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Supplemental materials

Proof of Theorem 1

Red-Black-Assignment-F2 can be approximated within a factor of 1 + ωmax

ωmin

.

Proof. We remind the reader that the instance of Red-Black-Assignment-F2 problem is denoted byH and a maximal
matching inH is denoted byM . R = {r1, r2, · · · , rp} is the set of red edges andB = {b1, b2, · · · , bq} is the set of
black edges inM .

Our algorithm first probes all the edges inR (the set of red edges in the maximal matching) and assigns them to
one of their vertices. Each red edgeri ∈ R is from one of the following categories:

• There exists a black edge specific tori in H: in other words, this black edge shares a vertex withri but does
not share a vertex with any other red edge inR. In this case, the algorithm simply orients bothri and the
above-mentioned black edge to this shared vertex.

• ri does not share a vertex with a black edge inH: In this case the algorithm orientsri arbitrarily.

• Each black edge sharing a vertex withri has its other vertex shared by another red edgerj ∈ R: Let R′ ⊆ R
be the set of red edges which share a vertex with a black edge - not specific to any red edge. We construct anew
graphHR′

as follows: corresponding to each edger′j = (x′

j , y
′

j) in R′ set up avertexρ′j in HR′

. For each pair

of verticesρ′k andρ′ℓ in HR′

and for each black edge inH which share vertices with bothr′k andr′ℓ, set up an
edgee′k,ℓ connectingρ′k andρ′ℓ. Note thatHR′

is not necessarily a simple graph. SupposeHR′

hast connected
components denoted byC1, · · · , Ct. For eachCi, we first orient its edges such that each vertex has anindegree
at least1. Note that such an orientation can always be discovered via aDepth-first search (DFS) algorithm,
unlessCi is a (simple) tree in which exactly one vertex (the root of theDFS) would have indegree equal to zero
(i.e. no edges terminating at it). WLOG, let the direction of the edgee′k,ℓ be fromρ′k to ρ′ℓ. We orient the black
edgee′k,ℓ towards its vertex (sayxℓ), which is shared byr′ℓ. The edger′ℓ will also be oriented toxℓ and thusxℓ

will be multicolor. This guarantees that all but one of the red edges inR′ will be oriented towards a vertex, also
oriented by a black edge.

We will use a similar strategy for the set of black edges in thematching and finally orient all the remaining edges in
H arbitrarily. This strategy will guarantee that even if the optimal solution covers an edgeeM ∈ M with a multicolor
vertex and does not pick the other vertex ofeM (i.e. incurring a cost of onlyωmin), eM can be covered with a cost of
at mostωmax + ωmin by selecting both of its vertices - which will ensure at leastone of its vertices will be multicolor.
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If the optimal solution coverseM with a single colored vertex, our strategy will cover it witha cost of at most2 ·ωmax,
providing us a1 + ωmax/ωmin approximation factor.

CEU Trio Alu insertion results

(a) ISV&M (b) SSC (c) SSC-W

Figure 1:Figures (a), (b) and (c) detail the number of common and de novo events in each genome for the ISV&M, SSC and SSC-W respectively for the CEU trio.
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