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Rare-Variant Extensions
of the Transmission Disequilibrium Test:
Application to Autism Exome Sequence Data

Zongxiao He,1 Brian J. O’Roak,2,3 Joshua D. Smith,2 Gao Wang,1 Stanley Hooker,1

Regie Lyn P. Santos-Cortez,1 Biao Li,1 Mengyuan Kan,1 Nik Krumm,2 Deborah A. Nickerson,2

Jay Shendure,2 Evan E. Eichler,2 and Suzanne M. Leal1,*

Many population-based rare-variant (RV) association tests, which aggregate variants across a region, have been developed to analyze

sequence data. A drawback of analyzing population-based data is that it is difficult to adequately control for population substructure

and admixture, and spurious associations can occur. For RVs, this problem can be substantial, because the spectrum of rare variation

can differ greatly between populations. A solution is to analyze parent-child trio data, by using the transmission disequilibrium test

(TDT), which is robust to population substructure and admixture.We extended the TDT to test for RV associations using four commonly

used methods. We demonstrate that for all RV-TDT methods, using proper analysis strategies, type I error is well-controlled even when

there are high levels of population substructure or admixture. For trio data, unlike for population-based data, RV allele-counting asso-

ciation methods will lead to inflated type I errors. However type I errors can be properly controlled by obtaining p values empirically

through haplotype permutation. The power of the RV-TDT methods was evaluated and compared to the analysis of case-control data

with a number of genetic and disease models. The RV-TDT was also used to analyze exome data from 199 Simons Simplex Collection

autism trios and an association was observed with variants in ABCA7. Given the problem of adequately controlling for population

substructure and admixture in RV association studies and the growing number of sequence-based trio studies, the RV-TDT is extremely

beneficial to elucidate the involvement of RVs in the etiology of complex traits.
Introduction

Complex-trait rare-variant association studies of exome

or whole-genome sequence data have been facilitated by

next-generation sequencing (NGS).1 The vast majority of

NGS association studies of complex traits have been popu-

lation-based studies of qualitative and quantitative traits.

However, these studies are vulnerable to population

substructure and admixture, which can greatly increase

false-positive rates. The observation of spurious associa-

tions due to population substructure has been shown to

be an even greater problem for rare variants than for

common ones.2 Even for European populations, unlike

for common variants, there can be considerable differences

in the rare allelic spectrum from one European ethnic

group to another. These differences can be even more

extreme when studying admixed populations such as

African-Americans and Hispanics. Although it has been

demonstrated for association studies of common variants

in European populations that principal components

analysis (PCA) can adequately control for population

substructure,3 it is debated whether PCA is adequate to

control for population substructure when rare variants

are analyzed.2 For admixed populations, performing PCA

to globally control for population admixture can be insuf-

ficient, even for the association analysis of common

variants.4
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The A
For population-based studies in the presence of either

population substructure or admixture, spurious associa-

tions can be detected as a result of sampling artifacts

because of differences in allele frequencies between popu-

lations. What is desired is to detect an association due to a

difference in the genotype frequencies (e.g., between cases

and controls, individuals with high and low quantitative

trait values) at the causal variant or variants in linkage

disequilibrium (LD) with the causal variant. Family-based

analysis can avoid the problem of spurious associations

due to population substructure and admixture, and signif-

icant findings always imply association due to the causal

variant or LD with the causal variant. The study of trios

is the most basic family-based design for association

testing, using genotype data from an affected proband

and his parents. Since the trio design was first proposed

by Falk and Rubinstein in 1987 to control for population

admixture and substructure,5 a number of adaptations

have been developed including the method that is pre-

dominantly used to date, the transmission disequilibrium

test (TDT).6,7 For the TDT, only parents that are heterozy-

gous at the marker locus are informative, and it tests

whether or not the frequency of transmitted alleles is the

same as the alleles not transmitted to an affected child.

The only assumption for the TDT is Mendelian transmis-

sion, and an excess of an allele of one type transmitted

to the affected offspring indicates a disease-susceptibility
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Figure 1. Two-by-Two Table for the McNemar’s Test
Displays the manner in which transmission and nontransmission
of the parental minor alleles are counted for the transmission
disequilibrium test.
locus for the trait that is both linked and associated with

themarker.8 Both linkage and association between the trait

and the marker are required to reject the null hypothesis.9

This dual-alternative hypothesis protects the TDT from

spurious associations where an association is observed

but linkage is not present, which can occur in the presence

of population admixture and/or substructure.10 The cost of

recruiting probands and their relatives and performing

NGS used to be a bottleneck in performing family-based

rare-variant association studies. Currently in order to study

the role of de novomutations in genetic diseases, NGS data

are being generated for a large number of trios.11

The traditional TDT can be used to perform rare-variant

association analysis by analyzing single variants. However,

it has been shown that association analysis of individual

rare variants (minor allele frequency [MAF] % 1%) is un-

derpowered,12 as a result of the small number of observa-

tions for a rare variant and a stringent multiple-testing

correction. In order to analyze rare variants, many associa-

tion methods have been developed specifically to enrich

the association signal and reduce the multiple-testing pen-

alty. All of these methods group information across multi-

ple variants within a genomic region, which is usually a

gene.13–17 In addition to aggregating rare variants within

a region, these methods include (1) weighting each variant

by either the frequency in controls14 or the complete sam-

ple18 or by predicted functionality of the variants17 and (2)

maximizing the test statistic over all variants or variant

frequencies.17–19 These methods can improve power to

detect rare-variant associations compared to single variant

analysis. Methods that combine the benefits of rare-variant

association analysis and family-based tests provide a robust

and powerful approach to identify and characterize rare

disease-susceptibility variants.

We incorporated four commonly used rare-variant

association methods into the TDT framework: Combined

Multivariate and Collapsing (CMC),13 Weighted Sum Sta-

tistic (WSS),14 Burden of Rare Variants (BRV),20 which is

a revised version of Gene- or Region-based Analysis of Var-

iants of Intermediate and Low frequency (GRANVIL),16

and Variable Threshold (VT).17 We also compared the po-

wer of these methods to the previously described Family

Based-Sequence Kernel Association Test (FB-SKAT).21 By

using simulated genetic data, we demonstrate that type I

errors are well-controlled for all extended rare-variant

(RV)-TDT methods, even when applied to admixed or sub-
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structured populations. However, in the presence of LD

between variants, there are some caveats in properly con-

trolling type I errors.

The power of the four RV-TDT methods to detect associ-

ations varies only slightly and the most powerful method

is dependent on the underlying disease model. However,

all RV-TDT methods are more powerful than FB-SKAT.

The power of the RV-TDT methods were also compared

to population-based rare-variant association methods.

Inorder to further illustrate theapplicationof theRV-TDT

methods with NGS data, 199 autism spectrum disorder

(ASD) trios from the Simons Simplex Collection were

analyzed.22 ASD, a heterogeneous disorder with substantial

heritability, is defined by impaired social communication,

deficits in language development, and the presence of

restricted interests and/or stereotyped repetitive behav-

iors.23 Genome-wide association, de novo mutation, and

copy-number-variant studies have reported more than

100 different genes and genomic regions to be associated

with this complex trait,24 but for at least 70%ofautismcases

theunderlying genetic component remains unexplained.25

Thismotivates great interest in investigating the roleof low-

frequency and rare variants in the etiology of ASD. Applica-

tion of our RV-TDT methods identified an association with

rare variants within ABCA7 (MIM 605414), which encodes

ATP-binding cassette subfamily A member 7 protein and

might be involved in the etiology of autism.
Material and Methods

Transmission Disequilibrium Test
The TDT was performed in the manner described by Spielman

et al.7 by using a 2 3 2 table to tally all possible transmission

events (Figure 1). For the TDT, only the transmission of alleles

from parents who are heterozygous is of interest; for those geno-

types where the parent is homozygous the meiosis is uninforma-

tive. Transmission events from homozygous parents fall into cells

a and d, which are not used in the test statistic. The informative

meioses from heterozygous parents are where

(1) the minor allele is transmitted to the proband and

the major allele is not transmitted, which we define as

a minor-allele-transmitted event. These observations are

tallied in cell c; and

(2) the major allele is transmitted to the proband and the

minor allele is not transmitted, which we define as a ma-

jor-allele-transmitted event. These observations are tallied

in cell b.

The null hypothesis holds when the proportions b=ðbþ cÞ and
c=ðbþ cÞ are comparable with probabilities 0.5 and 0.5 (i.e., b ¼ c ).

The hypothesis is tested by using a 1-degree of freedom asymptot-

ical c2 test, McNemar’s test,26 and the c2 statistic is defined as

c2 ¼ ðb� cÞ2
ðbþ cÞ : (Equation 1)

For the RV-TDT methods a one-sided test is performed, because

only the overtransmission of the minor allele to the affected child
14



is of interest. For all RV-TDT methods, a de novo event is consid-

ered to be a minor-allele-transmission event.

Rare-Variant Association Methods
Four commonly used rare-variant association methods are incor-

porated into the TDT framework to detect the association between

rare variants and the phenotype of interest.

TDT-CMC

The CMC method uses an indicator variable to denote the pres-

ence or absence of rare variant(s) and tests the association between

the phenotype and rare-variant carrier status. For every parent, for

each informative variant site we count whether or not a minor-

allele-transmitted event occurs. For parent j with variant i, we

define indicator variables cij and bij as

cij ¼
�
1; if a minor-allele-transmitted event

occurs for parent j with variant i
0; otherwise

bij ¼
�
1; if a major-allele-transmitted event

occurs for parent j with variant i
0; otherwise

(Equation 2)

Then, for a genetic region L, the total minor-allele-transmitted

events andmajor-allele-transmitted events for parent j are given by

cj ¼
X
i˛L

cij; bj ¼
X
i˛L

bij: (Equation 3)

For the TDT-CMC method, for a data set with n trios (2n par-

ents), the c and b quadrants in the 2 3 2 table for gene L above

are given by

c ¼
X2n
j¼1

cj=
�
bj þ cj

�
; b ¼

X2n
j¼1

bj=
�
bj þ cj

�
: (Equation 4)

Then Equation 1 will be used to attempt to reject the null

hypothesis of no linkage or association between the genetic region

and the disease. This approach will ensure every informative

parent contributes a score of 1 to the McNemar’s test. There are

a few rare situations where phasing is required for the TDT-

CMC, because each informative parent can only contribute a score

of 1, for example, if the proband, mother, and father are all hetero-

zygous at the same rare-variant site and the mother is heterozy-

gous at an additional rare variant site. In this situation, if both

of the mother’s rare variants are on the same haplotype, then

she is scored 1 for a major-allele-transmitted event (quadrant b)

and the father is scored 1 for a minor-allele-transmitted event

(quadrant c). On the other hand, if the mother’s rare variants are

on different haplotypes, she is scored 1/2 for a major-allele-trans-

mitted event (quadrant b) and 1/2 for a minor-allele-transmitted

event (quadrant c), whereas the father is scored 1 for a major-

allele-transmitted event (quadrant b). Therefore, for the applica-

tion of the TDT-CMC, haplotypes must be phased.

TDT-BRV

The TDT-BRV method counts the number of minor-allele-trans-

mitted events and major-allele-transmitted events from every

informative parent to the affected proband. Therefore unlike the

TDT-CMC where each informative parent can only contribute a

score of 1 to theMcNemar’s test, for the TDT-BRVeach informative

parent contributes a score that is equivalent to the number of

informative sites within the region, e.g., 1, 2, 3.
The A
The same analysis is used as for the TDT-CMC, except Equation 4

above is given in the form of

c ¼
X2n
j¼1

cj; b ¼
X2n
j¼1

bj: (Equation 5)

Because each site within an informative region can be counted

independently of the other sites, it is not necessary to phase the

data before performing the TDT-BRV, when analytical p values

are obtained. However to control type I errors in the presence of

LD, empirical p values should be estimated via haplotype permu-

tation, which requires phasing the trio data.

TDT-WSS

For the TDT-WSS, each variant site is weighted by the estimated SD

of the number of variants in the parental haplotypes that are not

transmitted to the offspring

bui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni$qi

�
1� qi

�q
; (Equation 6)

where qi is the allele frequency of variant i in parental haplo-

types that are not transmitted to the offspring. The remaining

analysis is similar to the TDT-BRV, except the c and b in Equation 4

above are given in the form of

c ¼
X2n
j¼1

cj ¼
X2n
j¼1

X
i˛L

cijbui

; b ¼
X2n
j¼1

bj ¼
X2n
j¼1

X
i˛L

bijbui

:

(Equation 7)

Because internal information is applied to obtain the weights,

p values must be obtained empirically by using permutation to

avoid spurious associations.

TDT-VT

For the TDT-VT, the test statistic is maximized over allele fre-

quencies and therefore a variable allele frequency threshold is

applied, instead of a fixed MAF cut-off. The TDT-VT can be imple-

mented by using either the TDT-CMC or TDT-BRV coding. The

TDT-VT avoids the implicit assumption about the relationship

between allele frequency and odds ratio. Because the test statistic

is maximized over allele frequencies, to correct for multiple

testing, p values must be obtained empirically.

We also compared the power of the RV-TDT methods to FB-

SKAT. FB-SKAT is an extension of the family-based association

test (FBAT) to detect rare-variant associations by using a variance

component test. More details about this method can be found in

Ionita-Laza et al.21
Simulation Based on PopulationDemographicModels
To evaluate type I error rates and the power of the RV-TDT

methods, we generated population genetic data by using forward

time simulation.27 Two population demographic models were

followed, Kryukov28 and Boyko.29 For the Kryukov model, a con-

ventional four-parameter model was used to describe the demo-

graphic history (i.e., bottleneck and exponential expansion) of

the European population. Purifying selection, which affects the

rare-variant site frequency spectrum, is also modeled for nonsy-

nonymous variants. Details on the population genetic model’s

parameters can be found in Kryukov et al.28 For the Boyko model,

a simple two-epoch and a six-parameter complex bottleneck

models were used to model population demographic changes for

Africans and Europeans, respectively. Details for these population

genetic models can be found in Boyko et al.,29 and particulars
merican Journal of Human Genetics 94, 33–46, January 2, 2014 35



on the choice of parameters have been previously described by Liu

and Leal.30 For each population genetic model, 500 haplotype

pools were generated, each consisting of 200,000 haplotypes of

1,500 bp in length, which is the average size of a human gene.

This 1,500 bp ‘‘gene’’ represents only the coding regions and con-

sists of sites deemed to be either synonymous or nonsynonymous.
Generation of Trio Data
One haplotype pool is randomly selected for each replicate. The

genotypes for the proband are obtained by pairing two randomly

drawn haplotypes. When genetic data are generated under the

alternative hypothesis, a penetrance model is used to determine

whether the inherited pair of haplotypes will cause the

proband to be ‘‘affected.’’ When an affected proband is obtained,

one haplotype is selected to be the maternal haplotype and the

other chosen to be the paternal haplotype. The remaining

maternal and paternal haplotypes are obtained by randomly

selecting two additional haplotypes from the same haplotype

pool. When genetic data are generated under the null hypothesis,

the same procedure is performed, except that the proband’s

genotypes are composed solely from two randomly sampled

haplotypes.

To generate African and European admixed trios, we generated

haplotype pools by using African and European population

demographic models, and the haplotypes were sampled from

both the African and European pools. The proportion of African

and European admixture is determined by the probability that is

used to select from either the African or European haplotype

pool. Various degrees of population admixture are examined,

i.e., 75% African and 25% European, 50% African and 50% Euro-

pean, and 25%African and 75% European, with the assumption of

random mating. By using these probabilities, the two proband

haplotypes are either selected both from the African pool, both

from the European pool, or one haplotype is selected from the

European pool and the other from the African pool. Each one of

the proband’s haplotypes is assigned to a parent and then, by

using the admixture probabilities, it is determined whether the

second haplotype for each parent should be selected from an

African or European haplotype pool.

To generate trios in the presence of population substructure,

the proband’s haplotypes were constructed by sampling from

haplotype pools that were either African or European, and the

parents’ haplotypes were drawn from a haplotype pool of the

same ancestry. Population substructure was created by analyzing

together ‘‘African’’ and ‘‘European’’ trios with the proportions

75% African and 25% European, 50% African and 50% European,

and 25% African and 75% European.

To evaluate the effect of intermarker LD on type I error, we

generated trio haplotypes with perfect LD. To create a pool, we

selected 20 haplotypes that have two or more variant sites and

no one variant site could be found on more than one haplotype

background. Additionally, to evaluate haplotype reconstruction

when there is perfect LD and population substructure, two pools

were created each with 20 nonoverlapping haplotypes. Haplo-

types were drawn from these two pools with either equal probabil-

ity or 25% of haplotypes were sampled from one pool and 75%

from the other haplotype pool.
Generation of Case-Control Data
In order to compare the power of the RV-TDT methods to the

analysis of population-based data by using the original versions
36 The American Journal of Human Genetics 94, 33–46, January 2, 20
of the rare-variant association methods, variant data were

generated by the Kryukov model. Two haplotypes were sampled

from a haplotype pool and by using the penetrance model

described below it was determined whether the haplotype pair

should be assigned ‘‘case’’ or ‘‘control’’ status. The process was

repeated until the desired numbers of cases and controls were

obtained.
Generation of Phenotype Data
The disease status for a pair of haplotypes is assigned based upon

their multisite genotypes consisting only of rare nonsynonymous

variant sites (MAF % 1%). Power is evaluated when 100%, 75%,

and 50% of the nonsynonymous variant sites are causal. Those

sites within the gene region that are nonsynonymous were

randomly deemed to be causal based upon the predetermined

proportions, whereas the remaining rare-variant sites are

noncausal with no phenotypic effect. An odds ratio (OR) > 1 is

assigned to each causal variant, and the disease probabilities of

all variants within a gene are computed based upon an additive

mode of inheritance.31 Two different disease models were applied,

both using a disease prevalence of 1%: the equal-effect model

where the ORs of causal variants are constant and the variable-

effects model where the ORs of causal variants are inversely

correlated with their MAFs. For the equal-effect model, those

variant sites that are deemed to be causal were evaluated by

using four ORs ¼ 1.8, 2.0, 2.2, and 2.5. For the variable-effects

model, those variant sites which were deemed to be causal with

the lowest observed allele frequency were assigned ORmax

while those variant sites with the highest allele frequency were

assigned ORmin. Interpolation was used to obtain the effect

size of all causal variants with allele frequency between the high-

est and lowest MAF. The power was evaluated for four variable-

effects models ORmin-ORmax ¼ 1.5–2.5, 1.5–3.0, 1.5–3.5 and

1.5–4.0.
Data Analysis
For the TDT-CMC, TDT-BRV, and FB-SKAT, only rare variants with

a MAF % 1% were analyzed, whereas for the TDT-WSS, TDT-VT-

CMC, and TDT-VT-BRV both rare and low frequency variants

(MAF % 5%) were analyzed. For evaluating the effect of LD on

the RV-TDTmethods, a MAF of% 5%was used for all tests. All var-

iants meeting the MAF criteria were analyzed whether or not they

were deemed to be ‘‘causal.’’ For TDT-CMC and TDT-BRV, p values

were obtained both analytically and empirically, whereas for TDT-

WSS, TDT-VT-CMC, and TDT-BRV, p values were only obtained

empirically through genotype and haplotype permutation. For

the FB-SKAT method, p values were obtained by moment match-

ing approach with 10,000 Monte Carlo simulations. For the anal-

ysis of population-based data with the rare-variant association

methods BRV, WSS, and VT, p values were obtained empirically,

whereas for the CMC, p values were obtained both empirically

and analytically.
Permutation
Genotype and haplotype permutation methods were evaluated.

For genotype permutation, genotypes are shuffled at every variant

site between each parental pair, and then a paternal and maternal

haplotype were randomly chosen to form the offspring’s geno-

types. For haplotype permutation, the haplotypes are phased

and then the parental haplotypes within each trio are shuffled,
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and the offspring’s genotypes are obtained by pairing a randomly

selected paternal and maternal haplotype.
Haplotype Phasing
For the TDT-CMC, TDT-VT-CMC and haplotype permutation,

haplotypes must be phased. In order to evaluate how well haplo-

types could be phased in the presence of African and European

population admixture, the phase of the generated data was

ignored and phasing was performed with BEAGLE.32 Additionally,

haplotype data were generated with perfect LD, and the haplotype

phases were ignored and then reconstructed with BEAGLE. By

using 10,000 replicates, the proportion of times parental haplo-

types could be correctly phased was evaluated.
Evaluating Type I Error and Power
To evaluate type I errors, we generated 20,000 replicates each with

1,500 trios. For RV-TDT methods where p values were obtained

empirically, 10,000 permutations were performed. Power was eval-

uated for an a ¼ 0.05. Two thousand replicates were generated to

evaluate power for samples of 800, 1,000, 1,200, 1,500, and 1,800

trios, and to obtain p values empirically, 2,000 permutations were

performed. Additionally, to compare power for the RV-TDT

methods to the analysis of population-based data, 2,000 replicates

were generated for three different scenarios: 1,500 trios, 1,500

cases/1,500 controls, and 1,000 cases/1,000 controls. P values

were obtained empirically by performing 2,000 permutations.
Application to Autism Data
From the Simons Simplex Collection, 199 autism spectrum disor-

der trios were analyzed. Previously, 189 of these trios were

analyzed to detect de novo events.25 An additional 10 trios, which

have not been described, were also analyzed.

All samples and phenotypic data were collected under the direc-

tion of the Simons Simplex Collection by its 12 research clinic

sites: Baylor College of Medicine; Children’s Hospital Boston and

Harvard University; Columbia University; Emory University;

McGill University; Vanderbilt University; Yale University; Univer-

sity California Los Angeles (UCLA); University of Illinois at

Chicago; University of Michigan; University of Missouri; and Uni-

versity ofWashington. Parents consented and children assented as

required by each local institutional review board. Participants were

de-identified before distribution. Research was also approved by

the University of Washington Human Subject Division under

nonidentifiable biological specimens/data.

Exome Capture and Genotype-Calling

Genomic DNA was extracted from whole blood.25 Exomes were

captured by usingNimbleGen EZ ExomeV2.0 and reads weremap-

ped to a custom reference genome assembly (GRC build37). All

exomes met the completed criteria of R83 read depth in 90% of

the capture target and R203 read depth in 80% of capture target.

Additional details on exome sequencing of the autism trio data

can be found in O’Roak et al.25

Quality Control

Variants were selected if they passed the following GATK filters:33

AB (allele balance for hets [ref/(refþalt)]) % 0.75, HRun (largest

contiguous homopolymer run of variant allele in either direction)

%5.0, QD (variant confidence/quality by depth) R5, SB (strand

bias) %�0.10, QUAL (sequencing quality) >30, and SnpCluster

(at least 3 variants clustered within 10 bp).34 Variant Associa-

tion Tools (VAT) software was used to remove genotypes with

a read depth <103 and also to select variants for analysis.
The A
Gene regions were assigned based upon RefSeq definition and

ANNOVAR35 was used to annotate variant sites. Only variant sites

that were either nonsynonymous or putative splice site variants

were analyzed.

Phasing Trios Data

Before phasing, Mendelian inconsistencies were identified and

removed with the PLINK software.36 Phased genotypes were

obtained with BEAGLE software.32 For missing genotype data,

BEAGLE imputes missing data and only provides the most likely

genotype. We observed that analyzing the most likely genotype

can increase false-positive rates for trio data (data not shown).

Therefore the imputed variant calls were removed from the anal-

ysis. Additionally to avoid spurious associations, those regions of

the exome containing copy-number variants or pseudogenes

were removed from the analysis. Genes on the autosomal chromo-

somes with R4 variant sites were analyzed, and 8,441 genes were

included in the analysis.
Results

Evaluation of Type I Error

Type I error rates were estimated by the proportion of

replicates with p values % 0.05 or % 0.005. Additionally,

Quantile-Quantile (QQ) plots were generated. When the

data were generated without LD, no type I error inflation

was observed for any of the RV-TDT methods (Table 1;

see Figure S1 available online). For both the TDT-CMC

and TDT-BRV when p values were obtained analytically,

the type I error is well-controlled and the p values are

slightly conservative (Table 1; Figures S1A and S1D). Like-

wise, when p values were obtained empirically through

either genotype or haplotype permutation, type 1 error is

well-controlled (Table 1; Figure S1). However, when the

haplotypes with perfect intermarker LD, i.e., r2 ¼ 1 were

analyzed, extreme inflation in type I error was observed

(Table 1; Figure 2) under several conditions. For p values

that were obtained analytically for the TDT-BRV, type I

error is extremely inflated, but for the TDT-CMC, the

type I errors are well-controlled and even slightly conserva-

tive (Table 1; Figure 2A). For example, for the TDT-BRV

when haplotypes with the variants in perfect LD were

analyzed, an a level of 0.05 has a type I error rate of 0.20.

This inflation of type I error is not resolved through geno-

type permutation (Figure 2B). Haplotype permutation

resolves the problem and type I error is well-controlled

(p value ¼ 0.05) (Figure 2C). For the TDT-WSS, TDT-VT-

CMC, and TDT-VT-BRV, p values must be obtained empir-

ically to properly control type I errors, and when there

is intermarker LD, although genotype permutation leads

to inflated type I errors (Table 1; Figure 2B), haplotype

permutation properly controls type I error rates (Table 1;

Figure 2C).

To demonstrate that the RV-TDT methods can

adequately control for population admixture, admixed

African and European populations were generated

following the Boyko population demographic models

using different ratios of African and European admix-

ture. For all methods, haplotype permutation provided
merican Journal of Human Genetics 94, 33–46, January 2, 2014 37



Table 1. Type I Error for RV-TDT Methods at a Levels of 0.05 and 0.005

Method

Models

Kyrukov Boyko LD

a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005

TDT-BRV Analyticala 0.0493 0.0032 0.0468 0.0033 0.1996b 0.0946

Genotypec 0.0427 0.0042 0.0396 0.0034 0.1992 0.0934

Haplotyped 0.0432 0.004 0.0396 0.0034 0.051 0.0033

TDT-CMC Analytical 0.0492 0.0032 0.0467 0.0033 0.0472 0.0034

Genotype 0.043 0.004 0.0397 0.0035 0.1082 0.0265

Haplotype 0.0431 0.0039 0.0396 0.0034 0.0519 0.0041

TDT-VT-BRV Genotype 0.0448 0.0037 0.0423 0.0039 0.2795 0.1269

Haplotype 0.0445 0.0039 0.0424 0.0038 0.0487 0.004

TDT-VT-CMC Genotype 0.0447 0.0038 0.0423 0.004 0.1086 0.0188

Haplotype 0.0442 0.0039 0.0425 0.0039 0.0445 0.0047

TDT-WSS Genotype 0.0459 0.0042 0.0441 0.0038 0.1846 0.081

Haplotype 0.0449 0.0041 0.0446 0.0037 0.0509 0.0041

Method

Proportion of African and European Admixture

0.75/0.25 0.5/0.5 0.25/0.75

a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005 a ¼ 0.05 a ¼ 0.005

TDT-BRV Haplotype 0.0509 0.0044 0.0489 0.0047 0.0483 0.0050

TDT-CMC Analytical 0.0416 0.0040 0.0463 0.0043 0.0481 0.0037

Haplotype 0.0470 0.0041 0.0483 0.0043 0.0504 0.0047

TDT-VT-BRV Haplotype 0.0491 0.0058 0.0483 0.0051 0.0518 0.004

TDT-VT-CMC Haplotype 0.0495 0.0055 0.0489 0.0054 0.0520 0.0042

TDT-WSS Haplotype 0.0519 0.0050 0.0498 0.0056 0.0527 0.0048

ap values obtained analytically.
bInflated type I errors are highlighted in bold font.
cp values obtained with 10,000 genotype permutations.
dp values obtained with 10,000 haplotype permutations.
control of type I errors. Also for the TDT-CMC, when

p values were obtained analytically, type I error was

well-controlled (Table 1; Figure 3). Similar results were ob-

tained for substructured populations (data not

shown). These findings strongly support that RV-TDT

methods are robust to both population admixture and

substructure.

For all methods for which type I error is well-controlled,

haplotypes need to be reconstructed. We examined the

ability to reconstruct haplotypes for trio data, where infor-

mation from the proband can aid in the reconstruction.

In the presence of population admixture, even with no

LD, when a ratio of 50% African and 50% European was

used, 99.95% (SD 0.12%) of the haplotypes could be recon-

structed correctly. Likewise, when the ratio was changed to

75% African and 25% European, 99.93% (SD 0.23%) of the

haplotypes were correctly reconstructed. The results were

very similar when data were generated under population

substructure. For example, for population substructure
38 The American Journal of Human Genetics 94, 33–46, January 2, 20
where 50% of the population was African and 50% Euro-

pean, 99.88% (SD 0.40%) of the haplotypes were correctly

reconstructed.

Power of RV-TDT Methods

The power of the RV-TDT methods were evaluated for a

variety of sample sizes and effect sizes, and also compared

to the power of FB-SKAT. The difference in power between

the RV-TDT methods is small, although TDT-BRV and

TDT-CMC are slightly more powerful than other methods

under the equal-effect model (Figure 4; Figure S2); how-

ever, there is a clear difference in power between the

RV-TDT methods and FB-SKAT, with the RV-TDT methods

being considerably more powerful. The power of the

RV-TDT methods, as a function of genetic effect size and

sample size, is shown in Figure 4 and Figure S3, respec-

tively. For example, when 75% of all nonsynonymous

rare-variant sites were causal and the OR for causal variants

is 2.5, the power of TDT-CMC and TDT-BRV is 71.15% and
14



Figure 2. QQ Plot of Negative Natural Log p Values Obtained for Trio Data under the Null Hypothesis of No Association when the
Variant Sites that Are Tested Are in Perfect LD
For each scenario, a total of 1,500 trios were analyzed and 20,000 replicates were generated. For the TDT-CMC and TDT-BRV, variants
with MAF % 1% were analyzed while for the TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS, variants with MAF % 5% were analyzed.
(A) Displays the results for the TDT-BRV and TDT-CMC when p values were obtained analytically (Anal).
(B) Displays the results for the TDT-BRV, TDT-CMC, TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS. All p values were obtained empirically by
performing 10,000 genotype (Geno) permutations for each replicate.
(C) Displays the results for the TDT-BRV, TDT-CMC, TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS. All p values were obtained empirically by
performing 10,000 haplotype (Haplo) permutations for each replicate.
71.10%, respectively, whereas the power for TDT-WSS,

TDT-VT-CMC, and TDT-VT-BRV is 67.25%, 66.00%, and

66.10%, respectively. For the same scenario, the power

for FB-SKAT is 53.90% (Figure 4E). When 75% of the

variant sites are causal and the OR for causal variant is

between 1.5 and 4.0, the power of TDT-CMC, TDT-BRV,

TDT-WSS, TDT-VT-CMC, and TDT-VT-BRV is 68.25%,

68.05%, 70.25%, 70.05%, and 70.20%, respectively, while

for the same scenario the power for FB-SKAT is 35.88%

(Figure 4B).

To further evaluate the power of the RV-TDT methods,

we compared their power to the corresponding rare-

variant association methods for population-based data.

In Figure 5, the comparison of the power between the

TDT-BRV and BRV is shown, used to analyze trio and

case-control data, respectively. As previously observed for

the analysis of common variants per genotyped individ-

uals, the case-control design is slightly more powerful

than the trio design. For example, when 75% of all nonsy-

nonymous rare-variant sites are causal with OR ¼ 2.0, the

power of BRV when 1,500 cases and 1,500 controls

were analyzed is 45.85% and the power of TDT-BRV

when 1,000 trios were analyzed is 43.25%. However, if

only 1,000 cases and 1,000 controls are analyzed using

the BRV, the power is 33.00% (Figure 5B). Similar results

were observed for the other TDT extensions (data not

shown).

Applications to Autism Data Set

We applied the RV-TDT methods to analyze 199 trios from

the Simons Simplex collection that had available whole-

exome sequence data. The QQ plots for TDT-CMC, TDT-

BRV, TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS indicate

that there is no inflation of type I error (Figure S3). None
The A
of the detected associations meet exome-wide significance

of 5.92 3 10�6, i.e., an a level of 0.05 Bonferroni corrected

for testing 8,441 genes. ABCA7 showed the strongest evi-

dence of being associated with autism (OR ¼ 8.5 5 0.75

stdev) with all RV-TDT methods.37 Results from the

TDT-RV methods were similar: TDT-BRV (p value ¼
1.4 3 10�4), TDT-CMC (p value ¼ 1.6 3 10�4), TDT-CMC

(analytical) (p value ¼ 2.9 3 10�4), TDT-VT-BRV

(p value ¼ 1.5 3 10�4), TDT-VT-CMC (p value ¼ 2.3 3

10�4), and TDT-WSS (p value ¼ 2.8 3 10�4). None of

the variants that were observed in ABCA7 are de novo

events. Ten missense variants in ABCA7 with MAF % 1%

were observed in 18 trios with a total of 19 minor

alleles observed in the parental generation (Table 2). There

were 17 minor-allele-transmitted events and 2 major-

allele-transmitted events. For seven missense variants,

only a single minor-allele-transmitted event was observed.

Three missense variants had multiple transmission events:

c.2629G>A (p.Ala877Thr) had a minor-allele-transmitted

event in five trios and a major-allele-transmitted event in

one trio, c.5435G>A (p.Arg1812His) had a minor-allele-

transmitted event in three trios and a major-allele-

transmitted in one trio, and c.4795G>A (p.Val1599Met)

had a minor-allele-transmitted event in two trios (Table 2).

Only in one trio, two transmission events were observed

in ABCA7, c.1534C>G (p.Arg512Gly), and c.4795G>A

(p.Val1599Met). Of the ten missense variant sites, five

occurred at conserved nucleotides (both PhyloP and

GERP scores > 1) and were deemed damaging by at least

three of four bioinformatics tools, and therefore could

be potentially causal (Table 2). Three of the damaging

missense variants were observed in the NHLBI GO

Exome Sequencing Project (ESP)38 with MAF 0.0002-

0.004, while two variants are not previously reported in
merican Journal of Human Genetics 94, 33–46, January 2, 2014 39



Figure 3. QQ plot of p Values Obtained from the Analysis of African and European Admixed Populations
Genetic variant data for African and European populations were generated under the Boyko model. A total of 1,500 trios were analyzed
using 20,000 replicates. Type I error rates were evaluated for the TDT-BRV, TDT-CMC, TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS. For the
TDT-CMC and TDT-BRV, variants with aMAF% 1%were analyzedwhile for the TDT-VT-BRV, TDT-VT-CMC, and TDT-WSS, variants with
MAF % 5% were analyzed. All p values were obtained empirically by performing 10,000 haplotype permutations for each replicate,
except for the TDT-CMC analytical. The data were generated with different proportions of African and European admixture: in (A)
75% African and 25% European, (B) 50% African and 50% European, and (C) 25% African and 75% European.
publically available databases including 1000 Genomes.39

For the additional five ABCA7 variants, only one was

not previously reported in publically available databases

(Table 2).
Discussion

In this work, we incorporated rare-variant association

analysis into the TDT framework to analyze sequence

data, in particular rare variants. The simulation results

demonstrate that our RV-TDT methods are robust to both

population substructure and admixture, which highlights

the potential benefits of their application to the analysis

of sequence data. Current methods to control for popula-

tion substructure and admixture might not be sufficient

to avoid spurious associations when analyzing rare vari-

ants, in particular for admixed populations such as Afri-

can-Americans and Hispanics.2,4 The RV-TDT framework

can control for both admixture and substructure and

thus avoid spurious associations. Additionally proper

control of population substructure and admixture can

also decrease type II error and lead to an increase in power.

Although the accuracy of NGS technologies has greatly

improved, there is still ~1% false-positive call rate even

for high read-depth sequence data.38 An additional advan-

tage of analyzing trio data is that it is possible to improve

the accuracy of variant calls, by using variant callers that

make use of family or trio information.40,41 The increased

precision in variant calls can in turn lead to increased

power to detect associations.

BEAGLE was used to phase the simulated and autism trio

data. Other programs could have been used to accurately

phase trio data including PHASE (v2.1)42 and Shape-It.43

We demonstrate that phasing is quite accurate for trio
40 The American Journal of Human Genetics 94, 33–46, January 2, 20
data even when ‘‘admixed’’ data were generated. It has

also been demonstrated by others that phasing of haplo-

types is considerably more accurate for trio data than pop-

ulation-based data.44 For example, when PHASE (v2.1) was

used, the percentages of genotypes whose phase was

correctly inferred was 99.8% for simulated trio data and

99.95% for the HapMap Centre d’Etude du Polymor-

phisme Humain (CEPH) trio data, whereas for unrelated

individuals, haplotype phasing was correctly inferred

94.8% for the simulated data and 94.1% for CEPH data.44

Therefore, for trio data it is possible to obtain highly accu-

rate haplotype information.

When p values are analytically obtained for TDT-BRV, it

is not necessary to phase the data and additionally for

genotype permutation, phasing of the haplotypes is not

necessary. We demonstrate that although these methods

adequately control type I error when there is no inter-

marker LD, there can be serious inflation of type I error

in the presence of LD. For those methods, which require

empirical p values, e.g., TDT-WSS and TDT-VT, haplotypes

must be permuted because permuting genotypes leads to

an increase in type I errors. When population-based data

are analyzed with the BRV method, analytical p values

have well-controlled type I errors. Conversely for trio

data analyzed with the TDT-BRV, analytical p values

have inflated type I errors; however, for empirical p values

obtained via haplotype permutation, type I errors are

well-controlled.

For rare variants it is usually assumed that there are only

low levels of LD, because it is unlikely that rare variants fall

on the same haplotype background. However, for the

initial analysis of the autism trio data, we detected associa-

tions with several genes with TDT-BRV and genotype

permutation for which no significant association was dis-

cerned by using the TDT-CMC or haplotype permutation.
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Figure 4. Comparison of Power for the
RV-TDT Methods and FB-SKAT
Power was evaluated for an a level of
0.05 for 1,500 trios by generating 2,000
replicates. Analysis was performed with
TDT-BRV, TDT-CMC, TDT-VT-BRV, TDT-
VT-CMC, TDT-WSS, and FB-SKAT. For
the TDT-CMC, TDT-BRV, and FB-SKAT, var-
iants with a MAF % 1% were analyzed
while for the TDT-VT-BRV, TDT-VT-CMC,
and TDT-WSS, variants with MAF % 5%
were analyzed. For the TDT-BRV, TDT-
CMC, TDT-VT-BRV, TDT-VT-CMC, and
TDT-WSS, p values were obtained empiri-
cally by performing 2,000 haplotype
permutations for each replicate. For the
TDT-CMC, p values were also obtained
analytically. For the FB-SKAT, p values
were obtained with a moment matching
approach by using 10,000 Monte Carlo
simulations. Genetic variant data were
generated under the Kryukov model and
the proband’s affection status was ob-
tained with two different penetrance
models: variable-effects model (A, B, C)
and equal-effect model (D, E, F). Different
proportions of the variant sites were
deemed to be causal: (A and D) 50%,
(B and E) 75%, and (C and F) 100%.
Upon closer inspection we observed that these associations

were driven by multiple rare variants that all lay upon the

same haplotype. When analytical or empirical p values via

genotype permutation are obtained, each variant is treated

as an independent event, but in the presence of LD, this is

not the case. This led to an additional investigation on the

effects of intermarker LD on type I error and the demon-

stration that analytical p values for the TDT-BRV, and

empirical p values obtain through genotype permutation,

which breaks down the LD structure, are not robust to

intermarker LD and therefore should not be used. Only

haplotype permutation retains the LD structure when

used to obtain empirical p values and therefore properly

controls type I errors.

We demonstrate that the rare-variant case-control

design with an equal number of cases and controls is

generally slightly more powerful than the trio design if

an equal number of individuals are analyzed, e.g., 1,000

trios versus 1,500 cases and 1,500 controls. However, if

an equivalent sample size of cases is analyzed, the power

for the RV-TDT methods is slightly higher than the popu-

lation-based design, e.g., 1,000 trios versus 1,000 cases

and 1,000 controls. Additionally, for trio design, only

the proband must be phenotyped, which is equivalent

to one-third of the study participants, whereas for a

case-control design, all study participants should be

phenotyped.

A disadvantage of the trio design is that it is not usually

suitable for late-onset diseases, because parents will often

be deceased and no longer available for study. Additionally,

nonpaternity can reduce the power to detect associations,

because genotype data for the biological fathers will not be
The A
available. Its distinct advantages include: control of type I

error in the presence of population substructure and

admixture and the ability to investigate parent-of-origin

effects. These benefits make the family-based design an

excellent choice for sequence-based genetic studies, in

particular for early-onset diseases. An additional advantage

of using the family-based design is that both inherited and

de novo events can be studied and tested simultaneously

using the RV-TDT methods.

If it is of interest to detect an association with either

protective or detrimental variants, although less powerful

than a one-sided test, a two-sided test should be per-

formed. If protective variants are involved in disease

etiology, there is an undertransmission of minor alleles

to the affected proband. In the traditional implementa-

tion of the TDT, parents are not phenotyped and some

of the parents might manifest the phenotype of interest,

thus reducing the power to detect an association with

protective variants. If trios have been ascertained to detect

de novo events where the parents have been screened

to ensure they are unaffected, it could be the case

that they harbor protective variants that prevent them

from being diseased or they might not have the correct

combination of causal variants and\or environmental

exposures to induce the phenotype. Another scenario is

that both protective and detrimental variants within the

same gene are involved in disease etiology. It has been

previously shown that in these situations, variance

component tests such as SKAT can be more powerful

than aggregate rare-variant methods. However, variance-

component methods are less powerful when the vast

majority of variants within a region are either detrimental
merican Journal of Human Genetics 94, 33–46, January 2, 2014 41



A B C Figure 5. Comparison of Power to Detect
Rare-Variant Associations with Population-
Based and Trio Data
The BRV was used to analyze samples of size
1,000 cases and 1,000 controls and 1,500
cases and 1,500 controls, and the TDT-BRV
was used to analyze 1,000 trios. Power was
evaluated for an a level of 0.05 for both case-
control and trio data by generating 2,000 rep-
licates. P values were obtained empirically by
performing 2,000 haplotype permutations
for each replicate. Genetic variant data were
generated with Kryukov model. Affection
status was determined with an equal-effect
penetrance model with ORs varying between
1.8 and 2.5. Different proportions of causal
variants were used in the analysis with 50%
(A), 75% (B), and 100% (C).
or protective.45 We also demonstrate here that FB-SKAT

is considerably less powerful than the other RV-TDT

methods when causal variants within a gene region

have an effect that is unidirectional. Additionally, the

FB-SKAT did not detect an association between autism

and ABCA7 (p ¼ 0.11).

Although the emphasis of this study is performing

complex disease association analysis with the proposed

RV-TDT methods, the RV-TDT is also suitable for analyzing

Mendelian traits. For Mendelian traits, the RV-TDT is

particularly beneficial to use when although a family

history of disease has been recorded, only the proband

and his parents are available for study. The power of the

RV-TDT will be dependent on the underlying Mendelian

model. Assuming that there is no locus heterogeneity for

the disease under study, it is possible to analytically obtain

estimates of the necessary sample sizes to detect an associ-

ation for various Mendelian modes of inheritance. For

80% power, to detect an association for an autosomal

recessive trait when a ¼ 0.05, four trios are needed, and

if an exome-wide significance criterion of a ¼ 2.5 3 10�6

(a Bonferroni correction for testing 20,000 genes) is used,

then 15 trios are necessary to detect an association with

80% power. For autosomal-dominant traits for a ¼ 0.05

and a ¼ 2.5 3 10�6, 13 trios and 59 trios, respectively,

are required to detect an association with 80% power. It

is also possible to use the TDT-RV methods to analyze

X-linked traits, although only the mother will provide

informative meioses. To detect an association for an

X-linked recessive trait with a power of 80% for a ¼ 0.05,

seven trios are necessary, but for a ¼ 5 3 10�5 (Bonferroni

correction for testing ~1,000 genes on the X chromosome)

23 trios are necessary.

By using the RV-TDT methods, we identified variants in

ABCA7 (19p13.3) as potentially the underlying cause of

autism by analyzing 199 families from the Simons Simplex

collection. Previously, an ASD locus was mapped to the

19p13.12 region with a maximum nonparametric LOD

(NPL) score of >2.0 in 115 multiplex U.S. families.46,47

Additionally, by using an extended ASD pedigree consist-

ing of 20 nuclear families from Finland, we obtained an
42 The American Journal of Human Genetics 94, 33–46, January 2, 20
NPL score of 3.57 within chromosome 19p13.3 at marker

D19S591,48 which is 1.9 Mb away from ABCA7.

The association between rare variants in ABCA7 and

autism is consistent with the finding that autistic children

display abnormal rates of in vivo lipid metabolism

compared with healthy controls.49 ABCA7 is an integral

transmembrane ATP–binding cassette transporter that in-

volves the translocation of cellular lipid across membrane,

such as cholesterol.50 Current studies suggest that lipid

signaling plays an important role in neuronal pro-

cesses, such as synaptogenesis and neurotransmitter

functions.51,52 There is increasing evidence suggesting

abnormalities of lipid metabolic pathways might affect

the nervous system and contribute to autism.49,53

Common variants in ABCA7 have been associated with

Alzheimer disease (AD) through brain expression and

genome-wideassociation studieswith samples frompatients

of both African and European descent.54–56 It has been

shown that, like in AD, plasma levels of b-amyloid or a-pre-

cursor protein (APP) are significantly elevated in ASD pa-

tients.57 While the occurrence of b-amyloid plaques in the

brain iswell-knownasapathologichallmarkofAD, theaccu-

mulation of b-amyloid in the brains of both pediatric and

adult ASD patients was demonstrated only recently.58 In

Abca7�/� mice, phagocytotic cells have reduced ability to

clear amyloid from the brain, which results in decreased

memory and capacity to learn new tasks.59 The identifica-

tion of ABCA7 as a gene that is possibly involved in autism

etiology suggests the existence of a common pathway for

neurodevelopmental and neurodegenerative diseases that

might be targeted for prevention and treatment.

The RV-TDTmethods were developed to provide a robust

and powerful way to identify rare-variant complex disease

associationsbyusing trio sequencedata.Given theproblem

of adequately controlling for population substructure and

admixture in rare-variant association studies and the

growing number of sequence-based trio studies, the RV-

TDT is extremely beneficial in elucidating the involvement

of rare variants in the etiology of complex traits. The RV-

TDT methods can be used to analyze exome and genome

sequence data. Additionally, these methods can be applied
14



Table 2. Bioinformatic Evaluation and Frequencies of Rare Missense Variants within ABCA7

Chr19
Position

Nucleotide
Substitutiona PhyloPb GERPc

Amino Acid
Substitution PolyPhen-2 SIFT MutationTaster

Mutation
Assessor

Tran itted/
Non- ansmitted
Even dbSNP rsID

NHLBI-ESP
EA MAFd

NHLBI-ESP
AA MAFd

1,043,788e c.995G>A 2.90 4.33 p.Gly332Glu Probably
damaging

Damaging Polymorphism Functional,
medium

1/0 NA NA NA

1,045,109 c.1324G>A 0.28 2.54 p.Gly442Arg Possibly
damaging

Tolerated Polymorphism Nonfunctional,
low

1/0 NA NA NA

1,046,317 c.1534C>G �0.04 1.11 p.Arg512Gly Benign Tolerated Polymorphism Neutral 1/0 NA 0.0001 0

1,050,996 c.2629G>Af 1.18 2.59 p.Ala877Thr Benign Tolerated Polymorphism Nonfunctional,
low

5/1 rs74176364 0.006 0.003

1,051,481 c.2858C>A 4.96 4.43 p.Ala953Asp Probably
damaging

Damaging Disease-causing Functional,
high

1/0 NA NA NA

1,057,343 c.4795G>Af 1.58 3.65 p.Val1599Met Probably
damaging

Damaging Polymorphism Functional,
medium

2/0 rs117187003 0.004 0.0009

1,058,883 c.5344C>T 1.58 3.14 p.Arg1782Trp Probably
damaging

Damaging Disease-causing Functional,
medium

1/0 NA 0.0003 0

1,059,056 c.5435G>Af 1.28 0.81 p.Arg1812His Benign Damaging Polymorphism Neutral 3/1 rs114782266 0.005 0.07

1,062,248 c.5648C>T 4.87 3.61 p.Thr1883Met Probably
damaging

Damaging Disease-causing Functional,
high

1/0 NA 0 0.0002

1,065,305 c.6322G>Af 2.08 3.73 p.Glu2108Lys Benign Tolerated Polymorphism Functional,
medium

1/0 rs139706726 0.0002 0

acDNA position is based on reference sequence NM_019112.3.
bPhyloP scores indicate nucleotide conservation under a null hypothesis of neutral evolution.
cGERP provides position-specific estimates of evolutionary constraint.
dMinor allele frequencies (MAF) for European-Americans (EA) and African-Americans(AA) from the NHLBI GO – Exome Sequencing Project (ESP) Exome V riant Server. NA, not available.
eConserved nucleotides (both PhyloP and GERP with scores > 1) and damaging variants (deemed damaging by at least three of four bioinformatics tools re highlighted in bold font.
fIncluded on the Illumina Human Exome BeadChip.
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to analyze rare variants obtained from genotyping arrays

including the ‘‘exome’’ chip. To analyze the autism trio

data with all five RV-TDT methods, TDT-BRV, TDT-CMC,

TDT-WSS, TDT-VT-CMC, and TDT-VT-BRV, obtaining

empirical p values based on haplotype permutation took

a total of 3.1 hr. To analyze the same data set imple-

menting the TDT-CMC, obtaining analytical p values took

4.5 min. The analysis was performed with a single CPU,

however, by using multiple processors for the analysis can

greatly decrease the computational time. The RV-TDT

software package and documentation are publicly available

online.
Supplemental Data

Supplemental Data includes three figures and can be found with

this article online at http://www.cell.com/AJHG.
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The dbGaP accession number for the exome sequences reported in

this paper is phs000482.v1.p.
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