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1 Conflict Rules in Haploid Genome

The current state of art in identification of structural variations in sequenced genome using short read technologies
reveals that identifying the SVs which share break-points or happen within a small distance from one another (e.g.
twice as the size of paired-end insert-size) in the reference genome is a very challenging task. Throughout our methods,
for each SV cluster, we define a segment in the reference genome as theconflict zoneof the SV cluster and assume
that two different SV clusters do not overlap in their conflict zones in ahaploidgenome sequence.

In order to define the conflict segment of an SV cluster, we willfirst give some definitions. For each SV cluster
V Clu, we defineminL(V Clu), maxL(V Clu), minR(V Clu), maxR(V Clu) as following:

minL(V Clu) = min{Ll(ajpei)|ajpei ∈ V Clu}
maxL(V Clu) = max{Lr(ajpei)|ajpei ∈ V Clu}
minR(V Clu) = min{Rl(ajpei)|ajpei ∈ V Clu}
maxR(V Clu) = max{Rr(ajpei)|ajpei ∈ V Clu}

Next, for each valid clusterV Clu supporting different types of variations, we define the conflict zoneCZ(V Clu)
as following:

CZ(Vclu) =
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[minL(V Clu), maxR(V Clu)] Del.
[minL(V Clu), maxR(V Clu)] Ins.
[minL(V Clu), maxL(V Clu)] Inv.
∪ [minR(V Clu), maxR(V Clu)]
[minR(V Clu), maxR(V Clu)] Copy from Left
[minL(V Clu), maxL(V Clu)] Copy from Right

Note that the conflict zone of an SV cluster which supports an inversion is split to two non-overlapping conflicting
zones.

In Figure 1(a), two different SV clusters1, C1 andC ′

1 are seen whereC1 represents aninversionoccurring in a
block of a haploid genome sequence andC ′

1 a insertion. Let B (see Figure 1(a)) be a block where theendsof the
mate-paired reads suggesting the inversion event location. As it can be seen, in Figure 1(a),C1 andC ′

1 are conflicting
SV clusters since both of them cannot occur at the same time. Figure 1(b) presents two SV clusters,C2 andC ′

2, one
representing an insertion and the other one representing aninversion. In this case,C2 andC ′

2 can indeed be valid SV

1We remind the reader that each SV cluster represents a set of discordant mate-paired reads supporting exactly one particular SV.
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clusters at the same time and are not conflicting with each other. Another example is shown in Figure 1(c) where SV
clustersC3 andC ′

3 represent an insertion and a deletion event and conflict witheach other.

1C

1C’  
A haploid genome

B

(a) Conflicting: C1 is an inversion cluster, shown in red together
with its conflict zone, andC′

1
is an insertion cluster, shown in blue.

2C’  

2C

(b) Not Conflicting:C2 is an inversion cluster
andC′

2
is an insertion cluster.

C’   3

C  3

(c) Conflicting:C3 is a deletion cluster and
C′

3
is an insertion cluster.

Figure 1: (a) shows two SV clusters together with their conflict zones. The conflict zones share a common blockB
in a haploid genome sequence; thus we consider them as conflicting SV clusters. (b)C2 andC ′

2 support an inversion
event and an insertion event. Their conflict zones are not intersecting; thusC2 andC ′

2 are notconsidered conflicting.
(c) shows two SV clusters that are conflicting in a haploid genome sequence, sinceCZ(C3) ⊂ CZ(C ′

3).

2 Computational complexity of MPSV-CR

We will prove that MPSV-CR is NP-hard even if we have any positive weight on the cardinality ofSC ′ and any positive
penalty for unmapped reads (i.e. minimizing the functiong(SC ′) = k|SC ′| + l

∑

pe∈R δ(SC ′, pe) for somek > 0
andl > 0 is NP-hard.). Whenl ≥ k > 0 (we denote this Case 1), minimizingg(SC ′) = k|SC ′|+l

∑

pe∈R δ(SC ′, pe)
is the same as minimizingg(SC ′) = |SC ′| + l′

∑

pe∈R δ(SC ′, pe) wherel′ = l/k. Whenk > l > 0 (we denote
this Case 2), minimizingg(SC ′) = k|SC ′| + l

∑

pe∈R δ(SC ′, pe) is the same as minimizingg(SC ′) = k′|SC ′| +
∑

pe∈R δ(SC ′, pe) wherek′ = k/l.
We prove that the MPSV-CR problem is NP-hard by using a reduction from the minimum set cover problem.

GivenC, a collection of subsets of a finite setS (|S| = n), we would like to find a subsetC ′ ⊆ C with the minimum
cardinality such that every element inS belongs to at least one member ofC ′. Without loss of generality, we can
assume Given an instance of the set cover problem, we build aninstance of MPSV-CR as follows:

Case 1 (k = 1 and k ≤ ℓ): For each elementSi ∈ S, there is a discordant paired-end readpei, and corresponding
to each setCj ∈ C we have a clusterV Cluj = Cj . We defineR = S, V (CG) = V (G), andE(CG) = ∅. It is easy
to see that if we have a set coverC ′ of size≤ t, we can select a satisfiable set of clustersSC such thatg(SC) ≤ t. On
the other hand, if we can select a satisfiable set of clustersSC such thatg(SC) ≤ t which includesx clusters andy
uncovereddiscordant paired-end reads, we can have a corresponding solution C ′′ ⊆ C for the set cover instance with
|C ′′| ≤ x + y ≤ t by choosing at mosty more sets to covery uncovered elements.

Case 2 (ℓ = 1 and ℓ < k): We denotep = ⌈k⌉. For each elementSi ∈ S, there arep discordant paired-end reads
pei, pei+n, . . . , pei+n(p−1) and corresponding to each setCj ∈ C there is a clusterV Cluj = {pek|Sk mod n ∈ Cj}.
We defineR = S, V (CG) = C, andE(CG) = ∅ like in Case 1. If we have a set coverC ′ of size≤ t, we
can select a set of clustersSC such thatg(SC) = kt. When we can select a satisfiable set of clustersSC such
that g(SC) ≤ kt which includesx clusters withy uncovered discordant paired-end reads. By the construction,
we haveg(SC) = kx + y andy uncovered discordant reads correspond toy′ = y/p elements inS. And since
k(x + y′) ≤ kx + py′ ≤ kx + y ≤ kt, we havex + y′ ≤ t. Thus, it is similar to Case 1 the collectionC ′′ of x sets
and at most additionaly′ sets to covery′ uncovered elements is a solution to the set cover instance with cardinality
less than or equal tot.

In the following, we show an inapproximability result even when we deal with a haploid genome.
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Theorem 1. There is no constantǫ > 0 for which MCSV-CR on haploid genome can be approximated within a factor
of n1−ǫ in polynomial time, unlessP = NP .

Proof. We use an approximation preserving reduction [1] from the Minimum Independent Dominating Set (MIDS)
problem. Given a graphG = (V,E) where|V | = n, the MIDS problem asks for a setS ⊂ V with the minimum
cardinality such thatS is not only a dominating set but also an independent set ofG. S is a dominating set ofG if for
eachv ∈ V , eitherv ∈ S or v is adjacent to somev′ ∈ S. S is an independent set of the graphG if ∀e ∈ E: e * S.

Given an instance of the MIDS problem, we build an instance ofMPSV-CR as following: Corresponding to each
vertexvi, we have a clusterV Clui. We also setMC = R = V (G), V (CG) = V (G), andE(CG) = E(G). Now for
eachi ≤ n, we define the SV clusterV Clui = {v|∃e ∈ E : e = viv} i.e. V Clui consists of vertices that are adjacent
to vi and includesvi.

It is easy to see that the size of minimum independent dominating set ofG is the same as off(SCOPT ) where
SCOPT is the optimal satisfiable set of clusters. In general, givena satisfiable set of clustersSC, we can obtain the
corresponding indepedent dominating set inG with the size less than or equal tof(SC). This can be easily done by
obtaining another satisfiable set of clustersSC ′ where all the reads are mapped such thatf(SC ′) ≤ f(SC). Then we
obtain the corresponding independent dominating set inG with the size equal tof(SC ′). Hence, if MPSV-CR has
anǫ-approximation algorithm (ǫ > 1) with polynomial running time, the MIDS problem also has a polynomial time
approximation algorithm within the same factor.

However the MIDS problem does not have any polynomial approximation algorithm within a factor ofn1−ǫ for
anyǫ > 0 unlessP = NP [2]. Thus, the MPSV-CR problem is not likely to have a polynomial approximate algorithm
within the same factor.

3 Simple Simulation

We pick known large deletions (larger than 100 bp) discovered and validated on HuRef genome [3] in comparison
to NCBI Human Genome (hg18) from chromosome 18, 19 and 20 (respectively 109, 121 and 62 deletions), and im-
posed them on hg18 genome (by removing the same segments fromthe Hg18 genome). In next step we produced
short paired-end reads exactly similar to what Illumina machine would have produced with a normal distribution of
fragment size which spans from 172 to 242 bp long form the altered Hg18 (imposed deletions). The reads produced
are mapped back to the hg18 genome, using mrsFAST algorithm [4]. We run our original VariationHunter and the
new VariationHunter-CR on the discordant paired-end read alignments. The results indicate that even in this very
simple simulation (where these are simply very low possibilities of having conflicting valid clusters) the Variation-
Hunter based on conflict resolution (VariationHunter-CR) has lower False positive rate, while having the same true
positive rate (in chr18 the true positive rate is also quite higher in VariationHunter-CR) in comparison to original
VariationHunter [5]).

The results of this simple simulation is shown in the Table 1.

VariationHunter [5] VariationHunter-CR
chromosome Deletions From HuRef Predicted True Positive False Positive Predicted True Positive False Positive

Imposed on HG18
chr18 109 97 79 18(18.5%) 96 80 16(16.6%)
chr19 121 114 92 22( 19.3%) 111 92 19( 17.1%)
chr20 62 55 43 12( 21.8%) 53 43 10( 18.8%)

Table 1: In this table we show results of a simple simulation we have run on Hg18, using large deletions found on
HuRef genome on chromosome 18, 19 and 20. These are results predicted using original VariationHunter[5] and
VariationHunter-CR. As it can been seen, even in this simplecontrol simulation/experiment, the second method has
less false positive discovery having the same number of truepositive discovery.
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