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1 Conflict Rules in Haploid Genome

The current state of art in identification of structural @¢inns in sequenced genome using short read technologies
reveals that identifying the SVs which share break-poimteappen within a small distance from one another (e.g.
twice as the size of paired-end insert-size) in the refergenome is a very challenging task. Throughout our methods,
for each SV cluster, we define a segment in the reference geasrtheconflict zoneof the SV cluster and assume
that two different SV clusters do not overlap in their conffiones in enaploidgenome sequence.

In order to define the conflict segment of an SV cluster, we fivét give some definitions. For each SV cluster
VClu, we defineninL(V Clu), max L(V Clu), minR(V Clu), max R(V Clu) as following:

minL(VClu) = min{L;(a;pe;)|a;pe; € VClu}
mazL(VClu) = max{Lr(a;pe;)|ajpe; € VClu}
minR(VClu) = min{Ri(a;pe;)|a;pe; € VClu}
mazR(VClu) = maz{R,(ajpe;)|a;pe; € VClu}

Next, for each valid clustér Clu supporting different types of variations, we define the dordloneCZ(V Clu)
as following:

[minL(VClu), maxR(V Clu)] Del.

[minL(V Clu), maxR(V Clu)] Ins.
[minL(VClu), maxL(V Clu)] Inv.

U [minR(V Clu), mazR(V Clu)]

[minR(V Clu), maxR(V Clu)] Copy from Left
[minL(VClu), maxL(V Clu)] Copy from Right

Note that the conflict zone of an SV cluster which supportswaersion is split to two non-overlapping conflicting
zones.

In Figure 1(a), two different SV clustefs C; andC} are seen wher€’; represents aimversionoccurring in a
block of a haploid genome sequence &fda insertion Let B (see Figure 1(a)) be a block where thedsof the
mate-paired reads suggesting the inversion event locaiisit can be seen, in Figure 1(&); andC] are conflicting
SV clusters since both of them cannot occur at the same tifgerd=1(b) presents two SV clusters; andCY, one
representing an insertion and the other one representimyersion. In this cas&}> andC’ can indeed be valid SV

cz(Velu) =

1we remind the reader that each SV cluster represents a safofdant mate-paired reads supporting exactly one paxti@y.



clusters at the same time and are not conflicting with eackrofinother example is shown in Figure 1(c) where SV
clustersCs andCY represent an insertion and a deletion event and conflictesith other.
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A haploid genome Clv C \%é

(a) Conflicting: C1 is an inversion cluster, shown in red togettfb) Not Conflicting: C is an inversion cluste(c) Conflicting: Cs is a deletion cluster and
with its conflict zone, and?’{ is an insertion cluster, shown in quandCé is an insertion cluster. Cé is an insertion cluster.

Figure 1: (a) shows two SV clusters together with their confliones. The conflict zones share a common blBck
in a haploid genome sequence; thus we consider them as tiogfi8V clusters. (bl’> andC’, support an inversion
event and an insertion event. Their conflict zones are netsetting; thu€’; andC/, are notconsidered conflicting.
(c) shows two SV clusters that are conflicting in a haploidayee sequence, sin€eZ(Cs) C CZ(C%).

2 Computational complexity of MPSV-CR

We will prove that MPSV-CR is NP-hard even if we have any pesitveight on the cardinality of C’ and any positive
penalty for unmapped reads (i.e. minimizing the func§osC’) = k|SC'| + 13 .. 6(SC’, pe) for somek > 0
andl > 0is NP-hard.). When > k > 0 (we denote this Case 1), minimiziggSC’) = k|SC’|+13 . g 6(SC", pe)
is the same as minimizing(SC’) = [SC'| +1'}_ .. p 0(SC’, pe) wherel’ = I/k. Whenk > [ > 0 (we denote
this Case 2), minimizing (SC”) = k|SC'| + 13 .z 6(SC’, pe) is the same as minimizing(SC") = k'[SC’| +
> pecr 6(SC', pe) wherek’ = k/I.

We prove that the MPSV-CR problem is NP-hard by using a réoludtom the minimum set cover problem.
Given(, a collection of subsets of a finite s&{(|S| = n), we would like to find a subse&t’” C C with the minimum
cardinality such that every element fhbelongs to at least one member@f. Without loss of generality, we can
assume Given an instance of the set cover problem, we builtstance of MPSV-CR as follows:

Caself=1andk < /) Foreachelemer; € S, there is a discordant paired-end reag, and corresponding
to each seC’; € C we have a cluste¥' Clu; = C;. We defineR = S, V(CG) = V(G), andE(CG) = 0. ltis easy
to see that if we have a set covgf of size< ¢, we can select a satisfiable set of clustg¢ssuch thay(SC) < ¢. On
the other hand, if we can select a satisfiable set of clust€rsuch thaty(SC) < t which includest clusters and,
uncoveredliscordant paired-end reads, we can have a correspondintgada’” C C for the set cover instance with
|C”] < x +y < t by choosing at mosi more sets to covey uncovered elements.

Case2(=1and?¢ < k): We denotep = [k]. For each elemerfi; € S, there are discordant paired-end reads
PEis Pitn, - - -, Pliyn(p—1) @Nd corresponding to each €&t € C there is a clusteV Clu; = {pex|Sk moan € Cj}.
We defineR = S, V(CG) = C, and E(CG) = { like in Case 1. If we have a set covél' of size< ¢, we
can select a set of cluste®” such thatg(SC) = kt. When we can select a satisfiable set of clusffssuch
that g(SC) < kt which includesz clusters withy uncovered discordant paired-end reads. By the constryctio
we haveg(SC) = kx + y andy uncovered discordant reads correspong’te= y/p elements inS. And since
k(z+1vy) < kx +py < kx+y < kt, we haver + 3/ < t. Thus, it is similar to Case 1 the collectiéi’ of = sets
and at most additiona)’ sets to covel’ uncovered elements is a solution to the set cover instaribecardinality
less than or equal to
In the following, we show an inapproximability result eveham we deal with a haploid genome.



Theorem 1. There is no constant> 0 for which MCSV-CR on haploid genome can be approximatedmatfactor
of n'~¢ in polynomial time, unles® = N P.

Proof. We use an approximation preserving reduction [1] from thaiMum Independent Dominating Set (MIDS)
problem. Given a grapt¥ = (V, E) where|V| = n, the MIDS problem asks for a sét ¢ V' with the minimum
cardinality such thaf is not only a dominating set but also an independent sét o is a dominating set of; if for
eachv € V, eitherv € S orv is adjacent to some’ € S. S is an independent set of the graphif Ve € E: e € S.

Given an instance of the MIDS problem, we build an instancelBEV-CR as following: Corresponding to each
vertexv;, we have a clustér Clu,. We also seM/C = R = V(G), V(CG) = V(G), andE(CG) = E(G). Now for
eachi < n, we define the SV clustdrClu; = {v|Je € E : e = v;v} i.e. VClu; consists of vertices that are adjacent
to v; and includes;.

It is easy to see that the size of minimum independent dommaet ofG is the same as of (SCopr) Where
SCopr is the optimal satisfiable set of clusters. In general, givesatisfiable set of clustef8C, we can obtain the
corresponding indepedent dominating seimvith the size less than or equal f¢SC). This can be easily done by
obtaining another satisfiable set of clustérs’ where all the reads are mapped such {&C") < f(SC). Then we
obtain the corresponding independent dominating sét imith the size equal t¢f(SC’). Hence, if MPSV-CR has
an e-approximation algorithme(> 1) with polynomial running time, the MIDS problem also has dypomial time
approximation algorithm within the same factor.

However the MIDS problem does not have any polynomial agprasion algorithm within a factor of! =< for
anye > 0 unlessP = NP [2]. Thus, the MPSV-CR problem is not likely to have a polynahapproximate algorithm
within the same factor.

O

3 Simple Simulation

We pick known large deletions (larger than 100 bp) discavened validated on HuRef genome [3] in comparison
to NCBI Human Genome (hg18) from chromosome 18, 19 and 2@dntisely 109, 121 and 62 deletions), and im-
posed them on hgl8 genome (by removing the same segmentdhfieollg18 genome). In next step we produced
short paired-end reads exactly similar to what lllumina hiae would have produced with a normal distribution of
fragment size which spans from 172 to 242 bp long form theedtélgl8 (imposed deletions). The reads produced
are mapped back to the hgl8 genome, using mrsFAST algorghm/e run our original VariationHunter and the
new VariationHunter-CR on the discordant paired-end rdigghments. The results indicate that even in this very
simple simulation (where these are simply very low posisigédl of having conflicting valid clusters) the Variation-
Hunter based on conflict resolution (VariationHunter-CR3} lower False positive rate, while having the same true
positive rate (in chrl8 the true positive rate is also quitghér in VariationHunter-CR) in comparison to original
VariationHunter [5]).
The results of this simple simulation is shown in the Table 1.

VariationHunter [5] VariationHunter-CR
chromosome| Deletions From HuRef{| Predicted| True Positive | False Positive|| Predicted| True Positive| False Positive
Imposed on HG18

chrl8 109 97 79 18(18.5%) 96 80 16(16.6%)
chrl9 121 114 92 22(19.3%) 111 92 19(17.1%)
chr20 62 55 43 12(21.8%) 53 43 10( 18.8%)

Table 1: In this table we show results of a simple simulatienhave run on Hg18, using large deletions found on
HuRef genome on chromosome 18, 19 and 20. These are resedlistpd using original VariationHunter[5] and
VariationHunter-CR. As it can been seen, even in this simpldrol simulation/experiment, the second method has
less false positive discovery having the same number ofpinsédive discovery.
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