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Missing heritability and strategies 
for finding the underlying causes of 
complex disease
Evan E. Eichler, Jonathan Flint, Greg Gibson, Augustine Kong, Suzanne M. Leal, 
Jason H. Moore and Joseph H. Nadeau

Abstract | Although recent genome-wide studies have provided valuable insights 
into the genetic basis of human disease, they have explained relatively little of 
the heritability of most complex traits, and the variants identified through these 
studies have small effect sizes. This has led to the important and hotly debated 
issue of where the ‘missing heritability’ of complex diseases might be found. 
Here, seven leading geneticists offer their opinion about where this heritability 
is likely to lie, what this could tell us about the underlying genetic architecture 
of common diseases and how this could inform research strategies for uncovering 
genetic risk factors.

How should we solve the problem of 
‘missing heritability’ in complex diseases?

evan e. eichler. Understanding the herit-
ability of genetic diseases requires a more 
comprehensive assessment of human genetic 
variation. Human genomes are rich in struc-
tural diversity, but the discovery and geno-
typing of this type of variation has lagged far 
behind those of the SNP1,2. Although there 
has been a tremendous push to close this gap 
over the past 4 years3–5, two aspects remain 
understudied. The first is the exploration of 
the landscape and impact of large variants 
(deletions, duplications and inversions) that 

are individually rare but collectively common 
in the human population6,7. An estimated 
8% of the general population carry a large 
(>500 kb) deletion or duplication that occurs 
at an allele frequency of <0.05%7. The avail-
able data suggest that these variants are under 
strong selection, affect transcription8 and 
contribute to a variety of different diseases9. 
These genomic imbalances represent a special 
class of rare variants that can potentially affect 
many genes and pathways in a single indi-
vidual. Not only are large numbers of cases 
and controls required to assess the clinical sig-
nificance of particular events, but the model-
ling of other forms of genetic variation in this 

sensitized background of localized haploidy 
or triploidy remains largely unexplored. The 
second aspect involves the several hundred 
genes that map to regions of copy-number 
polymorphic (CNP) duplications. Available 
data suggest that these genes are highly 
variable among individuals, are enriched in 
genes associated with drug detoxification, 
immunity and environmental interaction10, 
and have been subject to bursts of rapid, and 
sometimes adaptive, evolution in humans  
and our ape relatives. However, because of 
their repetitive and multicopy nature, these 
genes are considered inaccessible by most 
existing genotyping and sequencing technolo-
gies. There is a pressing need to characterize 
not only copy number but also the sequence 
content and structural arrangement in these 
diverse regions of our genome. Such regions 
are more likely to be subject to recurrent 
mutations and be inadequately assayed by a 
correlated neighbouring SNP. It is therefore 
premature to conclude that CNPs have limited 
impact in terms of common disease until these 
more complex regions are tested11. Excluding 
the most variable and diverse regions of 
human genetic variation because they are dif-
ficult to study is an unacceptable loss in the 
pursuit of genotype–phenotype correlations.

Jonathan flint. I find it hard to imagine that 
there will be a single answer to the question of 
where to find missing heritability, but I have a 
suggestion as to what might help find it. Even 
in crosses between inbred mouse strains, in 
which the genetics is simplified to a com-
parison between two genomes (and related 
genomes at that), there is variation in genetic 
architecture among phenotypes. For example,  
susceptibility to infectious disease has often 
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turned out to be due to variants of large 
effect12,13; however, apparently equally com-
plex phenotypes (such as cell counts of red 
and white blood cells, variation in high and 
low density lipoproteins and obesity) have a 
much more complex genetic architecture due 
to the joint action of very many loci of small 
effect14. Differences also exist in the extent to 
which epistasis shapes a phenotype: perva-
sive epistatic effects have been documented 
in autoimmune conditions15, morphology16 
and susceptibility to cancer17, but the genetic 
architecture underlying fear-related phe-
notypes consists almost entirely of multiple 
small additive effects14,18. 

Differences in genetic architecture 
reflect the complex, often opposing effects 
of selection, population history, migration 
and mutation rates. Is it possible to be more 
specific, to make predictions about genetic 
architecture? Interactions between selection 
and the size and structure of populations 
contribute to allele frequencies in predict-
able ways19, and theoretical models and data 
have already been used to argue that additive 
genetic effects are likely to be common in 
complex phenotypes20. But this conclusion 
applies broadly, averaging across all phe-
notypes in different populations. A more 
fine-grained analysis, examining individual 

phenotypes and taking into account the 
characteristics of individual populations, 
has yet to be undertaken. We would not, for 
example, expect the genetic architecture of 
schizophrenia and autism, both conditions 
that considerably lower reproductive fitness, 
to be the same as that of intelligence, height 
or weight. modelling per locus effect sizes 
has been used to constrain the genetic archi-
tecture of schizophrenia21. Presumably, mod-
elling fitness would constrain possibilities 
yet further. So, understanding why genetic 
architecture differs for different traits could 
help when choosing the correct tools to find 
the underlying genes and deciding whether 
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to look for common or rare variants, and 
studying the genetic architecture might 
even tell us what type of variant to expect 
(for example, a SNP or a copy-number vari-
ant). Population and theoretical genetics 
approaches may hold the key to finding the 
missing heritability.

Greg Gibson. In a nutshell, I think the miss-
ing heritability problem is overblown, and the 
focus on hits that are significant genome-wide 
is distracting attention from more general 
concerns over the ability of genome-wide 
association (GWA) studies to fully describe 
the architecture of phenotypic variation. A 
lot of the confusion may arise because herit-
ability seems often to be equated with genetic 
contributions, but it actually refers to the ratio 
of the genetic to the total phenotypic variance 
in a population22. The population is assumed 
to share a common environment, but if there 
is hidden environmental structure that inter-
acts with genes, then this effect shunts genetic 
variance to the denominator and reduces  
the (narrow sense) heritability estimate. So the 
heritability gives a lower bound on estimates 
of how much total variance the genetic com-
ponent should explain. Exceptions will occur 
if heritability is estimated in a biased way with 
respect to environmental exposures or from 
pedigrees that have a high risk.

more fundamentally then, there is a 
missing genetic variance problem, which 
really relates to misplaced preconceptions. It 
would have been nice if GWA studies typi-
cally uncovered a dozen associations each 
explaining 5–10% of the variance, but the fact 
that they do not suggests only that the allelic 
effects are smaller or the causal alleles are 
too rare. With so many tests, there is a high 
false-negative rate, as true associations are 
hidden in the fog of random associations. I 
am convinced that myriad common variants 
of small effect do explain the vast majority of 
genetic effects predicted by heritability esti-
mates, even though we cannot detect them 
individually23. Rare variants of large effect, 
sometimes in synthetic association with 
common variants, will also contribute24.

To my mind, the really interesting ques-
tions concern differences in the architecture 
of diseases, and the rising prevalence of 
chronic disease. Gene–environment (G×E) 
interactions may be important in both of 
these situations, but they will not appear in 
the heritability estimates. For example, life-
style changes may alter the distribution of 
genetic effects in some people, and genetic 
buffering may be disrupted in some pedi-
grees. There are many reasons why such G×E 
interactions will not be revealed by GWA 

studies. Foremost is lack of statistical power, 
especially if a small fraction of individuals 
experience the adverse exposure. Population 
stratification can also induce false negatives 
in which the allelic effect is in the opposite 
direction to the population effect — and I 
suspect this is very common. And of course 
we are largely unable to identify what the 
relevant environments are. For these reasons, 
stratifying GWA studies by environments is 
unlikely to reveal any but the largest interac-
tion effects, and testing for G×E effects will 
not obviously explain much more of the vari-
ance. G×E interactions may be strongest for 
rare alleles, but this will be very hard to detect 
on a case-by-case basis. But we certainly need 
to learn a great deal more about how the envi-
ronment does modify allelic effects, because 
after all it is not genotype–phenotype so 
much as genotype effect–phenotype associa-
tions that really matter. A good place to  
start is environmental influences on the  
transcriptome and metabolome.

Augustine kong. Recently, some suscepti-
bility variants for cancer and type 2 diabetes 
(T2D) were shown to confer risk only when 
inherited from a specific parent, and a vari-
ant was discovered that can either confer or 
reduce risk of T2D depending on the parent 
of origin25. Such variants contribute to miss-
ing heritability in two ways: first, they are 
more difficult to discover and second, even if 
discovered, their contribution to heritability 
would be underestimated when evaluated 
under models that do not take parental 
origin into account. In another example, 
variants that increase the recombination rate 
for fathers reduce the recombination rate for 
mothers26. As recombination rates of parents 
affect transmissions and recombinations are 
sometimes associated with mutations, there 
could be sex-specific association between 
variants in parents and risks in offspring. 
more generally, for diseases in which pre-
natal conditions have a role, interactions 
between the genetic variants present in the 
parent and offspring are possible. In T2D, we 
estimate that about 13 to 14% of the herit-
ability accounted for by the known variants 
can be attributed to parent-of-origin effects. 
Parent-of-origin effects have also been 
reported for type 1 diabetes27. Considering 
that the power to detect such variants is low 
and these effects could be more prevalent 
with rare variants, such effects should not  
be overlooked.

more important to consider, however, is 
the fact that complex inheritance can take on 
numerous forms. Epigenetic effects beyond 
imprinting that are sequence-independent 

and that might be environmentally induced 
but can be transmitted for one or more 
generations28 could contribute to missing 
heritability. Phase-dependent interactions 
between variants that are not in linkage dis-
equilibrium and that are difficult to detect 
without long-range haplotypes29 are another 
possibility. Predicting the amount of miss-
ing heritability explained by each of these 
would be speculation, but it is reasonable to 
assume that complex inheritance as a whole 
could account for a substantial fraction of 
heritability. Everyone is looking forward to 
full-genome sequencing of large samples. 
Simply being able to identify and type vari-
ants, rare or common, old or new, that are 
not tagged by the current common SNPs will 
no doubt lead to many important discoveries. 
However, various other types of informa-
tion can add value to sequence data, such 
as knowledge about the epigenome30 and 
information on families and parental origins 
(including information from long-range 
phasing, which among other usages29 would 
assist in determining the age of the nearest 
common ancestor when two individuals 
share a region by descent). The possibility 
that some heritability comes from entirely 
unforeseen sources is actually something to 
look forward to in the future.

suzanne M. leal. Although GWA studies 
have been successful in identifying common 
variants involved in complex trait aetiology, 
for the majority of complex traits, <10%  
of genetic variance is explained by common 
variants31. Genetic variance may also  
be explained by gene interactions and  
structural variation, and there is strong evi-
dence that rare variants have an important 
role. These variants, although individually 
rare, are collectively frequent, and even 
though their effect sizes are greater than 
those observed for common variants, they 
are not large enough to produce familial 
aggregation32. For a variety of complex  
traits, exome data are currently being gener-
ated, and whole-genome sequencing will 
follow for the next wave of GWA studies. 
Detecting associations with rare variants is 
the first step towards a better understanding 
of the extent of their role in complex trait 
aetiology. Common variant analyses can 
be used for direct mapping of rare variants; 
however, these methods are underpowered 
owing to low allele frequencies and allelic 
heterogeneity33,34. Association methods 
developed specifically for rare variants 
jointly analyse variants in a locus or gene 
instead of individually testing each variant. 
These methods include the comparison 
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of rare variants found exclusively in cases 
to those found only in controls (RvE)35, 
the combined multivariate and collapsing 
(CmC)4 method and the weighted sum 
statistic (WSS)36, with the CmC and WSS 
methods having a power advantage over  
the RvE method. Some methods, such as the 
CmC method, can easily be adapted for  
the analysis of quantitative traits37, the con-
trol of confounding factors, and the inclusion 
of variant-predicted functionality and accu-
racy of genotype calls. Because sequencing 
uncovers both causal and non-functional 
variants, methods for analysing rare variants 
must be robust to misclassification. Even if 
detected gene associations are replicated, it is 
not possible within this analysis framework 
to tease apart causal from neutral variation. 
Due to the current cost of exome sequenc-
ing, study designs that maximize power for 
a given number of sequenced individuals 
are beneficial; these designs include extreme 
quantitative trait sampling and the use of 
common controls. When analysing rare vari-
ants, it is important to adequately control for 
population substructure and admixture; rare 
variants tend to have occurred more recently 
and therefore have greater population 
diversity than common variants. Analysis 
methods that evaluate effect sizes are neces-
sary for the estimation of the amount of 
explained genetic variance. Computationally 
efficient methods are also important, in 
particular for the analysis of exome and 
whole-genome sequence data. Sequencing 
and the analysis of phenotyped samples will 
elucidate over the next few years whether or 
not the majority of the missing heritability 
for complex traits is due to rare variants.

Jason h. Moore. The case of the missing 
heritability for common human diseases 
should not be a mystery to anyone given 
the inherent complexity of the relationship 
between genotype and phenotype. Consider, 
for example, the discovery of non-coding 
microRNAs that provide a new mechanism 
of translational regulation. Genetic variation 
influencing the expression of non-coding 
RNAs has the potential to add a previously  
unexpected layer of complexity to the 
genetic architecture of biological and clinical 
traits. For example, Nicoloso et al.38 recently 
showed that SNPs associated with breast 
cancer susceptibility can alter microRNA 
gene regulation. This is one of many layers of 
complexity that need to be considered before 
we will truly be able to identify the missing 
heritability that has not been accounted for 
by agnostic or unbiased GWA studies that 
focus on one genetic variation at a time.

Given this expected complexity, it is 
likely that synergistic interactions among 
variants in the sequences that regulate both 
microRNA and mRNA expression have a big 
impact on protein expression. Similarly, it is 
reasonable to presume that coding sequence 
variations, for example, could synergistically 
act through protein–protein interactions and 
protein–DNA interactions in transcriptional 
networks and biochemical systems. Such 
biomolecular interactions that depend on 
multiple genetic variations can substantially 
complicate the relationship between geno-
type and phenotype, making it impossible 
to explain phenotypic variation simply by 
adding together independent genetic effects. 
This hypothesis is completely consistent with 
the current results of GWA studies. Indeed, 
this kind of complexity is routinely observed 
in simple organisms, such as yeast39. If this is 
true for yeast, why would we expect humans 
to be markedly simpler?

The idea that multiple genetic variations 
can and do interact through different layers  
of genomic complexity is not new. In fact, 
Bateson40 coined the term epistasis to 
describe one gene standing upon or modify-
ing the effects of another gene. This early 
definition of epistasis has given way to more 
modern definitions that recognize the com-
plexity of gene networks and biochemical 
systems41–43. This logically leads to the idea 
that a significant proportion of the missing 
heritability is not due to single common 
variants, nor single rare variants, but rather 
to rare combinations of common variants. 
As such, solving part of the missing herit-
ability problem will require the application 
of statistical and computational methods that 
detect patterns of epistasis across the genome 
implemented in a systems biology framework 
that accounts for the highly interconnected 
nature of bio molecular networks44,45. High-
throughput technology alone will not solve 
this problem. The time is now to philosophi-
cally and analytically retool for a complex 
genetic architecture or we will continue to 
underdeliver on the promises of human 
genetics. Indeed, life, and thus genetics, is 
complicated46 and some will soon ask, as 
seismologists have47, whether we are trying to 
predict the unpredictable.

Joseph h. nadeau. Testing associations 
between genotype and phenotype is central  
to many genetic studies of inherited traits 
and disease. Historically, mendel’s laws and 
morgan’s chromosome theory of inherit-
ance have dominated research such as GWA 
studies, and alternative modes of inherit-
ance have been largely and appropriately 

dismissed for lack of evidence. Now we 
discover that most genetic variants that 
account for the heritable component of phe-
notypic variation elude discovery48. Perhaps 
heritability is over estimated. Alternatively, 
perhaps the missing variants reside in largely 
unexplored regions of the genome, or in 
largely untested classes of genetic variation. 
Another possibility is that genetic variants 
are missed because they are rare and their 
effects are small. Or perhaps genetic com-
plexity is greater than imagined, with a very 
large number of closely linked genes that 
show context-dependent and non-additive 
effects49. But will these possibilities reveal the 
‘whole truth’ about ‘missing heritability’?

Recent studies in mice provide striking 
evidence for transgenerational genetic  
effects in which phenotypic variation in the 
present generation results from genetic vari-
ants in previous generations28. Remarkably, 
these studies show that transgenerational 
effects persist across several if not many  
generations, and that these effects are com-
mon and usually as strong as conventional 
inheritance. The original discoveries involve 
pigmentation50, germ cell51,52 and heart  
development53, embryogenesis54 and growth54, 
and ongoing work provides examples involv-
ing metabolism, behaviour and many other 
traits61 (j.H.N., unpublished observations). 
Some transgenerational effects are reminis-
cent of paramutations50,53,54, whereas others 
involve interacting genes in different genera-
tions51,52. The obvious molecular mechanisms 
for epigenetic inheritance are DNA methyla-
tion and histone modifications55. However, 
evidence from plants, flies and more recently 
from mice suggests another possibility28  
— a combination of small RNAs50,53,54, RNA-
binding proteins that are involved in both 
RNA editing56 and microRNA access to  
their target mRNAs57, and DNA methylation 
mediated by RNA-editing enzymes58,59  
controls translation in RNA granules that  
are abundant in the gametes of both males 
and females50,60.

How are these discoveries relevant to  
missing heritability? Because transgenera-
tional effects loosen conventional genotype–
phenotype associations, even complete 
genome surveys will fail to reveal the full 
repertoire of genetic variants. Under these 
conditions, traits are heritable, with family 
members being more similar to each other 
than unrelated individuals. Remarkably in 
these cases, the genotype of individuals  
in previous generations is a better predictor  
of phenotype than the individual’s own geno-
type. Two key questions emerge: first, do 
transgenerational effects occur in humans? 
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This test could simply involve examining 
associations between genotypes and pheno-
types across generations. Second, what is the 
molecular basis for epigenetic inheritance? 
Although other possibilities exist, perhaps 
the most provocative evidence suggests that 
small RNAs and related protein functions are 
responsible for the epigenetic persistence of 
genetic memory.
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