential contribution to disease eti-
ology in the nine individuals in whom they were found.
Among secondary CNVs for which inheritance could be
unambiguously determined (i.e., both parents were
screened), maternally inherited events predominated (52

maternal versus 35 paternal, p = 0.086). The maternal
bias is strongest for the most likely pathogenic events. If
we consider only secondary deletions, 70% are transmitted
maternally (32 maternal versus 14 paternal, p = 1.14 x
1072). This is significant both in terms of the number of
events as well as the number of probands inheriting
an event from a particular parent (29 maternal versus
10 paternal, p = 3.38 x 10~%). This effect remains signifi-
cant if we restrict our analysis to secondary deletions inter-
secting an exon (13 maternal versus 4 paternal secondary
CNVs, p = 4.9 x 102). These trends also hold for second-
ary deletions >100 kbp in length, although this finding
does not reach significance as a result of sample size limita-
tions. This maternal bias for deletions is observed for both
16p11.2 deletion and duplication individuals, irrespective
of the gender of the proband (Table S11).

Phenotypic Features

Carriers and non-carriers of the 16p11.2 CNV within the
same family vary dramatically in their phenotypic presenta-
tion (e.g., FSIQ difference,>° Figure 3, Tables 1 and S13). We
observe statistically significant differences between the
FSIQ distributions of parents carrying the 16p11.2 deletion
and of probands with the deletion (p = 6 x 10>, Student’s
t test). Similarly, the means of the FSIQ distributions of the
parents and probands carrying the duplication are signifi-
cantly different (p = 3.89 x 10~°, Student’s t test). Such
differences between parents and children carrying the
16p11.2 CNV suggest that other genetic and non-genetic
factors are contributing to the phenotype. We investigated
the relationship between additional-CNV burden and
severity of phenotype by using FSIQ, Social Responsiveness
Scale (SRS) scores, Autism Diagnostic Interview Revised
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(A) Schematic shows intrachromosomal and interchromosomal NAHR events and the resulting products. Colors (green and purple) indi-

cate different homologs.

(B) Counts of interchromosomal and intrachromosomal NAHR events by parent of origin and by deletion versus duplication status.
None of the differences are significant based on a two-sided binomial test.

(C and D) LogR (lines) and BAF (dots) plots are shown for an intrachromosomal (C) and interchromosomal (D) de novo deletion across
the 16p11.2 region. Green bars indicate the location of segmental duplications associated with BP1-BPS.

(ADI-R) scores, head circumference, and BMI as phenotypic
metrics. We found a modest negative correlation between
FSIQ and the number of secondary CNVs (R* = 0.04, p =
0.03, Figure S6). This signal is driven primarily by secondary
deletions and is consistent with previous findings on the
overall burden of CNV deletions and reduced intelligence
quotient (IQ)."? Although no other significant correlations
are observed with other quantitative measurements, an ex-
amination of the clinical details for individuals carrying
these secondary CNVs showed evidence of clinodactyly,
scoliosis, hypopigmentation, and craniofacial abnormal-
ities consistent with a more severe phenotypic outcome.
Among the secondary CNVs were several deletions and
duplications corresponding to genes strongly implicated

in synaptic function and/or risk of autism. Nine individ-
uals, for example, had rare deletions or duplications in
genes implicated in autism as defined by a curated list of
genes associated with autism risk (see Web Resources),
including CACNA2D3 (MIM: 606399), TRIO (MIM:
601893), and KATNAL2 (MIM: 614697) (Table S12). In a
proband with a 16p11.2 deletion, we validated an addi-
tional private ~400 kbp deletion that affects six genes,
including RAB10 (MIM: 612672)—a gene important in ve-
sicular transport and membrane trafficking in neurons.**
This proband is among the most severely affected females
in our cohort. She exhibits autism (SRS score = 90), intel-
lectual disability (FSIQ = 54), pediatric seizures, anxiety,
obsessive compulsive disorder (OCD), and phobia, along
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Table 3. Secondary CNVs

Secondary Deletions® No. of Probands

Secondary >1 Secondary >1 Secondary >1 Secondary

Secondary Secondary
Deletion  Duplication >1 Secondary

Total Maternal CNVs CNVs Deletion Duplication > 100 kbp > 100 kbp CNV > 100 kbp

Probands with a 16p11.2 Deletion

Total (90) 31 19 (61.3%) 62 28 10 11 19 19 6

Males (50) 21 14 (66.7%) 32 13 4 6 11 10 5

Females (40) 10 5 (50%) 30 15 6 5 8 9 1

Probands with a 16p11.2 Duplication

Total (36) 19 13 (68.4%) 25 16 6 6 9 8 5

Males (20) 13 7 (53.8%) 13 8 5 3 4 4 4

Females (16) 6 6 (100%) 12 8 1 3 5 4 1

Number of events in probands with inheritance information available from both the mother and father.

with structural defects of the brain, including enlarged
ventricles and abnormal cerebellar vermis and corpus cal-
losum (Figure 4A). Because DNA is not available for either
parent, the inheritance status for both deletions is un-
known. The severity of this proband’s phenotype is similar
to that of the male proband with severe intellectual
disability (NVIQ = 29) who carried an atypical deletion
of 16pll.2 encompassing more than 50 genes
(Figure S5). We also discovered a secondary duplication dis-
rupting DNAHS5 (MIM: 603335) and TRIO that was trans-
mitted from grandmother, to daughter, to son. Transmis-
sion of this CNV was associated with a characteristic
facies. Although the mother and son both carry the
16pl11.2 deletion, the severity of the phenotype, based
on FSIQ, increased from generation to generation
(Figure 4B), and the son manifests other features such as
gynecomastia, clinodactyly, and scoliosis.

In a high-functioning female proband with autism and a
16p11.2 deletion, an ~250 kbp additional deletion of
TOP3B (MIM: 603582) was validated (Figure 4C). TOP3B
has been strongly implicated in neurodevelopmental dis-
orders and is thought to be important in the co-recruit-
ment of FMRP to mRNPs.*® Although this event is found
in 24 of 19,584 control individuals (0.123%), this same
deletion in the homozygous state was found to segregate
with schizophrenia or intellectual disability in three
Northern Finnish families.”® We discovered an 840 kbp
duplication harboring the autism risk locus, contactin-6
(CNTN6 [MIM: 607220]), that was transmitted from a
mother (Broader Autism Phenotype Questionnaire
score = 124) to her daughter (Figure 4D). In this particular
case, the autistic daughter inherited the 16p11.2 deletion
from her father. Hence, this is a case in which a 16p11.2
deletion is transmitted from the father and a secondary
event from the mother. We also observed a smaller
~50 kbp de novo deletion disrupting BIRC6 (MIM:
605638) in this proband. BIRC6 inhibits apoptosis by
facilitating the degradation of apoptotic proteins by ubig-

uitination,”” and previous studies have identified three de
novo variants in this gene in individuals with an ASD diag-
nosis.*®*? In this family, it is highly unlikely that the
decrement in IQ can be solely attributed to the 16p11.2
deletion event given that the FSIQ of the father carrying
the 16p11.2 deletion and the FSIQ of his proband
daughter, who also carries the 16p11.2 deletion, differ by
more than 28 points. Finally, we note that two 16p11.2
duplication carriers have rare independent deletions in
CTNNA3 (MIM: 607667) (Figure S7)—a locus previously
associated with autism*”*' and for which rare deletions
have been reported in individuals with ASD.*”

Discussion

Our results show that most recurrent rearrangements be-
tween BP4 and BPS in chromosome 16pll.2 originate
maternally. Specifically, nearly 90% of de novo deletions
and duplications arise on maternal haplotypes, and an
approximately equal proportion of inter- and intrachro-
mosomal rearrangements is consistent with unequal
crossover events during meiosis I and II, respectively.
This observation stands in stark contrast to the 75%-
80% of de novo CNVs identified in other studies that
originate paternally.**** Excluding genomic disorders
associated with imprinted loci, a maternal parent-of-
origin bias has been reported for two genomic disorders
to date: the NFI region on 17q11.2 and the 22q11.2 mi-
crodeletion associated with velocardiofacial and DiGeorge
syndromes.*>*® Neither of these regions, however, dem-
onstrates such a high level of maternal bias as that which
we have observed for the 16p11.2 CNV. For 16p11.2, we
observe no correlation with advanced maternal age (p =
0.43, Student’s t test) (Tables S4 and S5), and there is no
compelling evidence of imprinted genes within the crit-
ical region.*”*® Importantly, no bias is observed in
maternal or paternal transmission for inherited events,
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Figure 3. Familial IQ Decrement in 16p11.2 Deletion and Duplication Families

(A) Density plots of FSIQ for deletion families (A) and duplication families (B) from the entire Simons VIP cohort. The significant decre-
ment between parents carrying a 16p11.2 deletion and inherited-deletion probands (p = 6 x 1073, Student’s t test) and between parents
carrying a 16p11.2 duplication and inherited-duplication probands (p = 3.89 x 107, t test), shown in the third panels of (A) and (B),
suggest that factors other than the 16p11.2 CNV contribute to FSIQ decrement.

arguing against selection at the level of the germline or
early embryogenesis.

The most likely explanation for this maternal bias
is different male and female recombination rates at
16p11.2. Examination of data from published re-
combination maps***’ reveals a clear hotspot of female
recombination within the critical region (Figure S8). Fe-
males have a significantly higher mean recombination
rate within this region than males do (0.82 versus 0.083,
p = 0.01, Student’s t test), and this particular region ranks
in the 87™ percentile for mean difference between male
and female recombination genome wide (Figure S2). The
maximum recombination rate for females for the
16p11.2 critical region is 13.24, whereas for males it is
1.27, amore than 10-fold difference. A much milder excess
of female recombination is also noted for the 22q11.2 mi-
crodeletion (1.2- to 2.8-fold), commensurate with a more
subtle maternal bias for this genomic disorder (56%
maternal).*> The 16p11.2, 22q11.2, and 17q11.2 CNVs
all lie close to the centromere of their respective chromo-
somes, consistent with higher female recombination rates
in pericentromeric regions.** Thus, it is likely that gender-
specific recombination hotspots are a much more general
predictor of female and male biases for NAHR.

We observe not only a maternal parent-of-origin bias
for de novo 16p11.2 deletions, but also that mothers
transmit a significantly greater number of secondary dele-
tions to probands than do fathers. Such a transmission
disequilibrium has been observed for small CNVs and
single-nucleotide variants (SNVs) in individuals with
ASD,”%°! and this effect might result from a higher female
tolerance toward additional mutations. We extend this
putative female protective effect to secondary CNVs in
16p11.2 families. It is striking that of the nine probands
with a secondary CNV disrupting a gene from a curated
list associated with autism risk (see Web Resources), six
are female, including two with multiple events, sugg-
esting that females might be more tolerant of severe
mutations. We do not observe this bias for secondary du-
plications, most likely because duplications are generally
less deleterious than deletions.

Our results suggest that genetic background plays a role
in the observed phenotypic heterogeneity and that dosage
imbalances at other loci contribute, especially in the case
of 16p11.2 duplication carriers. It is interesting that,
compared to that of their parents who also carry the
16p11.2 CNV, the FSIQ decrement for probands with an in-
herited 16p11.2 duplication is greater than the difference
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Figure 4. Examples of Secondary Large CNVs

Microarray signal intensity data shown for various deletions and duplications.

(A) Data for 400 kbp gene-rich deletion of RABI0 in a 16p11.2-deletion female proband (14732.x6) with FSIQ = 54, SRS = 90, autism,
intellectual disability, pediatric seizures, anxiety, OCD, and phobia. The CNV was private and not observed in 19,584 control individ-
uals; parental DNA was not available for analysis.

(B) Data for 390 kbp duplication disrupting DNAHS5 and TRIO in a grandmother (14786.x20), mother (14786.x23), and male proband
(14786.x24). The mother and proband also carry the 16p11.2 deletion. From grandmother, to daughter, to grandson, the FSIQ decreases
from 99 to 89 to 63, respectively. This CNV was private and not observed in 4,092 control individuals.

(C) Data for 260 kbp deletion of TOP3B in a 16p11.2 deletion female (14924.x1) with non-verbal IQ (NVIQ) = 109; SRS = 80; autism;
language, learning, and articulation disorder; and ADHD. The CNV was observed in 24 of 19,584 control individuals; parental DNA was
not available for analysis.

(D) Data for maternally inherited 840 kbp duplication of CNTN6 in a 16p11.2 deletion female (14755.x17) with FSIQ = 75, SRS = 90,
intellectual disability, and enuresis. The CNV was observed in only 1 of 4,092 control individuals. Stars on chromosome ideograms desig-
nate the presence and approximate position of the deletion (red) or duplication (blue).
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observed for transmission of the deletion (Figure 3). Such a
difference, along with the statistically significant differ-
ences between the mean FSIQ of parents carrying the
16p11.2 CNV and the mean FSIQ of probands carrying
the same CNV, suggests that additional factors are contrib-
uting to the severity of the phenotype. Our finding of a
modest negative correlation between FSIQ and secondary
CNVs, as well as the increased phenotypic severity of
such individuals, argues in favor of additional rare gene
disruptive mutations. These findings are consistent with
studies focused on different genomic disorders that have
shown that individuals with more than one large CNV
tend to have a lower IQ than individuals with only a single
CNV." Similarly, a recent study of an Estonian population
cohort reported that a greater proportion of individuals
carrying large CNVs (>250 kbp) failed to graduate high
school than did individuals without such events. When
CNVs exceeded 1 Mbp in size, there was a significant risk
for intellectual disability.*”

There are some clear limitations of this study. The num-
ber of complete families with a de novo mutation and
parental phenotypic information is insufficient, espe-
cially for duplications. Investigation of a larger sample
of 16p11.2 CNVs in conjunction with more detailed
phenotypic data is necessary in order to confirm the
observed trends. The Simons VIP is not a population
cohort, but rather was clinically ascertained and subject
to inclusion and exclusion criteria. Importantly, the Si-
mons VIP was screened for large, most likely pathogenic
CNVs, thus depleting the number of individuals with
large secondary CNVs. A population-based cohort of suf-
ficient size would prove most valuable if large-scale
genetic screening were followed by detailed phenotypic
assessment of individuals with particular genotypes.*’
Because we focused on CNVs (typically >50 kbp), we
did not assess other potentially deleterious mutations
(e.g., SNVs or small CNVs).

The importance of secondary mutational hits at other
loci affecting phenotype severity has been established in
several disorders, and a model has been developed to
explain the phenotype variability associated with patho-
genic CNVs.'?°%°° Importantly, 11 of the secondary
CNVs have already been implicated as risk factors for
autism and developmental delay (e.g., 240 kbp deletion
of the TOP3B locus on chromosome 22q11.22).°° Our re-
sults extend observations of secondary mutational hits to
the 16p11.2 CNV and suggest that full-genome sequencing
of individuals carrying the 16p11.2 CNV will ultimately be
required to more precisely predict the severity of disease
within the context of families. This is an important consid-
eration because once the 16p11.2 CNV is discovered, such
individuals are routinely excluded from further exome and
genome sequencing analyses.'”°®°” The presence of addi-
tional risk factors discovered by either sequencing or diag-
nostic microarray will be important for projecting the
disease trajectory and the diverse outcomes associated
with this pathogenic CNV.

Accession Numbers

Underlying SNP microarray data are available from the National
Database for Autism Research under http://dx.doi.org/10.15154/
1226522, as well as through SFARI Base to approved researchers.
Underlying calls for the recalled WTCCC set (set II) are available
in dbVar under accession number nstd122. CNV calls for the
19,584 control individuals (set I) are available in dbVar under
accession number nstd100.
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cnvPartition Algorithm, http://www.illumina.com/content/dam/
illumina-marketing/documents/products/technotes/technote_
cnv_plug_ins.pdf

dbVar, http://www.ncbi.nlm.nih.gov/dbvar

Illumina Genome Studio Software, http://www.illumina.com/
techniques/microarrays/array-data-analysis-experimental-design/
genomestudio.html

National Database for Autism Research, https://ndar.nih.gov/

OMIM, http://www.omim.org/

SFARI, https://gene.sfari.org/autdb/

SFARI Base, https://sfari.org/resources/sfari-base

Simons VIP, https://simonsvipconnect.org/

UCSC Genome Browser, http://genome.ucsc.edu

WTCCC2, http://www.wtccc.org.uk/ccc2/
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