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Simultaneous structural variation discovery among
multiple paired-end sequenced genomes
Fereydoun Hormozdiari,1,3 Iman Hajirasouliha,1,3 Andrew McPherson,1 Evan E. Eichler,2

and S. Cenk Sahinalp1,4

1School of Computing Science, Simon Fraser University, Burnaby BC V5A 1S6, Canada; 2Department of Genome Sciences, University

of Washington, and Howard Hughes Medical Institute, Seattle, Washington 98195, USA

With the increasing popularity of whole-genome shotgun sequencing (WGSS) via high-throughput sequencing technol-
ogies, it is becoming highly desirable to perform comparative studies involving multiple individuals (from a specific
population, race, or a group sharing a particular phenotype). The conventional approach for a comparative genome
variation study involves two key steps: (1) each paired-end high-throughput sequenced genome is compared with a ref-
erence genome and its (structural) differences are identified; (2) the lists of structural variants in each genome are
compared against each other. In this study we propose to move away from this two-step approach to a novel one in which
all genomes are compared with the reference genome simultaneously for obtaining much higher accuracy in structural
variation detection. For this purpose, we introduce the maximum parsimony–based simultaneous structural variation
discovery problem for a set of high-throughput sequenced genomes and provide efficient algorithms to solve it. We
compare the proposed framework with the conventional framework, on the genomes of the Yoruban mother–father–
child trio, as well as the CEU trio of European ancestry (both sequenced by Illumina platforms). We observed that the
conventional framework predicts an unexpectedly high number of de novo variations in the child in comparison to the
parents and misses some of the known variations. Our proposed framework, on the other hand, not only significantly
reduces the number of incorrectly predicted de novo variations but also predicts more of the known (true) variations.

[Supplemental material is available for this article.]

High-throughput–next-generation sequencing (NGS) technologies

are reducing the cost and increasing the world-wide capacity for

sequence production at an unprecedented rate. Large-scale proj-

ects based on NGS aim to sequence 2000 (1000 Genomes Project

Consortium 2010) or 10,000 individual genomes (International

Cancer Genome Consortium et al. 2010) and analyze genomic var-

iation at a population scale. Genomic variation, especially structural

variation (involving insertion, deletion, duplication, translocation,

and transposition events) detection through NGS, promises to be

one of the key diagnostic tools for cancer and other diseases with

genomic origin (Feuk et al. 2006; Stankiewicz and Lupski 2010). One

recent study (Leary et al. 2010), for example, demonstrates that

patient-specific structural variants identified in blood samples

could be used as personalized biomarkers for monitoring tumor

progression and response to cancer therapies. The main potential

use of NGS in clinical applications, however, would be the iden-

tification of genomic variants including the structural ones as re-

current biomarkers in patient subgroups that are scarcely observed

in healthy tissues. Some recent studies on specific cancer types, on

the other hand, have not been able to identify recurrent structural

biomarkers (e.g., Clark et al. 2010; Mardis 2010). Although it is

possible that such genomic signals simply do not exist in the

cancer types studied, another likely explanation is that the com-

putational tools used in these studies were not sufficiently accurate

to correctly identify and/or prioritize recurrent structural variants.

The emerging area of personalized genomics will surely benefit from

computational tools that can correctly identify recurrent structural

variants among a collection of genomes and transcriptomes.

To identify genomic variations with much higher accuracy

than what is currently possible, we propose to move from the cur-

rent model of (1) detecting genomic variations in individual next-

generation sequenced (NGS) donor genomes independently, and

(2) checking whether two or more donor genomes, indeed, agree or

disagree on the variations—we will call this model the ‘‘indepen-

dent structural variation detection and merging’’ (ISV&M) frame-

work. As an alternative, we introduce a new model in which ge-

nomic variation is detected among multiple genomes simultaneously.

Our new model can be likened to multiple sequence align-

ment methods that were introduced to overcome the limitations of

pairwise sequence aligners—the primary source of sequence anal-

ysis in the early days of genomics. Pairwise sequence alignment

methods implicitly aim to match identical regions among two

input sequences that are not interrupted by mismatches or indels.

They achieve this under the maximum parsimony principle that

suggests to minimize the (probabilistically weighted) number of

single nucleotide insertions, deletions, and mismatches in an align-

ment. Unfortunately, the most likely alignment is many times in-

correct. Accuracy in sequence alignment can be improved signifi-

cantly by the use of multiple sequence aligners, provided that several

related sequences are available for use. Today, at least for the pur-

poses of identifying genomic variants at a single-nucleotide scale,

multiple alignment is the ‘‘technology’’ of choice.

The main contribution of this study is a set of novel algo-

rithms for identifying structural differences among multiple genomes

through the use of multiple sequence comparison methods. Our

algorithms will help better analyze vast amounts of publicly avail-

able genomic sequence data (e.g., the 1000 Genomes Project) (Mills

et al. 2010; 1000 Genomes Project Consortium 2010), which in-
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clude WGSS data from diverse populations (and members of the

same population or even family).

Existing methods for structural variant (SV) discovery
and their limitations

Available methods for SV discovery typically use paired-end se-

quencing: Inserts from a donor genome (from a tightly controlled

length distribution) are read at two ends, which are later aligned to

a reference genome. Provided that the mapping loci are correctly

identified, an increase or decrease of the distance between the end

reads indicates an insertion or a deletion. PEmer (Korbel et al. 2009),

for example, maps each paired-end read to a unique location

through the mapping software MAQ (Lee et al. 2008). A number of

follow-up studies that use a similar ‘‘hard clustering’’ approach

(Medvedev et al. 2009) include Pindel (Ye et al. 1999) and Break-

Dancer (Chen et al. 2009). All focus only on the ‘‘best mapping’’ of

each read, provided by the mapping software in use. A survey

(Medvedev et al. 2009) summarizes the basis of decision making for

each of these methods and reports briefly on their performance.

These methods typically work well on unique regions of the hu-

man genome; however, they naturally ignore potential multiple

alignment locations in repeat regions, by either picking one arbi-

trary location among many possibilities or simply avoiding the use

of reads that have multiple mapping locations. As a result, they

cannot capture structural variations in repetitive regions of the

human genome.

In a recent paper (Hach et al. 2010), it was demonstrated that

ignoring possible mapping locations of a read may lead to significant

loss of accuracy in structural variation detection. A 2 3 100-bp read

provided by Illumina HiSeq2000 technology maps to more than 180

locations within six mismatches or indels. Picking an arbitrary lo-

cation among these as the mapping location of a read naturally leads

to both false positives and false negatives in SV discovery.

To address the above problem, a number of ‘‘soft clustering’’

techniques (Alkan et al. 2009; Hormozdiari et al. 2009; Lee et al.

2009) have been introduced in the past two years. Here, paired-end

reads are mapped to all potential locations—through the use of the

mapping algorithms such as mr and mrs FAST (Alkan et al. 2009;

Hach et al. 2010). In soft clustering approaches, paired-end reads can

have multiple mapping to the reference genome and thus suggest

different variations. Each set of the discordant paired-end reads can

be indicating a real structural variation or just be an artifact of the

multiple mapping. These clusters of paired-end reads are denoted

soft clusters (Medvedev et al. 2009). VariationHunter (Hormozdiari

et al. 2009) is one of those soft-clustering methods that aims to re-

solve repetitive regions of the human genome through a combina-

torial optimization framework for detecting insertion and deletion

polymorphisms. A recent extension of VariationHunter (Hormozdiari

et al. 2009) for mobile element insertion discovery (Hormozdiari

et al. 2010) and a new computational pipeline, NovelSeq, for novel

sequence insertion discovery (Hajirasouliha et al. 2010), also use

soft-clustering techniques. MoDIL (Lee et al. 2009), as well as its

follow-up MoGUL (Lee et al. 2010), evaluates the clusters of reads

that seem to indicate a structural variant using a probabilistic

framework, while Hydra (Quinlan et al. 2010) uses heuristics (based

on the algorithmic strategies of VariationHunter) to detect structural

variant breakpoints in the mouse genome. MoGUL (Lee et al. 2010)

focuses on finding common insertion and deletion events in a pool

of multiple low-coverage sequenced genomes.

In this study, we demonstrate, for example, that on the well-

known NGS genomes of the Yoruban family (involving a child, the

mother, and the father—NA18506, NA18507, NA18508) Bentley

et al. (2008), the independent application of VariationHunter (the

only publicly available algorithm for Alu discovery on NGS ge-

nomes) predicts up to 410 de novo Alu inserts in the child! A

careful inspection of the clusters obtained by VariationHunter

on all three individuals, on the other hand, reveals that all of

these 410 novel Alu inserts predicted are, indeed, false positives

mostly due to single nucleic variations (SNVs) or varying read cov-

erage, etc.

Note that soft-clustering strategies for SV detection between

one donor genome and a reference genome do provide both false

positives, as well as false negatives, due to SNV effects and others.

However, the proportion of false positives among all positives

predicted will be low because of the high number of actual SVs

typically observed between a donor and the reference. On the

other hand, when the goal is to identify structural differences be-

tween two highly related donors, i.e., donor 1 by (D1) and donor

2 (D2), by using the reference (R) as an intermediary, while the

number of false positives (between D1 and R and between D2 and R)

will be of similar scale, the proportion of false positives among all

positives will be high, simply due to the low number of actual SVs

that would be present between the donor genomes. Thus, al-

though VariationHunter (and other soft-clustering strategies) may

provide high levels of accuracy for SV detection between one do-

nor and the reference genome, it may provide a low level of ac-

curacy when finding the structural differences between two (or

more) donor genomes.

The CommonLAW approach

For the purpose of addressing the above issues arising in soft-

clustering techniques, we introduced the problem of simultaneous

SV discovery among multiple paired-end NGS donor genomes—

with the help of a complete reference genome. To solve this

problem, we also introduced novel combinatorial algorithms,

which we collectively call CommonLAW (Common Loci structural

Alteration discovery Widgets). CommonLAW aims to predict SVs

in several donor genomes by means of minimizing a weighted sum

of structural differences between the donor genomes as well as one

reference genome.5 The (pairwise) weights are a function of (1) the

expected genomic proximity of the individual donors sequenced

(see details in the Results section); and (2) the type, loci, and length

of the individual structural alterations considered. The problem of

minimizing (for example, sum-of-pairs) genomic alterations be-

tween multiple genomes is NP-hard. In this study, we describe

a tight (i.e., asymptotically the best possible) approximation al-

gorithm for the general simultaneous SV discovery problem—this

algorithm is at the heart of the CommonLAW package. In addition,

CommonLAW includes several efficient algorithms and heuristics

for some special cases of the problem.

We have tested CommonLAW on the genomes of three Yo-

ruban (YRI) individuals (mother–father–child trio) sequenced by

the Illumina Genome Analyzer with ;303 coverage (i.e., 3.24 3

1011 bp of sequencing data), for the purpose of predicting deletions

and Alu insertions. We compare the deletion predictions with

the validated deletions reported in the 1000 Genomes Project

Consortium (2010) and Mills et al. (2010). We compare the Alu in-

sertion predictions with Alu polymorphism loci reported in dbRIP

5Although it is easy to generalize the formulation we provide here to multiple
reference genomes, we do not explore this problem here due to the lack of
alternative, completely and independently assembled reference genomes.
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(Wang et al. 2006). In both cases, we observe that CommonLAW

provides a much higher level of accuracy in comparison to

VariationHunter, the only publicly available computational

method for Alu insertion discovery in NGS genomes.

In addition, we have tested CommonLAWon a high-coverage

parent–offspring trio of European ancestry from Utah (CEU), re-

cently sequenced and analyzed by the 1000 Genomes Project

(1000 Genomes Project Consortium 2010). We demonstrate the

predictive power of CommonLAW by comparing its calls with

the validated deletions reported in the 1000 Genomes Project

Consortium (2010) and Mills et al. (2010).

Methods

Simultaneous structural variation discovery among
multiple genomes
Given a reference genome and a collection of paired-end sequenced
genomes, G1,. . .,Gl, the Simultaneous Structural Variation Discov-
ery among Multiple Genomes (SSV-MG) problem asks to simulta-
neously analyze the genomes so as to predict structural differences
between them and the reference genome. For solving the SSV-MG
problem, notice that a paired-end read from a genome Gk with no
concordant alignment on the reference genome suggests an SV
event in Gk (Volik et al. 2003; Tuzun et al. 2005). Unfortunately, if
the number of discordant alignment locations of a paired-end read
is more than one, the paired-end read potentially supports several
SV events. The crucial question we try to answer in this study is,
among all potential SV events supported by a discordant paired-
end read, which one is correct? In the presence of a single donor
genome, one answer to this question was given by Hormozdiari
et al. (2009) with the introduction of novel approximation algo-
rithms for the ‘‘Maximum Parsimony Structural Variation’’ (MPSV)
discovery problem. In Hormozdiari et al. (2009), an SV cluster is
defined as a set of discordant (paired-end read) alignments that can
support the same potential SV event; similarly, a maximal SV
cluster is defined as an SV cluster to which no other alignments
could be added (Bashir et al. 2008; Hormozdiari et al. 2009, 2010;
Sindi et al. 2009; Hajirasouliha et al. 2010). A maximal SV cluster is
considered to be a valid cluster if it satisfies a certain set of mathe-
matical rules specifically defined for each SV event type (Hormozdiari
et al. 2009, 2010; Hajirasouliha et al. 2010).

As defined in Hormozdiari et al. (2009), the MPSV problem for
a single donor genome asks to compute a unique assignment for
each discordant paired-end read to a maximal valid SV cluster such
that the total number of implied SVs is minimized. The SSV-MG
problem, which generalizes the MPSV problem to multiple donor
genomes, also asks to identify a set of maximal SV clusters to which
each discordant paired-end read can uniquely be assigned—under
the maximum parsimony criteria. A solution of the SSV-MG
problem is said to provide support for each SV cluster as a function
of the discordant paired-end reads it assigns to the SV cluster. In-
tuitively, if the support comes from paired-end reads from a large
number of—especially highly related—genomes (e.g., members of
a family), the SVevent is more likely to be ‘‘correct.’’ The maximum
parsimony criteria we use are formulated to reflect this observation
as follows: Each SV event in a solution to the SSV-MG problem
is associated with a weight, which is a function of the set of
the donor genomes on which the SV event is present (i.e., has at
least one discordant paired-end read mapping that is assigned
to the associated SV cluster). If an SV event is present among
many donor genomes, its weight will be relatively small; on the
other hand, an SV event that is unique to only one donor genome
will have a larger weight. In this setting, the SSV-MG problem asks

to identify a set of SV events whose total weight is as small as
possible.

The algorithmic formulation of the SSV-MG problem

Given an NGS sequenced donor genome Gk, let the set of its dis-
cordant reads (i.e., the reads that do not have a concordant map-
ping) be Rk = pek

1; pek
2; � � � ; pek

nk

n o
; thus, nk denotes the number

of discordant reads of Gk. Let n = +l

k=1nk be the total number of
discordant reads among all the donor genomes, and let R = R1 [ R2

[ . . . [ Rl be the set of all discordant reads. For the algorithmic
formulation of the SSV-MG problem, the donor genome Gk and all
its discordant reads are said to be of ‘‘color’’ k.

Note that each discordant read may have several alignment
locations on the reference genome, thus, as we discussed above,
the aim is to find a unique assignment of each discordant read in R
to exactly one of the maximal SV clusters (and, hence, to one po-
tential SV event). (For detailed definitions of discordant reads and
multiple paired-end read alignments, please see Hormozdiari et al.
2009.)

Let S be the set of all maximal valid clusters. For each r 2 R, let
CS rð Þ � S, denote the set of all maximum valid clusters ‘‘supported
by’’ r, i.e., for which r has an associated alignment. For each possible
subset of colors (i.e., donor genomes) C � 1; . . .;lf g, we define
a weight vC as a measure of genetic affinity between the donor ge-
nomes in this subset. For example, the weight of a subset of two
donor genomes can be defined as the estimated ratio of the total
number of SVs in the two genomes and the number of shared SVs in
the genomes—i.e., the likelihood of an SV event being shared
among the two donor genomes, rather than being present in only
one donor genome. Then we can define the weight of an SV event
(i.e., maximal valid cluster) s, denoted ws, as vC sð Þ �Ds, where C sð Þ is
the set of donor genomes sharing the SV event s and Ds is a measure
of the likelihood of the SV event s, which depends only on the
length and the type of s—as discussed in the introduction section.

Based on these notions, the Simultaneous Structural Variation
discovery among Multiple Genomes (SSV-MG) problem asks to
assign each discordant read r 2 R to one of the maximal valid SV
clusters in CS rð Þ such that the following optimization function
(COST) is minimized:

COST = +
8s2S

Is �ws = +
8s2S

Is � vC sð Þ � Ds:

Here Is is an indicator variable equal to 1, if there if at least one
discordant read assigned to s (i.e., s is selected); otherwise Is is equal to 0.

SSV-MG for two donor genomes

A special case of the SSV-MG problem is on comparing two donor
genomes by the use of a reference genome as an intermediary. This
case obviously applies to two highly related genomes such as those
from healthy versus tumor tissues of an individual, for the purpose
of identification of common and distinct SV events with respect to
the reference genome, and, as a result, the structural differences
between them.

We study this case through a combinatorial problem, namely,
the Red-Black-Assignment problem where two colors, red and black
are, respectively, associated with the two donor genomes (and their
discordant paired-end reads). We call an SV event, which has
assigned paired-end reads from both colors, multicolor and call an
SV event that has assigned paired-end reads from a color red/black,
respectively, red or black. Clearly, a multicolor SVevent indicates no
structural difference between the two genomes, whereas a red or
a black SV event indicates a structural difference.

Simultaneous structural variation discovery
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LetM be the set of multicolor SV events, R be the set of red
events, and B be the set of black events. The SSV-MG problem for
this particular case asks to find a solution that minimizes the fol-
lowing cost function:

cost = v red;blackf g+sm2MDsm + v blackf g+sb2BDsb
+ v redf g+sr2RDsr :

Clearly, a lower value of v{red,black} in comparison to v{red} or v{black}

asks for a more conservative estimate of the structural differences
between the two genomes.

In the next section we show that the SSV-MG problem is NP-
hard to solve exactly. In fact, it is also NP-hard to solve within an
approximation factor of

c
vmax

vmin
log n ðfor some constant cÞ:

This is the case even when Ds = 1 for all SVevents s. Note that n is the
total number of discordant reads, and vmax and vmin are the maxi-
mum and minimum possible weight for of an SVevent, respectively.
(Intuitively, vmin is the weight of a multicolor SV event that has
assigned reads from all different colors, and wmax is the weight of an
SV event that has only assigned reads from one specific color.)

Hardness of approximating the general SSV-MG problem

We use an approximation preserving reduction from the well-
known set cover problem. The set cover problem is defined as
follows: Given a universe U with n elements and a family S of
subsets of U (i.e., S = {S1,. . .,Sm}), we want to find the minimum
number of sets in S whose union is U. Raz and Safra (1997) proved
that there exists a constant d such that the set cover problem
cannot be approximated within d log n unless P = NP. Alon et al.
(2006) showed that the similar complexity result also holds with
a smaller constant. We use this complexity result to prove that the
SSV-MG problem cannot be approximated within a constant times
vmax

vmin
log n.

Lemma 1. There exists a constant d such that the set cover
problem cannot be approximated within d log n even in the case where
the size of the optimal solution for the problem is already known.

Proof. Given a set cover instance, we define OPT as the size of
its optimal solution. Note that OPT is always an integer smaller
than or equal to m, where m is the size of the family of subsets of S.
We show that if there exists a black-box which finds a solution
with a size d log n � OPT for the case where OPT is already known,
the set cover problem can also be approximated within the same
factor. This reduction would be in contradiction to the complexity
result of Alon et al. (2006). Assume there exists such a black-box
that finds an approximated solution with at most d log n � OPT in
polynomial time. For each integer i 2 {1,. . .,m}, we can now guess
the value of OPT to be equal to i and execute m different black-
boxes (i.e., for each i) in parallel. Next, we verify the outputs of
those black-boxes terminated in polynomial time and find an ap-
proximated solution within the same factor for the general set
cover problem.

Theorem 2. There exists a constant c such that SSV-MG has no
approximation factor smaller than l�1+ vmax

vmin
� c log n�l+1ð Þ

� �
, unless

P = NP.
Proof. We use a reduction from the set cover problem where

the size of its optimal solution is already known. For simplicity, we
call this problem Set Cover Optimal Known (SC-OK) throughout
this proof. Suppose we are given an SC-OK instance with U =

{x1,. . .,xn} and S = {S1,. . .,Sm} as its universe and family of subsets,
respectively, and let OPT be the size of its optimal solution. We
construct an instance of the SSV-MG problem as follows: For each

color ‘(1 # ‘ # l � 1) and for each j(1 # j # OPT ), we introduce
a new element y‘,j with the color ‘. The color of the elements in U is
set to l. Let Y = {y‘,j |1 # ‘# l� 1, 1 # j # OPT} be the set of all these
new elements. We define U9 = U [ Y, as a new universe for the in-
stance of SSV-MG, and construct its family of subsets S9 as follows:
Corresponding to each Si 2 S, we have a subset S0i = Si[Y in S9. In
other words, all the subsets in the family will share all of the new
(l � 1)OPT elements. It can be seen that an optimal solution for
SC-OK gives an optimal solution for SSV-MG with a cost equal to
vmin �OPT since all the selected subsets can have all different l

colors assigned to them. Furthermore, any feasible solution for
SC-OK with k $ (l � 1)OPT subsets gives a solution with the cost
of at least vmax � [k � (l � 1)OPT ] + vmin � (l � 1)OPT for SSV-MG.
We have (l� 1)OPT new elements with colors from 1 to l� 1 (i.e.,
other than l) and even if (1) we assign these new elements to (l�
1)OPT different subsets, and (2) vmin is equal to the weight of an
SV event with assigned paired-end reads from two colors, the cost
of SSV-MG cannot become less than vmax � [k� (l� 1)OPT] + vmin �
(l � 1)OPT.6

We claim that if there exists an algorithm which gives an
approximate solution within a factor of l� 1+ vmax

vmin
� c log n� l+1ð Þ

for the SSV-MG instance, then we can also give an approximate so-
lution within a factor of c log n for SC-OK. As discussed earlier, the
optimal solution for this SSV-MG instance has a cost vmin � OPT
and if the algorithm guarantees the desired factor, the cost of the
solution would be at most vmin � OPT � l� 1+ vmax

vmin
� c log n� l+1ð Þ

� �
.

Now we will show that, in this case, the total number of subsets
in the solution returned will become less than c log n �OPT
which contradicts the result of Alon et al. (2006) for a small con-
stant c.

Assuming k is the total number of subsets in the solution, we
have:

l� 1ð ÞOPT � vmin + k� l� 1ð ÞOPTð Þ � vmax # vmin �OPT

� l� 1 +
vmax

vmin
� c log n� l + 1ð Þ

� �
:

Thus,

l� 1 +
k� l� 1ð ÞOPT

OPT
� vmax

vmin
# l� 1 + c log n� l + 1ð Þvmax

vmin

0
k� l� 1ð ÞOPT

OPT
# c log n� l + 1ð Þ:

Thus,

k# c log n �OPTð Þ:

So these k subsets will give a feasible solution within c log n
to SC-OK which contradicts the complexity result of Alon et al.
(2006), for a sufficiently small constant c.

A simple approximation algorithm for the SSV-MG problem

It is possible to obtain an approximate solution to the SSV-MG
problem within an approximation factor matching the lower
bound mentioned above, when Ds = 1 for all SV events s, in near-
linear time. For that we adopt the greedy algorithm for approxi-
mating the well-known set cover problem (Vazirani 2001) to ob-
tain a solution within O((vmax/vmin)logn) factor of the optimal
solution for the SSV-MG problem. (Again, vmax and vmin are the
maximum and minimum possible weights among all SV clusters.)

6Note that, since vmin is usually much smaller than the weight of events with
two assigned colors and vmax, we will get a much better bound in reality.
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The resulting algorithm, which we call the Simultaneous Set Cover
method (SSV ), selects sets iteratively: At each iteration, it selects
the set that contains the largest number of elements not previously
covered. For a given instance of the SSV-MG problem and its cor-
responding set cover instance, we denote the respective sizes of
their optimal solution by OPTSSV and OPTSC. It is easy to see that
OPTSSV $ vmin � OPTSC, since at least OPTSC subsets have to be se-
lected in SSV-MG to cover all the elements of the universe, and
each of those subsets has a weight of at least vmin. The greedy so-
lution for the set cover problem gives a solution of at most log n �
OPTSC, hence, the same solution for SSV-MG will have a cost of at
most vmax � log n �OPTSC. Thus, the SSC method gives an O((vmax/
vmin)log n) approximation for the SSV-MG problem—which
matches the lower bound indicated for the SSV-MG problem
above.

A maximum flow-based update for Red–Black Assignment

Although the SSV method described above is very fast, the results it
provides could be far from optimal. However, it is possible to im-
prove the results of the SSV method through an additional (post-
processing) step as follows: The SSV method picks a collection of
valid clusters such that each discordant read is assigned to exactly
one cluster. Each cluster is either multicolor or is considered Red or
Black depending on whether it contains reads from both colors
(i.e., donor genomes) or from a single color. The additional step we
describe here does not change the clusters and the SV events they
support. Rather, assuming that the clusters are ‘‘correct,’’ the ad-
ditional step reassigns the discordant reads to the clusters so as to
maximize the number of multicolored clusters. As a result of this
assignment, we may end up with empty clusters; we simply discard
these clusters and return the non-empty clusters as an (improved)
solution to the SSV-MG problem. Note that the additional step is
guaranteed to return a solution that is at least as good as the one
returned by the SSV method; in many cases, the solution will be
much better. Unfortunately, it can only be applied to the SSV-MG
problem when the number of colors (i.e., donor genomes) is ex-
actly two. Even for three colors, the problem of maximizing multi-
colored clusters (i.e., those clusters with reads coming from all three
donor genomes) is NP-hard (this is one of the first 21 NP-complete
problems discovered by Karp 1972).

The additional step formulates the reassignment problem (of
discordant reads to clusters) as a maximum flow problem as fol-
lows: Consider an instance of the Red–Black-Assignment problem
and let SSELECTED = {S1,. . .,Sk} be the subsets of the family S that are
already selected in a solution. Let R= r1; � � � ; rnRf g be the set of red
elements and B= b1; � � � ; bnBf g be the set of black elements, where nR +

nB = n (i.e., the number of elements in the universe). We construct
a network G as follows: For 1 # i # k, each Si is represented by
a vertex in the network and corresponding to every element in the
universe, we have a vertex in the network in G. For every pair (ri,Sp)
such that ri is a member of Sp, we have an edge with a capacity equal
to one and for every pair (Sq,bj) such that bj is a member of Sq, we
have an edge (Sq,bj) with a capacity one. A source vertex SOURCE is
connected to all vertexes in R, and all vertexes in B are connected to
a sink vertex SINK. All the internal vertices (i.e., all vertices except
the sink and the source) have capacity one as well.

Our additional post-processing step computes the maximum
(integral) flow from s to t and identifies all edges (ri,S‘) and (S‘,bj) in
Gwith unit flow in the network, and reassigns the elements r0i and
b0 j to the subset S‘. Observe that a solution to this maximum flow
problem will maximize the number of multi-color subsets. Figure 1
demonstrates an example of how the network is constructed and
how a solution to the maximum flow problem reassigns the dis-
cordant reads to clusters.

An O 1 +
vmax

vmin

� �
approximation algorithm for limited read

mapping loci

It is possible to further improve the algorithms presented above for
the special case in which each discordant read maps to a small
number of loci on the genome. For simplicity, we present the limited
case that each discordant read maps to exactly two locations; i.e., in
Red–Black-assignment problem terms, each element is a member of
exactly two subsets. The generalization of this case to a more general
one, in which each read can be present in at most f clusters, is not
very difficult and is omitted.7

The special case, which we denote as the Red-Black-Assign-
ment-F2 problem, has a graph-theoretical formulation similar to
the vertex-cover problem. Let G be a simple graph for which there
is a vertex si corresponding to each subset Si in the family S and
there is an edge e = (si,sj) corresponding to each element e in
U—provided e is in both Si and Sj. The edges of G are labeled with
the color of their corresponding elements (either red or black). To
solve the Red-Black-Assignment-F2 problem, all we need to do is to
set an orientation to each edge: the vertex (corresponding to a
cluster) to which a given edge (corresponding to a read) is pointing
gives the cluster to which a read is assigned. The Red-Black-Assign-
ment-F2 problem thus reduces to setting an orientation to the edges
in this graph such that avmin + bvmax is minimized: Here a is the
number of vertices to which edges of both colors are pointing, and
b is the number of vertices to which edges of only one color are
pointing.8

Let OPT be the minimum number of vertices required to cover
all the edges (i.e., the size of a minimum vertex cover). It is easy to see
that vmin � OPT is a lower bound for Red-Black-Assignment-F2, and
the simple greedy algorithm of the vertex cover problem (Vazirani
2001) gives a 2 � vmax

vmin
approximation.9 The following algorithm

achieves a smaller (in fact, the best possible) approximation factor.
Denote the instance of orientation setting problem (to which

the Red-Black-Assignment-F2 problem is reduced) by H. It is pos-
sible to compute a maximal matching (of vertices) in this graph in
polynomial time; let M denote this matching. Suppose M has p

Figure 1. The set R = {r1,r2,r3,r4} represents the red elements and B =
{b1,b2,. . .,b7} represents the black elements. The selected subsets are S1 =
{r1,r2,b1}, S2 = {r3,b1,b3}, S3 = {r4,b1,b4,b5,b6}, S4 = {b6}, and S5 = {r4,b6,b7}.
All the edges and vertices have capacity one, and the maximum flow is
shown in dark blue. As can be seen here, the maximum flow solution
reassigns the reads so that three sets/clusters, s1, s2, s3, become multi-
color and one set/cluster, s4 becomes empty. Thus, its associated po-
tential SV event will not be among the predicted SV events by our method.

7For example, for the generalization to the case in which each element is in at
most two subsets, observe that if an element is in only one subset, that subset
must be included in any feasible solution.
8Without loss of generality, we assume that v{red} = v{black} = vmax.
9The greedy algorithm selects at most 2OPT unicolor subsets.
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edges with red labels and q edges with
black labels, where p + q = |M|. Let R =

{r1,r2,. . .,rp} be the set of red edges and B =

{b1,b2,. . .,bq} be the set of black edges in
the maximal matching.

1. Consider an edge eM in this matching
and suppose that the optimal solution
to the orientation setting problem
points eM 2 M to a multicolor vertex;
also suppose that the other vertex to
which eM is incident is not pointed by
any other edge. Thus, in the optimal
solution, the ‘‘cost’’ of covering each of
the edges eM in the maximal matching
m is at least vmin. Our algorithm covers each such edge eM by
selecting both vertices to which it is incident, incurring a cost of
vmax + vmin.

2. If the optimal solution covers eM with a unicolor vertex to which
it is incident, our algorithms cover it with a cost of at most 2vmax,
again by picking both vertices.

Provided the two objectives above are achieved, our algorithm
guarantees an approximation factor of 1 + vmax

vmin
. We explain how

these objectives are achieved, and thus a proof for the following
claim, in the Supplemental Material.

Theorem 3. The Red-Black-Assignment-F2 problem can be ap-
proximated within a factor of 1 + vmax

vmin
.

Efficient heuristic methods for the SSV-MG problem

In addition to the approximation algorithms given above, we
provide two heuristics for solving the SSV-MG problem efficiently.
The first heuristic uses the weights vs to calculate a cost-effectiveness
value for each cluster s, while the second heuristic deploys the
concept of conflict resolution (introduced in Hormozdiari et al.
2010) to obtain more accurate results in diploid genomes.

Simultaneous Set Cover with Weights (SSC-W)

The first heuristic is a greedy method similar to the weighted set
cover algorithm (Vazirani 2001) with one major difference. Here
the weight ws of each subset s is not fixed throughout the algo-
rithm, but rather is dependent on the elements that are assigned
to that subset—more precisely, the weight is a function of how
closely related the colors (i.e., donor genomes) assigned to that
subset are. Because during the execution of the method, the
colors assigned to each subset can change, so can the weight of
that subset.

The method selects the SV clusters in an iterative greedy
manner based on their cost-effectiveness value in each iteration. In
a given iteration, the method selects the set with the highest cost-
effectiveness value, based on the maximum number of colors that
can be assigned to the set in that iteration. The cost-effectiveness of
a SV cluster s in the i iteration is equal to

wsi

sij j, where wsi
is the weight

of the subset of s that is not yet covered (i.e., the reads in s that are
not covered until the i iteration). Note that this greedy method will
guarantee an approximation factor of O vmax

vmin
log n

� �
.

Simultaneous Set Cover with Weights and Conflict
Resolution (SSC-W-CR)

The second heuristic uses the concept of Conflict Resolution and
takes the diploid nature of the human genome into consideration.
Hormozdiari et al. (2010) introduced a set of mathematical rules to
prevent selecting SVevents that cannot be happening simultaneously

in reality in a haploid genome.10 The Conflict Resolution feature
of this heuristic is based on those rules. Note that in Hormozdiari
et al. (2010) we have modeled the conflicting SV events in a
‘‘conflict graph’’ in which each cluster is represented by a vertex.
Two vertices are connected with an edge if the two SVs implied by
the clusters are in conflict (for a detailed case study, see Hormozdiari
et al. 2010). In SV detection in diploid genomes, a conflict-free set
of SVs should not create a ‘‘triangle’’ in the conflict graph. In this
heuristic, we extend the above notion from a single genome to
multiple genomes, such that we are not allowed to assign the
same color to three clusters (vertices) forming a triangle in the
conflict graph. We have devised an iterative greedy method that
selects clusters based on their cost-effectiveness: The cost-effec-
tiveness of SV cluster s in iteration i is

w
s9
i

s9
ij j
, where s9

i is the subset of
paired-end reads in s that are not covered until this iteration and
do not conflict (i.e., create a triangle) with previously selected SV
clusters that have a common color. More formally, suppose that
given the conflict graph G, for each of the sets picked prior to
iteration i, a subset of l colors has been assigned to them. Any
paired-end read r 2 s is considered to be a member of s9

i if:

• r is not covered by any of the i � 1 clusters picked prior to
iteration i.

• There is no pair of clusters q and p that have been picked in earlier
iterations, such that q, p, and r form a triangle and both q and p
include the color of r.

Results
We investigated the structural variation content of six human ge-

nomes in order to establish the benefits of Simultaneous Structural

Variation discovery among Multiple Genomes (SSV-MG) compared

with the Independent Structural Variation Discovery and Merging

(ISV&M) strategy. The two data sets we investigate each constitutes

a father–mother–child trio. The first trio is a Yoruba family living in

Ibadan, Nigeria (YRI: NA18506, NA18507, NA18508) (Bentley et al.

2008). The second trio is a family from Utah with European ances-

try (CEU: NA12878, NA12891, NA12892) sequenced with high

coverage by the 1000 Genomes Project (1000 Genomes Project

Consortium 2010). We aligned the downloaded paired-end reads

to the human reference genome (NCBI Build 36) using mrFAST

(Alkan et al. 2009). Statistics for each data set are provided in Table 1

(after removing low-quality paired-end reads).

We sought to establish whether simultaneous analysis of all

three genomes (in each trio) would result in more accurate detection

of structural variation events in comparison to the conventional

Table 1. Summary of the analyzed human genomes

Individual Population
Number of

reads
Read

length
Average insertion

size
Sequence
coverage

Physical
coverage

NA18506 YRI 3.444 3 109 35 bp 222 bp 40.13 2553

NA18507 YRI 2.261 3 109 36–41 bp 208 bp 27.13 1573

NA18508 YRI 3.175 3 109 35 bp 203 bp 373 2143

NA12878 CEU 1.049 3 109 36–76 bp 201 bp 32.33 703

NA12892 CEU 0.510 3 109 35–51 bp 153 bp 12.63 263

NA12891 CEU 0.551 3 109 35–51 bp 148 bp 13.83 273

NA18506, NA18507, and NA18508 are the YRI child, father, and mother, respectively. NA12878,
NA12891, and NA12892 are the CEU child, father, and mother, respectively.

10For example, two clusters that indicate a deletion and significantly overlap
with each other are considered to be conflicting.
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two-step approach of ISV&M. For each of the trios, we analyzed the

three genomes independently using the ISV&M-based approach

and simultaneously using the SSV-MG framework; we then com-

pared the results from each analysis.

For the ISV&M approach, we proceeded as follows:

• The ISV step: We analyzed each genome independently, using

VariationHunter (Hormozdiari et al. 2009) for deletions and ex-

tended VariationHunter for Alu insertions (Hormozdiari et al.

2010).11

• The M step: To identify common structural variation among

different genomes, we compared each data set and merged

shared structural variation predictions. Two structural variation

predictions were considered to be ‘‘shared’’ (i.e., they are the

same variation in two different individuals) if the ends of each

selected cluster were within 200 bp from each other. Finally, the

support value of each shared SV is considered to be the total

paired-end reads in the two (or more) individuals that support

that shared SV.

In these experiments, we were purely interested in evaluating the

added benefit of simultaneous analysis over independent analysis.

We used VariationHunter (Hormozdiari et al. 2009), a maximum

parsimony–based approach, for the ISV&M analysis since all the

SSV-MG methods proposed here are also maximum parsimony–

based methods. In addition, VariationHunter is one of the very few

tools with capability to find mobile element insertions.

The experiments in this study focus on two types of structural

variation:

• Mobile element insertions (i.e., Alu insertions) on the YRI data

set

• Medium- and large-size deletions on the YRI and CEU data sets

Mobile element insertions

As we have described earlier (Hormozdiari et al. 2010, 2011), it is

possible to use VariationHunter within the ISV&M framework for

Figure 2. Alu insertion analysis of the YRI trio genomes. (A) Comparison of the Alu predictions made by the ISV&M, SSC, and SSC-W algorithms, which
match Alu insertion loci reported in dbRIP (true positive control set). The x-axis represents the number of Alu insertions (with the highest support), while the
y-axis represents the number of these insertions that have a match in dbRIP. (B–D) The number of common and de novo events in each genome as
predicted by the ISV&M, SSC, and SSC-W algorithms, respectively (the top 3000 predictions were considered).

11Note that any other method such as BreakDancer, MoDIL, or GASV could
have been used in this step.
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discovering mobile element insertions such as Alu elements on

a WGSS donor genome with respect to a reference genome. Below we

compare this approach, as a representative of the ISV&M framework,

with the SSV-MG framework, more specifically SSC and SSC-W ap-

proximation algorithms.

We applied the ISV&M and the two SSV-MG approaches,

namely, SSC and SSC-W algorithms (we set two potential Alu in-

serts that overlap highly as the same Alu; this implies that conflict

resolution is not necessary for this case) to the discovery of Alu

insertions in the YRI trio. The results from each analysis were then

compared to Alu polymorphism loci reported in dbRIP (Wang et al.

2006)—which provides an estimate on the trade-off between the

number of predictions made and the fraction of the known Alu

insertions captured. Since the contents of dbRIP are curated from

a variety of data sources, for a given Alu insertion prediction, a

match in dbRIP is a good indicator that the prediction is a true

positive. Note that we call a predicted Alu insertion, a match to

an Alu insertion locus reported in dbRIP (Wang et al. 2006), if

the reported locus in dbRIP is within 100 bp of the breakpoints

predicted.

For each method, we calculated the number of Alu insertions

with a dbRIP match for a range of thresholds for the read support

for each Alu insertion. The fraction of dbRIP matching Alu in-

sertions is consistently higher for SSC and SSC-W methods in com-

parison to that of the ISV&M framework for all threshold values for

support; see Figure 2A.

Since the two data sets we considered each involves members

of a family, it is expected that many of the Alu insertions observed

are common to all three genomes. However, the ISV&M framework

predicted only 507 common Alu insertion loci common to all three

individuals, in contrast to 1044 common inserts predicted by the

SSC method and 1257 common inserts predicted by the SSC-W

method (see Fig. 2B–D).

The rate of de novo Alu insertions is estimated to be one new

Alu insertion per 20 births (Cordauxa et al. 2006). Thus, it is quite

unlikely that the genome of the child (NA18506) in the YRI trio

contains several Alu insertions that are not present in the parent

genomes. However, the ISV&M framework based on Variation-

Hunter (Hormozdiari et al. 2010) reported that among the top

3000 predicted loci,12 410 were de novo (that is, unique to the

child). This number clearly is extremely high given our current

knowledge of Alu insertion rates. Thus, the majority of these 410

events are likely to be misclassified as de novo events by the ISV&M

framework. Interestingly, using the SSC algorithm, this number

was reduced to only 20 de novo events among the top 3000 pre-

dictions (Fig. 2C). Furthermore, the SSC-Walgorithm13 reduces the

number of de novo Alu insertions to zero in the top 3000 Alu in-

sertion predictions (see Fig. 2D).

Note that one of the Alu insertion loci predicted as a de novo

insertion in NA18506 by both the SSC method and the ISV&M

framework turned out to be a locus experimentally tested positive

for an Alu insertion by a polymerase chain reaction (PCR) in the

YRI trio (Hormozdiari et al. 2011). The result of PCR indicates that

there is, indeed, an Alu insertion in the above locus in NA18506.

However, it turned out that the insertion is not de novo but rather

a transmission from the father (NA18507) to the child (NA18506).

SSC-W, on the other hand, was able to correctly identify the Alu

insertion in both NA18506 and NA18507 and thus was able to

correctly classify the prediction as a transmitted event.

A similar analysis on the CEU trio also revealed similar re-

sults to those we obtained on the YRI trio (for details, see the

Supplemental Material). Note that the number of Alu insertion

predictions in the child, NA12878, is slightly more than what

we expect. This is likely due to the sequence coverage imbal-

ance among the genomes (323 for the child versus 133 for each

parent).

Deletions

In this section, we compare the deletion calls made by algorithms

proposed within the SSV-MG framework (i.e., SSC-W and SSC-

Table 2. Comparison of deletions discovered in CEU and YRI trio against validated deletions

Number of
CEU (NA12878, NA12891, NA12892) YRI (NA18506, NA18507, NA18508)

predictions ISV&M SSC-W SSC-W-CR ISV&M SSC-W SSC-W-CR

2000 728 (725) 755 (751) 1412 (1396) 1280 (1279) 1293 (1291) 1536 (1520)
3000 1058 (1058) 1106 (1106) 1780 (1763) 1794 (1789) 1797 (1794) 2098 (2082)
4000 1277 (1281) 1342 (1345) 2003 (1982) 2192 (2183) 2200 (2197) 2554 (2534)
5000 1449 (1457) 1517 (1527) 2139 (2121) 2518 (2508) 2537 (2534) 2920 (2900)
6000 1584 (1596) 1667 (1678) 2234 (2219) 2771 (2765) 2804 (2802) 3207 (3186)
7000 1659 (1674) 1775 (1796) 2314 (2305) 2997 (2996) 3040 (3042) 3453 (3446)
8000 1738 (1757) 1861 (1886) 2368 (2363) 3192 (3195) 3231 (3241) 3662 (3682)
9000 1797 (1816) 1933 (1962) 2398 (2396) 3382 (3388) 3417 (3434) 3830 (3887)
10,000 1852 (1875) 2005 (2038) 2411 (2410) 3512 (3532) 3548 (3594) 3970 (4084)
11,000 1892 (1918) 2064 (2099) 2420 (2422) 3651 (3687) 3694 (3757) 4084 (4270)
12,000 1942 (1968) 2118 (2159) 2437 (2441) 3753 (3787) 3786 (3874) 4173 (4425)
13,000 1960 (1988) 2151 (2195) 2445 (2457) 3851 (3907) 3887 (4003) 4247 (4602)
14,000 1986 (2015) 2177 (2225) 2455 (2460) 3958 (4010) 3968 (4126) 4314 (4756)

Deletions discovered for YRI and CEU trios (by three different approaches of ISV&M, SSC-W, and SSC-W-CR) were compared against deletions reported
by the 1000 Genomes Project (Mills et al. 2010). The loci of a reported deletion should be in the range of 300 bp from a loci reported in Mills et al.
(2010) to be considered a ‘‘match.’’ Different thresholds on number of predictions were considered for each method ranging from 2000 to 14,000
(predictions by each method were sorted based on their support, and the top set of predictions was picked for comparison). The numbers given in italic
font represent the number of deletions reported in Mills et al. (2010) (from the high coverage set) that match calls found by our methods, while the
number in parentheses represents the number of deletions predicted by our methods (ISV&M, SSC-W, and SSC-W-CR) that match reported deletions in
Mills et al. (2010).

12The 3000 loci with the highest number of paired-end read support.
13The weights used for SSC-W were derived from the fraction of Alu insertions
common between the individuals reported by the SSC results.

Hormozdiari et al .

2210 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on December 5, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


W-CR) in comparison to those made by the ISV&M framework (i.e.,

VariationHunter) (Hormozdiari et al. 2009). The deletions con-

sidered here are medium- to large-scale events (>100 bp and <1 M

bp) in both YRI and CEU trios. To verify (at least some of ) the

predictions made by the above algorithms, we used the validated

SV events reported in the recent study by the 1000 Genomes Pro-

ject Consortium (Mills et al. 2010). The results of this comparison

are shown in Table 2. To make the comparison as thorough as

possible, we considered various-sized subsets of calls for each

method (obtained by varying the read support threshold on the

predictions considered for each method).6 In comparison to the

ISV&M framework, the SSV-MG algorithms consistently produce

a higher fraction of validated predictions in both YRI and CEU trios

(see Table 2). We also compared the deletion predictions made by

each one of the methods considered here on each individual genome

from the CEU trio, with the validated deletion calls on the same in-

dividual genome by the above-mentioned 1000 Genomes study

(Mills et al. 2010). (Unfortunately, such a set of validated deletions

does not exist for the YRI trio.) Table 3 provides the number of the

validated deletion calls from each specific genome in the CEU trio

among the best supported 5000 calls made by each one of the

methods considered here. Note that the number of de novo deletions

reported in the child genome of CEU trio (NA12878) should not be

high—as per the Alu insertions—because each deletion is likely to

have been inherited from one of the parents. Among the top 5000

deletion loci (on the child genome) predicted by the ISV&M

framework, 84 were predicted to be de novo events. In contrast,

among the top 5000 deletion loci (on the child) reported by the

SSC-W algorithm, only 39 were predicted to be de novo events.

This reduction of >50% on the number of misclassified deletions as

de novo events demonstrates once again the improved predictive

power of the SSV-MG framework over the ISV&M framework.

Discussion
In this study, we demonstrate that analyzing a collection of high-

throughput sequenced genomes jointly and simultaneously im-

proves structural variation discovery, especially among highly

related genomes. We focus on discovering deletions and Alu re-

peats among high-throughput paired-end sequenced genomes of

family members and show that the algorithms we have developed

for simultaneous genome analysis provide much lower false-

positive rates in comparison to existing algorithms that analyze

each genome independently. Our algorithms, which are collec-

tively called CommonLAW (Common Loci structural Alteration

Widgets), aim to solve the maximum-parsimony Structural Vari-

ation Discovery for Multiple Genomes problem optimally

through a generalization of the maximum parsimony formula-

tion and the associated algorithms introduced in Hormozdiari

et al. (2009, 2010) for a single donor genome. We believe that the

CommonLAW framework will help studies on multiple, highly

related, high-coverage NGS genome sequences from members

of a family or an ethnic group, tissue samples from one individual

(e.g., primary tumor vs. metastatic tumor), individuals sharing

a phenotype, etc., by identifying common and rare structural

alterations more accurately. The YRI family on which we dem-

onstrate the effectiveness of the CommonLAW framework in the

context of de novo Alu repeat discovery or the CEU family whose

genomes we analyzed for deletion discovery provides convincing

evidence that the CommonLAW framework may make a signifi-

cant difference in large-scale projects involving high-coverage

NGS data. In addition, we believe that our methods can also be

adopted to analyzing low-coverage NGS data for improving the

accuracy provided by available software tools.

Data access
The CommonLaw package is currently available at http://compbio.

cs.sfu.ca/strvar.htm and will be moved to its final destination at

SourceForge (http://variationhunter.sourceforge.net/).
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