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ABSTRACT

Motivation: In the past few years, human genome structural
variation discovery has enjoyed increased attention from the
genomics research community. Many studies were published
to characterize short insertions, deletions, duplications, and
inversions, and associate copy number variants (CNVs) with
disease. Detection of new sequence insertions requires
sequence data, however, the “detectable” sequence length with
read-pair analysis is limited by the insert size. Thus longer
sequence insertions that contribute to our genetic makeup are
not extensively researched.

Results: We present NovelSeq: a computational framework
to discover the content and location of long novel sequence
insertions using paired-end sequencing data generated by the
next-generation sequencing platforms. Our framework can be
built as part of a general sequence analysis pipeline to discover
multiple types of genetic variation (SNPs, structural variation,
etc.), thus it requires significantly less computational resources
than de novo sequence assembly. We apply our methods
to detect novel sequence insertions in the genome of an
anonymous donor and validate our results by comparing with the
insertions discovered in the same genome using various sources
of sequence data.

Availability: The implementation of the NovelSeq pipeline is
available at ht t p: // conpbi o. cs. sfu. ca/strvar. htm
Contact: eee@gs.washington.edu; cenk@cs.sfu.ca

1 INTRODUCTION

It is estimated that 19-40 Mb of human genomic sequenc
is missing from the human genome reference assembly (L
et al., 2009). Although the Human Genome Project (HGP)
revolutionized the field of genomics, human sequences that al
not represented in the reference genome leads to incomple

(5]

r : . .
Feowever, this approach requires large computational resources

undiscovered exons or other types of sequences of functional
importance. There is a need to discover the loci and content
of so-called “novel sequence insertions” to build a more
comprehensive human reference genome to better analyze the
genomes of individuals from many different populations.

To date, one of the more promising methods to characterize
longer DNA segments that are not represented in the human
reference genome has been building sequence assemblies
from unmapped fosmid clone ends sequenced with the
traditional Sanger-based capillary sequencing (Kaidal.,
2008) and, then, sequencing the entire fosmid clone (Kidd
et al.,, 2010). However, the higher cost of the capillary
sequencing is prohibitive to characterize genomes of thousands
of individuals. Next-generation sequencing technologies make
sequencing of thousands of genomes possible, and for the
first time, they give us the opportunity to discover novel
sequences across many human populations in order to build
better genome assemblies (or “pan genomes” étial.,
2009)). Various computational methods were developed in
the recent years to characterize structural variation, including
deletions, insertions, inversions, and duplications, among
human individuals using next-generation sequencing (NGS)
platforms (Medvedeet al., 2009). Characterization of longer
novel sequences remained elusive due to the shorter insert size
and sequence length associated with the NGS methods. For
example, applying the end-sequence profiling approach (Volik
et al., 2003; Tuzuret al., 2005; Kiddet al., 2008) one cannot
discover insertions>100 bp when 200 bp insert size is used
with the Illumina platform (Bentlet al., 2008; Hormozdiari
et al., 2009; Cheret al., 2009). Currently, the only method
applicable for the discovery of long novel insertions using
NGS technologies igle novo sequence assembly (Simpson
et al., 2009; Chaisson and Pevzner, 2008;etial., 2010).

and requires further processing to anchor the sequences to the

genome analyses. The missing sequences can even harbor.

*These authors contributed equally
fCorresponding authors.

reference genome.
Here we present a computational framework to discover the
content of novel sequence insertions using the NGS platforms.
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We test our methods with the high-coverage (42X) short-contigs may later be identified as novel insertion sequences in
insert sequence library generated from the genome of a Yorubthe donor genome. In addition, we perform an initial screening
African individual (NA18507) sequenced using the lllumina of the contigs using BLAST (Altschut al., 1990) and remove
platform (Bentley et al., 2008). We validate the content any contig that contains sequences from known contaminants
of the predicted novel sequence insertions by comparinge.g. Epstein-Barr virus, E. coli, cloning vectors, etc.). As a
with sequences generated from fosmid end-sequence assemtsgcond test to remove the mapping artifacts, we remove the
(Kidd et al., 2008), full fosmid sequencing (Kidet al., 2010),  contigs that can be aligned to the reference genome with a
and de novo sequence assembly of the same Illumina WGSsequence identity of more th@9%. One reason that such
library (Li et al., 2009). We show that our methods are reliable, contigs were generated from the reads classified as orphans
and together with the cost optimizations introduced by the NGSdue to low-quality sequence at the tails of the reads, and
platforms, they can be efficiently used to characterize the DNAthus remained unmapped. However, those reads can still be
sequences missing from the reference assembly to obtain assembled into reliable contigs since both ABySS and EULER
more complete picture of human genome diversity. build de Bruijn graphs from 25 bp subsequences of the reads,

A “novel sequence insertion” refers to an insertion of a effectively discarding the sequence tails causing the mapping
sequence into the donor genome where no subsequence witrtifacts.

high similarity to the inserted sequence exists in the referenc? . . .
. . ; . . c) OEA read clustering: We use a novetlustering algorithm
enome. We aim to identify novel sequence insertions .
i%] a high-coverage sequenczj donor geqnome through OuerAR (micro-read Cluster Anchored Reads) to cluster the
computational pipeline NovelSeq 6EA reads based on their mapping orientations and locations
Note that the insertions of repeat sequences such as SINé%;Bgrtrf;eerzgi;ee ?r?:;?c?n ?rllj(iﬂetzle)tnct)rr](;seenocr)niAarrgzdrzutg:;

and LINEs, and segmental duplications do not constitute ast5 . . :
; . - ether. Note that for each potential novel sequence insertion
novel sequence insertions since paralogs of the same repeat® . . . .
diction, there exists a group of OEA read alignments with

. . re
sequence exists elsewhere in the reference genome assemhbly., ™ . .
q g d? " orientation (denoted a® E A+, the single end-read that

Therefore, the algorithms presented here will not be able t - o
9 P %&s an alignment on the reference genome is aligned to the

predict such repeat sequence insertions unless the insert .
sequence is highly divergent from other existing copies. FOSo_rvva/\rd/ str_and), _and a second group of OEA read alignments
) o - with '—" orientation (denoted a® EA—, the single end-read
algorithms specifically designed for repeat sequence (or more_ . A .
. - - I3 aligned to the reverse strand). In the remainder of this paper,
formally, transposon) insertion detection, see the recent pape .
by Hormozdiariet al. (2010). we use the terrm®EA cluster to deS(_:rlbe the two groups of OEA
In Section 2, we will present the general approach of thereads that are both mapped _to different strands yet suppc_)rt the
NovelSeq pipeline divided into five different phases. In Section>2™M€ novel sequence insertion. Also note that for all pairs of
’ OFEA+ andOFE A— clusters that support the same insertion,

3, we will give the details of our algorithms, and finally in . .

. o .~ . theOF A+ cluster should be mapped to the proximal location,
Section 4, we will discuss the results of the NovelSeq plpellne.and the corresponding £4— cluster should be mapped to the
distal location.

The objective of mrCAR is to identify the OEA clusters
2 APPROACH efficiently such that, with a minimum number of novel
(a) Paired-end read mapping: The computational pipeline sequence insertion prediction, all OEA paired-end reads are
begins by mapping the WGS paired-end reads onto théexplained” (i.e. for every OEA paired-end reada;, there
reference genome using mrFAST (Alkan al., 2009) and  exists an insertion prediction that is supporteby; ).
identifying orphan reads andne end anchored (OEA) reads.
The paired-end reads where neither end-readquences can
be mapped (with more tha®5% sequence identity) to the
reference genome are classifiecbgshan reads. Following the
nomenclature previously described (Kiddl., 2008, 2010), if
only one end-read is mapped onto the reference genome, su
paired-end reads are classified as OEA.

A hypothesis that can explain the existence of these orpha
and OEA paired-end reads in a sequenced donor genome is
follows. The unmapped reads of the OEA pairs and the orpharie) Anchoring orphan contigs using the OEA contigs: In the
paired-end sequences both belong to novel sequence insertiofigal stage of the NovelSeq pipeline, we aim to merge the
(Figure 1(a)). OEA contigs (from both+ and — strands) with the orphan

contigs. Through this merging step, we both provide more
read support for the orphan contigs and obtain the approximate
anchoring position of the novel sequence insertion to the
Srgference genome.

Our merging algorithm mrBIG (micro-read Big Insertion
Gluer) aims to report the maximum number of orphan contigs

(d) The local assembly of the OEA clusters. We assemble

all unmapped end-reads in the OEA clusters that were
created in the previous step into two OEA contigs using a
local assembly routine, mrSAAB (micro-read Strand-Aware
&ssembly Builder). For each OEA cluster, the goal is to
assemble the unmapped reads in e@diA+ cluster into a
I§ingle contig (i.e OFE A+ contig) and the unmapped reads in
ggchOEA— into another single contig (i.€2 E A contig).

(2) Orphan assembly and contamination removal: Using
available de novo assembly algorithms such as EULER-SR
(Chaisson and Pevzner, 2008) and ABySS (Simpatoal.,
2009), we assemble all orphan reads into longer contigs. The

1 Each end sequence of a paired-end read is referredamasad.
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reference {_ ;5 : : ?i \< - _>(>§ : de novo assembly and
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insertion clustering
(C) breakpoint
— T
OEA+ OEA-
(d ) local
l l assembly
OEA contigs —  — e — orphan
length ~ L —————  contigs

(e) merging OEAs & orphans
Novel
sequences

Fig. 1. The overall approach of the NovelSeq pipeline. (a) We stammbpping the paired-end reads to the reference genome andl#ssify
the paired-end reads as OEA and orphan reads. (b) We themlasstne orphan paired-end reads using availablaovo assembly algorithms
and screen the contigs for possible contamination. (c) Wetelihe OEA reads into groups and find the insertion locupatged by each OEA
cluster. (d) We assemble the unmapped end-read in each OB&rdtiee OEA reads with different orientation of mapping dddue assembled
independently). (e) Finally, we merge the orphan contigs@BA contigs to anchor the orphan contigs to the referencergen

that can be merged with OEA contigs withigh support

the expected range ¢f\in, Amax], and the paired-end alignment

(defined as the length and sequence identity of the overlappingrientation ist-— (i.e. the end read which was aligned on the proximal
basepairs, see Section 3.4). mrBIG is based on an algorithm fdpcation is on the- strand, and its matepair is mapped to a distal
maximum weighted matching in bipartite graphs (West, 2001)./ocation on the— strand).

3 METHOD
3.1 Notations and definitions

The set of one end anchored reads is represent@dzas and the set
of orphan reads is represented@sph. Note thatOrph, OEA C R.
The end-reads i@ EA can also be mapped to multiple locations on
the reference genome. For gt € OFE A, alignment ofpe is defined
asape = (loc(ape), or(ape)), whereloc(ape) is the map location
andor(ape) € {+,—} is the alignment orientation of the mapped

Here we present the notations and definitions that we useén th end-read.
rest of this paper. We define the set of paired-end reads of a

sequenced donor genome & = {pei,pe2,---,pen}. Each
paired-end readbe;, can be mapped to multiple locations on the
reference genome. The set of all alignmentspef. is defined as
Align(per) = {aiper,azpey,--- ,ajpe}. Structural variation
discovery algorithms using read-pair analysis start byutatmg the
observed distance between the two end-reads of a paireceaddT his
distance is referred to as thesert size (denoted byInsSize). The
InsSize is assumed to be in a range [@&,in, Amax] and can be
calculated as previously described (Tuzal., 2005).

3.2 Clustering the OEA reads

In this section we formally describe a greedy algorithm, named
mrCAR, to identify the OEA clusters. We first mathematically
formulate the conditions required by a group of OEA readsgbpport

the same novel insertion. Next, similar to the approach iniced in
(Hormozdiariet al., 2009) to cluster the discordant paired-end reads,
we present an efficient greedy algorithm to find the minimum numbe
of OEA clusters such that all OEA reads would “support” atstea

An alignment of a paired-end read to the reference genome ine insertion (i.e. a maximum parsimonious explanation of &A0
concordant, if the distance between the aligned end-reads is withinreads (Hormozdiatt al., 2009)). We remind the reader that although

0T0Z ‘T2 Judy uo uolbuiysen Jo AIsiaaiun 1e 610’ sjeuinolpliojxo salrewouIolq//:dny woiy papeojumod


http://bioinformatics.oxfordjournals.org

et al

the map location of an OEA read serves as a guide to detect thelictates the approximate positions of the unmapped read ilodal

insertion breakpoint of the novel sequence, the possitofitmultiple
map locations for an OEA read makes detecting the correctiposit
challenging task.

Clustering rules: A set of OEA readslu C OFE A supports the same
insertion if the following conditions hold:

e For every pair of OEA read alignmentsgr € clu andpgr €
clu (without loss of generality we assume thagt aligns to the

OEA assembly. The confidence interval for this position infation
depends on thénsSize distribution.

Our local assembly routine is based on the standard overlap-
layout-consensus graph approach. Note that this routineatso be
implemented with an Eulerian path approach using a de Bruaphyr
(e.g. through a modification to ABySS or EULER). Next, we byiefl
present this routine.

Traversal of the overlay graph: We first construct the overlay graph for

forward andpg, aligns to the reverse strand), the map location of all unmapped reads in an OEA cluster whose mates are anchdtes to

pr is proximal to the map location ¢fy.

e Themaximum pairwise distance between the map locations of the
OEA reads irclu with the same mapping orientation must be less

that the maximuninsSize, Amax.

same strand.
Note that there will be two disjoint assembly graphs représsgn
two different strands for each OEA cluster. Given a pair ade®u, v

in the overlay graph (representing two OEA reads), we addighted
directed edge connecting with v if there exists an overlap between

e The distance between the map locations of two OEA readsihe suffix ofu and the prefix ofs. The assigned weight of the noted

with different mapping orientations should not exceed tvitee
maximumiInsSize, 2 - Amax-

Note that an OEA clustet is called a “maximal valid cluster” if
no more OEA read alignment can be added that all the conditions
noted above remain valid. Through an iterative method, we flhd a
such maximal valid clusters in polynomial time. We first orde/GHA
read alignments based on thkir value, and then traverse the genome
from left to right. For each genome positién we consider a window
of size2A 4. + 1 centered at k. Every OEA alignment inside the first
half of the window with a+ orientation, and every OEA alignment
on the second half of the window with-a orientation is considered
as one potential maximal valid cluster. Finally, a pairwiseparison
is performed between all overlapping clusters detecteddrmptbvious
step and only the maximal clusters are reported.

Selecting the minimum number of clusters: We define the Maximum
Parsimonious Insertion Detection (MPID) problem as follo@sven

a set of OEA clusters where each cluster potentially ind&at novel
insertion, our goal is to select the minimum number of clustiees t0
minimize the total number of insertions) such that all OEA reaids
aligned to the reference genome. We model this problem as agat ¢
problem and provide a®(logn) approximation solution. Note that
the set of all OEA reads is thaniverse of elements, and the clusters
created in the previous step are the sets that are selectedeo this
universe. MPID is a necessary step since an OEA read can berpre
in multiple clusters.

3.3 Local assembly of the OEA clusters

The next step is to assemble the unmapped reads of OEA clusters

that were created by the clustering algorithm and selecyetthd set
cover approach. In each cluster, the OEA reads with matesrthpt
to the 4+ strand and the reads with mates that map to-thetrand
should be assembled in@E A+ andO E A— contigs independently.
However, the availablele novo assemblers including EULER and

ABySS do not provide the option of assembling the reads of only

a single strand. Using single end-reads, both ABySS and EULER
consider the reverse complements of the read sequences as\gell
therefore develop a local assembly routine that makes useedhitt
that all unmapped reads from a single OEA cluster originaim fthe
single strand reciprocal to the mapping orientation of thehared
reads from the same cluster. During the traversal of the asgemaph,

we do not allow two consecutive OEA reads such that the mappin
locations of their mates (from the corresponding paired+eads) are

edge will be a function of the suffix-prefix overlap betweeerth
We implemented a greedy heuristic to find assembly of the reads
using both the edge weights and the extra information of thepingp
locations of the other mates.

3.4 Merging the OEA and orphan contigs

Given the set of OEA and orphan contigs, we aim to find the maximum
number of orphan contigs that can be merged with OEA contigsddVe
not allow an orphan contig to merge with a pair of OEA contigsi(;-
andoea_) if the score of the prefix/suffix match between the two ends
of the orphan contig andea andoea_ is less than a user-defined
threshold.

We mathematically model this problem as a maximum-weight
bipartite matching problem, and give an exact solution basethe
Hungarian method West (2001).

Let Orphco = {ori,ora,--- ,ory} be a set of orphan contigs
andOEA., = {oeai,oeas,- - ,o0ea,} be a set of OEA contigs
whereoea; is a pair of two OEA contigs from the local assembly of
the OEA cluster with idj. (i.e.,oea; = (oeai+ ,oea;_)). We aim to
assign each element @rph., (e.9.or; € Orphco) to an element in
OFEAc, (e.9.0ea; € OEA.) such that the summation of (i) the
alignment score between the prefix @f; and the suffix ofoea;
and (ii) the alignment score between the suffixoef and the prefix
of oea; is maximized.

We reduce this problem to the maximum-weight matching problem
in a bipartite graphG(U,V, E) where G is defined as follows
(Figure 2:

e Yor; € Orphco : Ju; € U
® Yoea; € OEA : Ju; €V

e The weight of edg€u;, v;) is a function of the overlap between
the the firstAmax basepairs obr; andoea; i and the overlap
between the lash,ax basepairs obr; with oea; .

4 EXPERIMENTAL RESULTS
We tested our framework using the whole-genome shotgun

(WGS) sequence library generated from the genome of an

anonymous Yoruba African donor (NA18507) generated with
the lllumina Genome Analyzer platform (Bentlest al.,

g2008). The genome of NA18507 has been previously studied

too far from each other. The map location order of the anchored read®y Many groups (Hormozdiarét al., 2009; Alkanet al.,

2 Personal communication with the developers of these tools

2009; Leeet al., 2009; Chenet al., 2009) to discover
structural variation and copy number polymorphism. This
dataset contains approximatedys billion sequence reads<(
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pairs of reads30, 347, 124 end-sequences) were identified as

Orphan orphans, while 83, 662, 790 reads were identified &3EAs.
Orphan assembly. Using ABySS (Simpsoret al., 2009), we
OEA (+) OEA (-) assembled the orphan paired-end reads 4ntd4 contigs of
Novel insertion {OEA(+), orphan, OEA (-)} size >200 bp (N50 = 995). In the rest of this paper we call

these contigs a&BySS contigs. As an independent assessment,
we also generated the sequence assembly of the orphans using
the EULER (Chaisson and Pevzner, 2008) algorithm, which we

— call EULER contigs. EULER returned4, 564 contigs of size
— — — >200 bp (N50 = 730).
| — | I
E— — — Contamination removal. Next, we screened the orphan contigs
OFEA(+)  OBA() to test for contamination. Using BLAST (Altschwt al.,
Overlaps between {OEA(+), OEA(-)} and orphan contigs 1990), we compared the orphan contigs with thé

databas€, and removed the contigs that align to consensus
sequences of known contaminants (E. coli, bacteriophage,
herpesvirus, plasmid, Epstein-Barr, bacteria, etc.) from further

OEA(+), OEA(-)} 1 . ; -
® (0EAk) o consideration. In total39 contigs were removed from the

Orphan 1 {OEA(+), OEA(-)} 2 ABYSS contig set as contamination, where the majority
Orphan 2 (OEA(+), OEA()} 3 were dug tq Epst.eln-Barr, a virus commoqu .use.d for cell
immortalization. Figure 3 shows the length distribution of the

Orphan 3 {OEA(+), OEA(-)} 4 ABYSS contigs of length>200 bp after the contamination
(OEA(+), OEA()} 5 remqval. Note that out of 4,115 ABySS contaminant-free

Orphan 4 contigs & 200bp), 1,984 are-500 bp and778 are >1 Kbp
{OBA(+), OBAC)} 6 in size. Among the EULER contaminant-free contigs90

Orphan 5 @ {OEA(+), OEA(-)} 7 are> 500 bp anh82 are>1 Kbp

Maximum Weighted Matching

4.2

Fig. 2. Merging the orphan contigs with OEA clusters. Note that ssh
each OEA cluster is in fact composed of two contigs with défer
orientations that together represent an insertion. Eaphaor contig

is shown as a green node and each OEA cluster (as a 2-tuple) is €
represented with a red node. The edge weights are assigitee tasal
alignment score of suffix/prefix matches between the OEA disistied
the orphan contigs.

Contig length(l

1.7 billion pairs) of length36 — 41bp with anInsSize of
~ 209bp (Bentleyet al., 2008; Hormozdiarét al., 2009). The

InsSize distribution of this dataset was previously presented 0 S0 1000 1500 2000 2500 3000 3500 4000 4500 5000

Contig id

in (Hormozdiariet al., 2009).
Fig. 3. Length distribution (log scale) of the ABySS (red) and EULER
4.1 Novel sequence insertion map (green) contigs%200 bp).

Preprocessing. Similar to the pre-screeing methodology used

in (Hormozdiariet al., 2009), we removed any paired-end reads \\je then mapped the orphan contigs to the human genome
from consideration if either (or both) end sequence has afeference assembly (both build35 and build36) using BLAST in
averagephred (Ewing et al., 1998) quality value less thald,  order to remove the orphan contigs with high sequence identity
or if either (or both) sequence contains more tBamknown it the reference genome93 of ABySS contigs of length
(i.e. N) nucleotides. >200 bp could be mapped onto either build35 or build36 with

Mapping to the reference genome. After the preprocessing MOre than99% sequence identity5¢8 of EULER contigs).
step, we mapped all the remaining2.2 billion end sequences We removed such contigs from consideration in the remainder
to the human genome reference assembly (UCSC build 3691 the NovelSeq pipeline. See Step 2 in Section 2 for the
usingMrFAST (Alkan et al., 2009), allowing for edit distance explanation of this filtering. The remaining ABySS contigs
< 2. Note that mrFAST returnall possible map locations of

read sequences, thus an OEA read can be aligned to multipReht t p: / / www. ncbi . nl m ni h. gov/ st af f / t ao/ URLAPI /
locations in the reference genome. In totdl5, 173,562 bl ast db. ht m

0T0Z ‘T2 Judy uo uolbuiysen Jo AIsiaaiun 1e 610’ sjeuinolpliojxo salrewouIolq//:dny woiy papeojumod


http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/
http://bioinformatics.oxfordjournals.org

et al

(n=3,622, Figure 4(a)) had a total length of 2.66Mbp while | NA18507 # merged same locus different locus

the remaining EULER contigs (n=3,977, Figure 4(a)) had the g_minimum length | 500bp | 200bp | 500bp | 200bp | 500bp | 200bp

total length of 2.37Mbp of the sequence. ABYySS 78 113 37 50 10 21
EULER 85 130 35 51 14 23

OEA clustering and orphan anchoring. We used our clustering
algorithm followed by the set cover approach to cluster theTable 1. This table shows two different result sets depending on the
OEA reads, and obtainetD, 560 sets of OEA clusters with minimum length of the orphan contigs considered for the merging
a high support 4 on each side (i.e. both- and — strands). phase. For both ABySS and EULER contigs, we show the number
Each side (or strand) of the detected OEA clusters wer@f orphan cqntigs thgt are merged with an OEA contig (and hence
independently assembled using our local assembly routingdnchored) with an alignment scoreS0. Same locus (table header)
mrSAAB. Resulting OEA contigs were then processed togethelnd'cmes th? number of orphan contigs W'th.h'gh Seque.r?mmeo a

. . novel insertion sequence detected by fosmids and loci inardacce
with the orphan contigs in the last phase of the NovelSe

o ith the fosmid-based predictiondifferent locus (table header)
pipeline, mrBIG. In summary, we anchore0 EULER ,jicates the number of orphan contigs with high sequenagitgido

contigs and 13 ABYSS contigs independently to the reference 5 novel insertion sequence detected by fosmids but with lotim
genome using the NovelSeq pipeline. In the merging phase afoncordance with the fosmid-based predictions.
the orphan and OEA contigs (mrBIG), NovelSeq requires the
alignment score between the orphan contig and the OEA contig
to be >50. The alignment score is calculated as the score of
the local alignment under affine gap model, where rtiagéch . . .
score is+1, mismatch penalty is—1, andgap penalties are 4.2 Comparison of the orphan contigs with the
—16 and—4 for gap opening and gap extension, respectively. NA18507 fosmid shotgun sequence library
The minimum requirement for the alignment score is a useiwe compare the sequence content of both ABySS and EULER
defined parameter in the NovelSeq pipeline. Clearly, the lowekcontigs with a set of2,509 sequence contigs assembled
alignment score one chooses at the merging phase, the mofom one end anchored fosmid end sequences as previously
orphan contigs can be anchored to the reference assembly. described by Kidd et al. (Kiddt al., 2008). This fosmid
Recently, Kidd et al. end sequenced all fosmid clonesresource was end-sequenced using capillary technology, and
(~40 Kbp each) generated from the genome of the samén the remainder of this paper, we denote the sequence
individual (NA18507) using the traditional Sanger method andassembly generated from this dataset fasmid contigs.
built a map of novel insertions with high quality sequence Using crossmatch (Green, 2010) with default parameters, we
information (Kidd et al., 2008). We used this dataset to test observed that, 789 (~71%) fosmid contigs overlap with the
the accuracy of the NovelSeq pipeline. As shown in Table 1, ABySS contigs, and, 754 (~70%) fosmid contigs overlap
we anchored>70% of the orphan contigs (with high sequence with the EULER contigs. Figure 4(a) shows the comparison
identity to a novel sequence insertion detected by fosmids) tdetween ABySS and EULER contigs against the fosmid
locations concordant with the fosmid-based predictions. Oukcontigs. Next, we compared both ABySS and EULER orphan
concordance rate increases to 78% for ABySS contigs of lengtontigs with a total of 4.8 Mbp of novel sequence in NA18507
>500bp. Note that some of the fosmid sequences were nadequences found by a recent study by Li et al. €tial.,
anchored to the human genome reference assembly, thus v@®09) (n=7,330; Figure 4(b)) based on whole-genotee
were not able to test the accuracy of the loci we predicted fonovo sequence assembly using SOAPdenovoe{lal., 2010).
the contigs that are highly identical to such fosmid sequencesThe reader can easily verify thde novo sequence assembly
We need to re-emphasize that anchoring a novel insertiomsing the entire next-generation shotgun sequence read library
is not an easy task if there are repeat sequences (that alsequires extensive computational resources that are not needed
are not represented in the reference genome) at the flanksy our method. The high amount of overlap between ABySS
of the inserted sequence. Note that the dataset used heredsd EULER contigs with the contigs found by Li et al. (@i
generated by the lllumina platform and the insert size is veryal., 2009) also validates the sequence content of ABySS and
small (average size 209 bp, standard deviation 8.25 bp). AnEULER contigs. Figure 4(c) depicts the comparison between
anchoring strategy that utilizes the OEA concept would fail to ABySS and EULER contigs and the SOAPdenovoétial.,
do so in such cases, since the OEA read pair will be too short t2009) and fosmid contigs.
span over the flanking repeat if the repeat length is larger than Note that a close inspection of the sequences detected by
the insert size (for example an Alu element is typically 300bp). SOAPdenovo and missed by ABySS and EULER revealed that
For a more reliable OEA/orphan anchoring step, longer inserR,054 contigs missed by ABySS and 2,096 contigs missed
sizes are required. by EULER are<200bp, that we removed from consideration
in our analysis. We further analyzed the contigs found by
SOAPdenovo and missed by ABYSS, and using BLAST, we
found that 119 contigs can be aligned to sequences from
known contaminants (the majority to Epstein-Barr) witB0%
sequence identity, requiring at least 80 bp alignment length
4 We considered the OEA clusters supported>b}0 OEA reads in ~ (total of 136 Kbp). 97/119 contigs are200 bp, the longest
both strands, where20 OEA reads were required to support the contig is 6,765 bp. Note that when we used blast, with
cluster in at least one strand. paremeters identical to the ones used for the analyes of ABySS
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and EULER contigs, only 92 of SOAPdenovo contigs were WGS library generated from the genome of Craig Venter (Levy

aligned to either build35 or build36.

ABySS EULER-SR .
[2.66Mbp] Fosmid [2.37Mbp) Fosmid

[1.73Mbp]

1765
[2.18Mbp]

1741
[2.16Mbp]

(a) The comparison of ABySS and fosmid contigs
(left), and the comparison of EULER and fosmid
contigs (Kiddet al., 2008) (right)

ABySS SOAPdenovo SOAPdenove

[2.66Mbp]

[4.8Mbp] EULER-SR [4.8Mbp]
[2.37Mbp

3849

3546
[2.63Mbp] [2.32Mbp]

3389
[3.63Mbp]

(b) The comparison of ABySS and SOAPdenovo
contigs (Liet al., 2009) (left), and the comparison of
EULER and SOAPdenovo contigs (right)

ABySS
[2.66)I</Ibp] EULER-SR S[?QAF;genovo Fosmid

[2.37Mbp] [3Mbp]

4916 2414
(2764) [2.87Mbp]

2015
[2.46Mbp]

(c) The comparison of ABySS and EULER contigs
(left), and the comparison of SOAPdenovo étial.,
2009) and fosmid contigs (Kidet al., 2008) (right)

et al., 2007), as well as the sequence assembly of the Venter
genome (HuRef (Levet al., 2007). In Table 2 we also provide
comparisons against human genome reference assembly (both
build35 and build36). We consider two category of 99% and
95% sequence identity to call a hit in the database search. In
addition, we provide the comparison statistics separated by the
minimum contig length (i.e>200bp and>500bp). We observe

that the novel sequences detected in NA18507 genome are also
found in the Venter genome, suggesting that these sequences
correspond to rare deletions in the reference genome assembly.

NA18507 > 200bp > 500bp
database 95% | 99% || 95% | 99%
ABySS build35 616 481 236 174
ABySS build36 611 | 475 222 159
ABySS | NA18507 (fosmid end-seq.)| 2305 | 1944 || 1253 | 1076
ABySS Venter WGS 3028 | 2938 || 1811 | 1798
ABySS HuRef 3815 | 3763 1512 | 1488
EULER build35 670 530 123 100
EULER build36 660 522 114 92
EULER | NA18507 (fosmid end-seq.)| 2530 | 2169 || 1055 | 933
EULER Venter WGS 4193 | 4131 1542 | 1536
EULER HuRef 3272 | 3127 1329 | 1309

Table 2. The comparison of NA18507 orphan contigs with the WGS
libraries and the Venter genome. For different cases, the aumwib
orphan contigs with a high similarity to each library is giv&ontigs
that were aligned to build35 or build36 were also included.

5 DISCUSSION AND CONCLUSION

The completion of the Human Genome Project in 2003 was
a major step towards understanding our genetic makeup.
Although it is invaluable for genome research, the reference
genome assembly is not a global representative of all
haplotypes and a host of human genome sequences remain
missing. Due to the cost of traditional sequencing technologies,
the characterization of such sequences, commonly referred to
as “novel insertion sequences” (or alternatively deletion alleles

Fig. 4. Venn diagrams depicting pairwise comparisons of novelin the reference genome) remained elusive. However, with
sequence assemblies generated by ABySS, EULER, SOAPdeliovo (the introduction and continuous evolution of next-generation

et al., 2009, 2010), and fosmid end-sequences uphrgp. Note that
we provide two numbers at the intersections, correspondinthe
numbers of contigs in each set that are almost identical todhgégs
in the reciprocal set. We also provide the total length osthoontigs
in brackets. The numbers given in parenthesis, next to SOAd®de

correspond to the number of contigs with at least 200bp.

4.3 Comparison with WGS libraries and the
Venter genome

sequencing technologies, it is now possible to detect and
characterize these sequences in the hopes of building a human
“pan-genome” (Liet al., 2009). De novo sequence assembly
methods (Simpsost al., 2009; Chaisson and Pevzner, 2008;

Li et al.,, 2010) are developed to address the computational
challanges of this issue, however, one needs to invest
significantly in computational resources due to the excessive
memory and CPU requirements of such methods. We designed
our pipeline, NovelSeq, to efficiently assemble the novel
sequence insertions and build maps of insertion by anchoring
the sequences back into the reference genome assembly. An

Finally, we used BLAST to compare the contaminant-freeimportant aspect of our framework is that it can be applied as
orphan contigs generated by ABySS (n=4,115) and EULERa post-processing step after the completion of read mapping
(n=4,525) with the WGS library generated from the genometo analyze other types of genetic variation such as SNP and
of the same individual (NA18507) using Sanger sequencingstructural variation discovery. We validated our predictions
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et al

by comparing the sequence content and the anchor positioaitschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D0990) Basic
independenﬂy assessed by other groups using (|) fosmid local alignment search toal. Molec. Biol. 215:403-410.

end sequence analysis, (i) full fosmid sequencing, and (jij)BneY: D-R., Balasubramanian, S., Swerdiow, H.P., Smith, G.RoMD., etal.
d bl . d d f h (2008) Accurate whole human genome sequencing using reversible terminator
e novo sequence assembly using data generate rom the chemistryNature 456: 53-59.

genome of the same individual. In addition, we comparedchaisson, M.J. and Pevzner, P.A. (2008) Short read fragment assembly of
the sequence content of our novel sequence predictions with bacterial genomesenome Res. 18: 324-330.
the WGS dataset and the assembly of the Venter genomé:_hen, K., Wallis, J., McLellan, M., Larson, D., Kalicki, J., et al. (2009)

L . Breakdancer: an algorithm for high-resolution mapping of genomic structural
The significant overlap between the sequences detected in o . 0 ods6: 677 — 681

two different genomes suggest rare deletions in the referencgying, B., Green, P. (1998) Base-calling of automated sequencer traces using
genome. phred. II. error probabilitiesGenome Res 8: 186-94.
To better understand the human genome variation andpreen, P.(2010) cross-match, at http://www.phrap.org.

evolution, as well as genotype-phenotype associations Wélormozdiari, F., Alkan, C., Eichler, E.E., Sahinalp, S.C. (2009) Coloirial
d i) ild h . bli Th ’ algorithms for structural variation detection in high-throughput sequenced
need to build comprehensive genome assemblies. € next- genomesGenome Res, 19: 1270-1278.

generation sequencing platforms now give us the opportunityidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, M. et
to target genomes from many populations, as exemplified by (2008) Mapping and sequencing of structural variation from eight human
the 1000 Genomes Projedtt(t p: / / www. 1000genones. genomesNature 453: 56-64.

f . . Kidd, J.M., Sampas, N., Antonacci, F., Graves, T., Fulton, R., et allQR0
or g)' The next Cha”enge will be the full characterization of Characterization of missing human genome sequences and copy-number

these “novel insertions” to discover new promoters, exons, and olymorphic insertionsNature Methods, to appear.

other functional elements. Korbel, J.0., Urban, A.E., Affourtit, J.P., Godwin, B., Grubert, F., akt
(2007) Paired-end mapping reveals extensive structural variation in the human
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