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The number of de novo mutations (DNMs) in the human germline is correlated with parental age at conception, but this

explains only part of the observed variation. We investigated whether there is a family-specific contribution to the number

of DNMs in offspring. The analysis of DNMs in 111 dizygotic twin pairs did not identify a substantial family-specific contri-

bution. This result was corroborated by comparing DNMs of 1669 siblings to those of age-matched unrelated offspring fol-

lowing correction for parental age. In addition, bymodeling DNMdata from 1714 multi-offspring families, we estimated that

the family-specific contribution explains ∼5.2% of the variation in DNM number. Furthermore, we found no substantial

difference between the observed number of DNMs and those predicted by a stochastic Poisson process. We conclude

that there is a small family-specific contribution to DNM number and that stochasticity explains a large proportion of var-

iation in DNM counts.

[Supplemental material is available for this article.]

De novo mutations (DNMs) are drivers of genetic diversity and
evolution and can also cause severe diseases, such as intellectual
disability, autism, and schizophrenia (Veltman and Brunner
2012). The number of single nucleotide DNMs per individual ge-
nome ranges between 30 and 80 (Gilissen et al. 2014) and is corre-
lated with the age of the parents at conception (Kong et al. 2012;
Goldmann et al. 2016; Wong et al. 2016; Jónsson et al. 2017).
Aging of fathers adds one DNM per year, while aging of mothers
adds one DNM every four years. However, parental age at concep-
tion explains only part of the observed variation inDNMcount be-
tween individuals, raising the possibility that other factors can
affect the number of DNMs an individual carries. Such factors
could be endogenous, such as genetic variation in genes involved
inDNA repair (Goldberg et al. 2021), or could be of external origin,
like ionizing radiation (Adewoye et al. 2015; Holtgrewe et al. 2018)
and environmental pollutants (Ton et al. 2018; Beal et al. 2019).
Studies of multi-offspring families have also suggested that the pa-
ternal age effect may differ significantly between families, where

the mean yearly increase in DNMs per offspring with age of the fa-
thers can vary from 0.2 to 3.2 DNMs per year (Rahbari et al. 2016;
Sasani et al. 2019).

Here, we analyzed DNMs from families with several offspring
across four cohorts (Table 1) to investigate the family-specific con-
tribution to variability in DNM counts between individuals.

Results

We collected four cohorts frompublishedwhole-genome sequenc-
ing studies of families with multiple offspring, totaling 111 dizy-
gotic twin pairs, 1714 multi-offspring families, and 45 large
families (median of 10 offspring) (Table 1). Because these cohorts
were based on different sequencing and analysis methods, they
were analyzed separately after quality control and used as indepen-
dent replicates within this study (Supplemental Table 1;Methods).
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Twins do not have a significantly different number of DNMs than

age-matched unrelated children

If family-specific effects exist, they would cause unrelated indi-
viduals to have larger differences in the number of DNMs than
siblings from a single family. Parental ages at conception are es-
tablished factors that affect the number of DNMs in the offspring
and need to be considered when comparing DNM counts be-
tween families. However, using dizygotic twins we can directly
compare the number of DNMs without correcting for parental
age, thus allowing us to assess the possibility of a large family-
specific effect without mathematical modeling. The median dif-
ferences in the number of DNMs for the dizygotic twins are 8,
8.5, and 9 for cohorts #1–3, respectively (there are no twin fam-
ilies in cohort #4) (Fig. 1A). The individual differences range from
0 DNMs to 29 DNMs. We did not observe significant trends in
these differences nor a change in their variation with the
age of the father (P-value for linear slope being different from
zero P=0.31; Breusch-Pagan test for heteroscedasticity P= 0.54)
(Supplemental Note 1).

We compared the differences in
DNMs between twin pairs to those of
601 pairs of parental age-matched unre-
lated children (PAMUCs) (Methods) and
observed median differences of 11, 9.5,
and 9 DNMs between the PAMUCs of co-
horts #1–3 (Fig. 1B). We did not detect a
significant difference between the num-
ber of DNMs in twins and PAMUCswith-
in any of the cohorts or for the combined
data set (P=0.07; P=0.35; P=0.54 for co-
horts #1–3, respectively; P-value for all
data sets combined P= 0.20, Wilcoxon
rank-sum test) (Fig. 1C).

The absence of a significant differ-
ence may be due to a lack of statistical
power given the relatively small number
of dizygotic twins and PAMUCs (Supple-
mental Note 2). In order to increase our
statistical power, we included siblings of
different ages and fit a regression model
accounting for parental age at concep-
tion (Supplemental Tables 1, 2).We com-
pared the residual differences of families
with two offspring (cohorts #1–3: 37,
42, 1590 sibling pairs) to unrelated chil-
dren in the same cohort but found no
significant differences in any cohort
(cohorts #1–3: P=0.56, P=0.38, P=
0.055; Wilcoxon rank-sum test) (Supple-
mental Fig. 1). These results suggest that
any family-specific effect on the number

of DNMs can only be small, because we should have sufficient
power to detect large effects.

Random effects modeling allows direct estimation

of the family-specific variance

We used a random effects model to directly estimate the potential
impact of family-specific effects on the variation inDNMcount be-
tween individuals. While the effects on the number of DNMs for
paternal age andmaternal age are fixed, we allow each family affil-
iation to add a specific number of DNMs to the total (Methods).
We did the same for batch where batch information was available
(cohort #1 and cohort #3) (Methods; Supplemental Table 3;
Supplemental Fig. 3). We applied this model to all four cohorts
but found in the smaller cohorts #1 and #2 that the confidence in-
tervals around the variance component estimates were large
(Supplemental Fig. 2). In our largest cohort with siblings (cohort
#3) and the cohort of large families (cohort #4), we found that
the point estimates for the variance components vary from 5.4%

Table 1. Cohort descriptions: size of the cohorts used in this study

Cohort #1 Cohort #2 Cohort #3 Cohort #4

No. offspring 816 1291 3180 420
Mean no. offspring per family 1.05 1.04 2 9.3
No. multi-offspring families 36 43 1590 45
No. dizygotic twin families in multi-offspring families 35 28 48 0
Study Goldmann et al. 2016 Goldmann et al. 2018 Wilfert et al. 2021 Sasani et al. 2019

BA

C

Figure 1. Comparing dizygotic twins and parental age–matched unrelated children (PAMUCs). (A)
Number of DNMs in dizygotic twins in relation to age of the father. Twins are linked by lines. (B)
Number of DNMs in parental age–matched unrelated children (PAMUCs) in relation to age of the father.
(C) Absolute differences in the number of DNMs between twins and PAMUCs. Numbers indicate sizes of
sets, boxes indicate interquartile range, and bold line indicates median.
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to 3.8% (Fig. 2; Supplemental Table 2). The mean of these familial
variance component estimates weighted by the number of off-
spring is 5.2%. This shows that family-specific effects can have
only a minor impact on de novo mutation rate.

Differences in DNM number between families can be simulated by

a Poisson distribution

Because the variability of DNM counts between individuals due to
family-specific effects is small, we considered the possibility that
stochasticity explains a large proportion
of observed variation. We simulated
mutation counts as a Poisson-distributed
variable by first fitting a linear Poisson re-
gression model to the observed DNM
counts to obtain the expected number
of mutations dependent on parental age
(see Methods). For each family in cohorts
#1–4, we obtained probabilities for all rel-
evant mutation numbers and summed
them. The resulting distributions closely
resemble the observed DNM counts,
with no significant differences detected
in either the median or variance (all
Bonferroni-corrected P-values > 0.2) (Fig.
3; Supplemental Table 4). Additionally,
when base pair changes are differentiated
(C>A, C>G, C>T [non-CpG], CpG>
TpG, T >A, T >C, and T>G), we do not
find significant differences between the
observed DNM counts and the Poisson
predictions, providing further support
that family-specific effects may only
contribute very little to variability in
the number of DNMs between individu-
als (all Bonferroni-corrected P> 0.99)
(Supplemental Table 5; Supplemental
Fig. 4; Supplemental Note 1).

Discussion

Previously, Sasani et al. (2019) reported significant differences in
the yearly increase of DNMs per family, ranging from 0.2 DNMs
per year to 3.2 DNMs per year. These wide ranges suggest family-
specific differences in germline DNA maintenance that cause mu-
tations to accumulate at rates differing by more than one order of
magnitude.

Here, we assessed whether family-specific differences are a
substantial contributor to the variation inDNM count between in-
dividuals in a different manner. Whereas Sasani et al. investigated
differences in the accumulation of DNMs between large families
with many offspring, we investigated whether a systematic bias
in DNM counts between families could be observed on a popula-
tion level using larger cohorts. Although our study also identified
a significant family-specific effect, familial variance component
estimates on our large cohorts range only from 3.8% to 5.4%,
with themaximumof the 95% confidence interval of our estimate
at 8.4%. In support of the relatively small amount of variation that
we are able to explain by a family-specific effect, we find that the
remaining variationmay be explained by stochasticity using a sim-
ple Poisson model. However, small deviations from this model
may be undetectable due to lack of power with the size of the cur-
rently available cohorts, and therefore these findings do not ex-
clude the existence of individual families with outlying DNM
rates and a more substantial family-specific effect. Our finding
that stochasticity dominates the mutation accumulation, rather
than family-associated factors originating from genetics or envi-
ronment, sets germline mutation accumulation apart from other
human quantitative traits. For instance, for the quantitative trait
body height, the majority of heritability is associated with genetic
and environmental factors, such that siblings from one family in
the same environment are likely to grow to comparable heights
(Jelenkovic et al. 2016).

Figure 2. Estimating familial variance components. The error bars
denote the 95% confidence intervals. The diamonds indicating the esti-
mates are scaled according to the mean number of children per family.
The vertical green line indicates the weighted mean between the point es-
timates of the two cohorts (cohort #3 and cohort #4) based on the num-
ber of multi-offspring families each cohort contains. Variance component
estimations for cohorts #1 and #2 were not included above due to small
cohort size (Supplemental Fig. 2).

BA

C D

Figure 3. Modeling DNMs as a family-independent Poisson process. (A–D) Simulations from cohorts
#1–#4, respectively. Red lines depict Poisson-based predictions, black dots denote observations.
Supplemental Table 3 lists P-values for various tests comparing predictions to observations.
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The de novo mutation rate’s independence from familial fac-
tors suggests that the DNA maintenance machinery of the germ-
line is very resilient to both genetic variation and common
environmental mutagenic influences. Across thousands of se-
quencing studies to date, we observe that variation in DNM num-
ber between individuals is constrained compared to what is
observed in somatic tissues (Gilissen et al. 2014; Martincorena
et al. 2015; Lee-Six et al. 2019). This constraint has particular im-
plications for the risk of a variety of genetic conditions, notably in-
tellectual disability, autism, and schizophrenia (Veltman and
Brunner 2012). Moreover, recent whole-genome studies attempt-
ing to detect DNMs caused by exposure to known mutagens
have confirmed the germline’s resistance to environmental muta-
gens. In the descendants of individuals exposed to ionizing radia-
tion (Holtgrewe et al. 2018), dioxin (Ton et al. 2018), benyo(a)
yrene (Beal et al. 2019), and the aftermath of atomic bombs
(Horai et al. 2018), no paternal age-corrected mean excess of
SNV DNMs larger than a handful of mutations has so far been
observed.

Methods

Cohorts

Cohort #1 is the Inova Translational Medicine Institute (ITMI)
Premature Birth Study cohort with 816 healthy newborns being
born at the Inova hospital (Goldmann et al. 2016). One third of
probands (219) were born prematurely (gestational age<37 wk).
Cohort #2 is the ITMI Childhood Longitudinal Cohort Study co-
hort (Goldmann et al. 2018). Cohort #3 is a combination of the
SSC, TASC, and SAGE study cohorts sequenced at the New York
Genome Center (Wilfert et al. 2021). Cohort #4 is a collection of
large families from the Centre d’Etude du Polymorphisme
Humain (CEPH) consortium (Sasani et al. 2019; Dausset et al.
2020). The cohorts are compared in Supplemental Table 1.
Specifics of the custom pipelines used for DNM calling in each co-
hort are available in the appropriate references. Where the age at
conceptionwas not available, we used the age at birth accordingly.
DNM data from each of the four cohorts (#1–4) are available in the
Supplemental Materials of the publications indicated in Table 1
(Goldmann et al. 2016, 2018; Sasani et al. 2019; Wilfert
et al. 2021). Quality control for all cohorts can be found in
Supplemental Code 1.

In all four cohorts, parental age-matched unrelated children
were identified by scanning for pairs of children where the sum
of the differences in parental ages was <43 d.

Computation

All computational analysis for this project was done in R 3.6.2 (R
Core Team 2019).

Analysis of parental age–corrected DNM counts

We fitted a linear model predicting the number of DNMs based on
the age of mother and father at conception (Supplemental Fig. 5)

Xi = b0 + bP · AP
i + bM · AM

i + ei (1)

whereAP
i andAM

i are the paternal andmaternal ages at conception,
respectively, and ei is a random error term.

For each offspring, we calculated the residuals ri of the
model as

ri = Xi − X̂i (2)

whereXi represents the observed DNM count and X̂i the predicted
DNM count using the linear model from Equation 1.

For each familywith two offspring, we calculated the absolute
difference of the two offspring’s residuals |ri – rj|. Because cohort #4
contained no families with exactly two offspring, we randomly
sampled a sibling pair from each family.We compared the parental
age-corrected difference in DNMs to the differences of two off-
spring randomly sampled from the same cohort. We resampled
the family labels 1000 times. We used Wilcoxon rank-sum tests
for assessing statistical significance. Code can be found in
Supplemental Code 2 (twins vs. PAMUCs) and Supplemental
Code 3 (residual analysis).

In cohort #3, each family contained one patient with an au-
tism-spectrum disorder and one unaffected sibling. We could not
detect a significant difference in the parental-age corrected num-
ber of de novomutations between these two groups (Supplemental
Fig. 6).

Estimating the familial variance component

We model the number of DNMs of an individual as the sum of a
baseline expectation, the paternal age effect, the maternal age ef-
fect, and a residual error term. More specifically, the number of
DNMs X of an individual i is

Xi = b0 + bPA
P
i + bMAM

i + Ei

where β0 is the baseline number of DNMs that occur during prena-
tal development, and βP and βM are the strengths of paternal and
maternal age effects, respectively, supplied in DNMs per year. The
factorsAP

i andAM
i are the ages of father (paternal) andmother (ma-

ternal) of the respective individual at conception. The residual er-
ror is captured by the randomeffects term Ei that is specific to every
individual.

To allow for possible familial influences on the number of
DNMs, we added a familial influence factor Fj, which is a random
effects term specific to every family j.

Xi,j = b0 + bPA
P
i,j + bMAM

i,j + Ei,j + Fj

The introduction of this term allows us to estimate the vari-
ance introduced to the model by family-specific influences. For
this, the model is fitted to observed data using the R statistical en-
vironment with the package “lmer” for fitting the linear models
with random effects (Bates et al. 2015). We obtained the variance
components of all factors in themodel with 95% confidence inter-
vals by applying the function “rpt” R package “rptR”with 500-fold
bootstrapping, which estimates variance components for both
fixed and random effects (Stoffel et al. 2017). Code can be found
in Supplemental Code 4.

Batch effect estimation

Wemodel the batch effect in the sameway as the family effect—by
including a batch-specific random effects term to the regression
formula. Fitting this term to every batch allowed for estimation
of inter-batch variation (Supplemental Table 3; Supplemental
Fig. 3).

Nevertheless, this approach requires batch annotation to
be both present and sufficiently disjunct from the family
annotations such that the fitting algorithm can robustly differen-
tiate both effects. For cohorts #1 and #3, such annotations
were available to us; these were version numbers of the software
pipeline for cohort #1 and the date of the sequencing run for co-
hort #3.
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Poisson simulations of DNM counts

Following estimation of a small family-specific effect on variation
in DNM counts between individuals, we considered that stochas-
ticity could explain a large proportion of observed variation.

To investigate this, we simulated mutation counts as a
Poisson-distributed variable by first fitting a linear Poisson regres-
sion model to the observed DNM counts to obtain the expected
number of mutations dependent on parental age. More formally,
for each individual i, we modeled the number of de novo muta-
tions Xi as

Xi � Poisson(li)

log(li) = b0 + bP · AP
i + bM · AM

i

(3)

whereAP
i andAM

i are the paternal andmaternal ages at conception,
respectively. Using Equation 3, we modeled the theoretical distri-
bution of DNM counts. For each family, we obtained a vector
(pi0,pi1…pin) of probabilities for individual i to have 0, 1,…nmuta-
tions, respectively. The final distribution of DNM counts X is cal-
culated

P(X = k) = 1
M

∑M

i=1

pik (4)

whereM is equal to the total number of samples.We implemented
this using the “dpois” function of the R statistical environment.
We obtained predictions for each number of DNMs from 0 to
150 (Equation 4).

To compare predicted densities to observed values, we used
two sets of statistical tests. First, we used a Wilcoxon rank-sum
test to assess differences in the median of the distributions.
Second, we used a group of tests to assess differences in the vari-
ance of the distributions, including Levene’s test and the Fligner-
Killeen test for heterogeneity of variance, the Ansari-Bradley test
and Mood’s test for the difference in scale parameters, as well as
the parametric F-test for comparison of variances. Code can be
found in Supplemental Code 5.

Multiple testing correction

P-values were corrected for multiple testing by Bonferroni’s meth-
od where indicated.

Data access

De novo mutation data from all four previously published cohorts
used in this study and code to reproduce analysis and figures are
available at GitHub (https://github.com/jgoldmann/DNM_vari
ance_compendium) and in Supplemental Code Files 1–5.
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