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MAGI  

Here, we provide the formal problem definition for the detection of modules using mutations in 

cases and the details of the method.  

Formal problem definition 

We define a disease module related to neurodevelopment as a set of genes that are highly co-

expressed during brain development, highly connected in a PPI network, and have a low number 

of loci with severe mutations in control population (ESP) and a high number of de novo 

mutations in cases.  

More formally, given a list of mutations in cases and two types of networks, namely a PPI 

network                  and a co-expression network                       , and a lower 

size bound,    we are interested in finding a module, i.e., a set of genes   {          }, of 

size at least k (i.e., | |     ) that maximizes an objective function and satisfies certain 

constraints, as described below.  

Objective function definition 

We first define a scoring function for each gene in              . For each gene    we 

assign a score       based on the number of de novo missense mutations     and LoF mutations 

( ) observed in that gene and a prior probability,    
, of observing a mutation in that gene. For 

simplicity, we are currently taking the gene’s length as the sole determinant of the prior value: 

   
 

          

∑             
 where            is representing the coding sequence length of gene   . 

However, this function can easily be made more complex to account for other parameters such as 

the percent GC content of each gene. Thus, the binomial probability of observing by chance   

total mutations in gene    out of   total mutations observed in all genes is          
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)   
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. To separate the missense and LoF mutations, we denote    and    as the 

total number of LoF and missense mutations, respectively, seen in all the genes in   and define 

the score of each gene    as follow:  
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The advantage of this score is that we can easily define the score of a pathway as the summation 

of scores of each gene: 
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Finally, for a module   {          } of size  , we define a z-score motivated objective 

scoring function:        
∑             

√ 
 similar to the one used in previous studies (Ideker et 

al., 2002). In this equation   is the mean value of the score of all the genes considered (which is 

a constant for each given set of de novo mutations).  

Module constraints definition 

A set of genes M is defined as a module if: 

1) The genes in M are highly connected in the PPI network: 

a) The genes in   form a connected induced subgraph of the PPI network. For this 

constraint to minimize the effect of edges found in      that may not hold in 

human brain tissue/cells, we only consider PPI edges between genes that are also 

highly co-expressed. In practice, we define highly co-expressed edges as ones in 

the top 5% of co-expression values in        (        for the BrainSpan 

dataset used here). 

b) The average density of PPI edges in the selected module, Avg_Density(M), should 

be significantly higher than what is expected for a connected component of size 

   the lower bound on the size of the desired module – i.e., | |     ). More 

formally, assuming we have a lower bound threshold on the average density of 

protein interactions for different sizes of modules (        ), we require 

                 
|       |

      
 (i.e., the total number of observed edges over the 

maximum possible edges in M) to be at least     .  

2) The genes in M are highly co-expressed in the co-expression network: 

a) Any pair of genes in M should be at least moderately co-expressed. More 

formally, we demand that for any two genes        , the co-expression 

between genes    and    would be higher than a threshold. In practice, the cutoff 

is set to be the median of all co-expression values in the co-expression network. 

This condition guarantees that no two genes are in the same module if their co-

expression is less than the median of all co-expression values.  

b) The average co-expression between all the genes in the selected module   should 

be higher than what is expected for a set of size    the lower bound on the size of 
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the desired module – i.e., | |     ). More formally, assuming we have a 

lower bound threshold on the average co-expression for different sizes of modules 

(        ), we demand that          
∑                   

      
     . 

3) The total number of LoF loci in control population (e.g., the ESP) for genes in modules 

should be less than a predefined threshold (the results provided are for a maximum of 

five LoF loci).  

Algorithm description 

To tackle the problem, MAGI performs three major steps: (1) detecting high-scoring seed 

pathways; (2) merging the seed pathways into modules; and (3) improving the modules by 

adding or removing single genes (local search).  

The output of the method is: (1) M_Best, i.e., the module that maximizes the score; (2) 

M_Extended, i.e., a set of genes that appear in more than 5% of the suboptimal modules 

(modules with score within the top 1 percentile that also overlap M_Best); and (3) a “confidence 

score” calculated for every gene that represent the percentage of suboptimal modules this gene is 

found in. 

Seed detection 

The seed pathways are high-scoring simple paths in the PPI network (5-8 genes) that satisfy the 

constraints. Specifically, to satisfy constraint 1.a, the seeds are defined using only edges found in 

the PPI network and show high co-expression. We represent this graph as       , where   is 

the list of genes and   is the list of the PPI edges showing high co-expression. However, there is 

no polynomial solution for discovering the full set of simple pathways in the graph. Therefore, 

we are using an approach based on the color-coding algorithm (Alon et al., 1995) to find the 

pathways with the maximum score. This approach also allows us to limit the total number of LoF 

mutation loci found in controls (thus satisfying constraint 3) and outputs a set of high-scoring 

paths in addition to the maximum-score pathway.  

The color-coding approach is an efficient method for finding simple paths of size        | |  

in polynomial time. A simple extension of this method allows for finding a path that maximizes a 

certain score function that is assigned to each node (e.g., Dost et al., 2008). This color-coding 

approach has gained popularity in finding pathways in PPI (e.g., QPath (Shlomi et al., 2006), 

Qnet  (Dost et al., 2008)) or counting paths and trees (Alon et al., 2008). In short, this approach 

involves two steps: (a) randomly color the graph’s nodes with   different colors and (b) a 

dynamic programming algorithm for finding the colorful path (i.e., a simple path that covers all 

the   colors exactly once) that maximizes the score. Iterations of these two steps are needed 

since the optimal path is not necessarily colorful at each iteration. It was shown that expected 

      iterations are required to find the optimal path (Alon et al., 1995). 
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We have slightly modified the dynamic programming step of the color-coding algorithm to allow 

for a limit on the total number of mutations found in controls, denoted by  . Each gene     is 

assigned with a score      (as explained above) and an integer penalty function          

representing the number of mutation loci seen in controls (e.g., ESP). Given a colored graph, a 

pathway length  , and a fixed threshold  , our aim is to find a simple path with a maximum 

score, i.e.,         ∑             , while keeping         ∑               . This can 

be done easily by adding a new dimension of size   to the dynamic programing matrix, 

representing the penalty. Let          denote the maximum score of a simple path that ends at 

gene    , has a total penalty c, and covers every color in the set  . The recursion formula to fill 

this matrix is:                 { (               )                  
  

 

 (           )       as the base case.   

In the above recursion formula,      represents the color assigned to gene  . Once the matrix is 

filled, the optimal path can be easily traced back from the cell with                where   is 

the set of all colors.  

To make sure that the seeds are independent from each other, we consider only the optimal 

colorful path from the dynamic programming step of each coloring iteration as a potential seed. 

In practice, we run 1000 iterations for each threshold (  = 0, 1, 2 and 3) and possible path length 

(h = 5, 6, 7, or 8) to produce a total of 16,000 potential pathways seeds (there are potential 

repetitions of seeds based on the random coloring). We then define “high-scoring seeds” as 

having a score higher than half the score of the optimal seed of the same category (i.e., a 

pathway with the same   and h). Only these highly scored paths are used in the next step to 

create the modules.  

Creating modules 

We model the clustering of the seeds into modules as a random walk in a graph created from the 

seed pathways. Each node in this graph represents a seed and two nodes (i.e., two different 

seeds) are connected if their union satisfies the constraints (as defined above). The random walk 

starts from a random node and tries to merge that seed with one of its neighbors to generate a 

module that satisfy the constraints, as long as the score does not decrease. This procedure 

continues until no more seeds can be added. Finally a series of local search moves are applied to 

find a local optimal solution.  

More formally, assuming    , starting from a random node   (i.e., a seed pathway), the genes 

in this node (seed) are added to the module,      . We then randomly traverse to one of the 

neighbors of node  , denoted as   , as long as        satisfies the constraints and       

          . We then assign       and continue the random walk from node    till no 

more iterations can be made.  
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Finally, we apply a local search procedure that adds, removes and swaps genes from the set   as 

long as the total score improves and the conditions are satisfied, thus reaching a local maximum. 

In practice, since the minimum size of a module is unknown, we run the method for k={15, 20, 

25, 30, 35} to create 100,000 clusters per k and chose the module with the highest score among 

them.  

Discovery of additional modules (iterative running of MAGI) 

To investigate the existence of additional distinct modules, it is possible to remove the genes 

found in M_Best module from the PPI and co-expression networks and then iteratively run 

MAGI. An additional filter is then applied to exclude non-significant modules (in terms of the 

score or the number of LoF mutations covered) or modules that overlap with modules already 

found in previous iterations. 

We investigated the existence of a third module for the ASD+ID cohort by re-running MAGI 

after removing the genes found in M1_Best and M2_Best, and we found a significant module M3 

(M3_Extended genes are provided in Supplementary Table 1). However M3_Extended was not 

considered for further analysis, since it highly overlaps with M1_Extended (over 25% of the 

genes in M3_Extended). In addition, M1_Extended was found to be highly co-expressed with 

M3_Extended and there are also many PPI interactions connecting them.  

We also applied the same process to the epilepsy and schizophrenia cohorts. The second epilepsy 

module and the second schizophrenia module did not cover a significant number of de novo LoF 

mutations and thus were not considered for further analysis. Furthermore, the second 

schizophrenia module overlapped with the schizophrenia M1 module. Repeating the same 

process on the schizophrenia cohort for the third time produced an additional module which is 

significant in terms of both its score and the number of LoF mutations it covers and does not 

overlap with any of the two previous modules (this new module was denoted as M2 for 

schizophrenia).  

 

Robustness of MAGI to changes in its parameters and thresholds 

We have thoroughly tested the robustness of the modules reported in this manuscript to various 

changes in MAGI’s parameters. Throughout the robustness analysis we have calculated the 

fraction of overlap among two modules as the size of the intersection of the two gene sets 

divided by the average size of the two sets. 

1) The identified modules are robust to the ESP/control threshold  

To test whether the results are robust to the control threshold, we have applied MAGI to the 

ASD+ID data with different control thresholds ranging from 1 to 13 (Supplementary Figure 1). 

We found that the score of the M_Best does not change dramatically (a maximum increase of 
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10%) when the control threshold increases to almost three times the threshold value used in the 

paper (Supplementary Figure 1a.). In addition, the genes covered by the modules found for 

different thresholds highly overlap. Comparing the resulted M1_Extended modules found using 

these thresholds to the M1_Extended reported in the main paper (i.e., upper bound of   LoF 

mutations in control), we found that there is over 85% overlap between them (Supplementary 

Figure 1b).  

 

 
Supplementary Figure 1. a) The total score of M1_Best for different control (ESP) thresholds. b) The fraction of 

overlap of the extended module found for different control (ESP) thresholds with the M1_Extended module reported 

in the paper.  

 

2) Robustness to changes in the co-expression threshold for defining “highly co-expressed” 

genes. 

As mentioned in constraint 1a above, we only consider PPI edges between genes that are also 

highly co-expressed. In the modules reported in the paper we used the top 5% value of the co-

expression values (i.e., r
2
>0.37) as the threshold for highly co-expressed genes. Here, we tested 

how the modules would differ if we change this threshold. We changed this parameter from 

r
2
>0.3 to r

2
>0.45 (i.e., |r|>0.5477 to |r|>0.6708) and compared the M_Best modules found 

versus the M1_Best module reported in the paper. Interestingly, the overlap was quite high 

(>70%) supporting that MAGI is robust to changes to this parameter. The fraction of overlap of 

best modules found versus M1_Best is shown in the Supplementary Figure 2.  
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Supplementary Figure 2. a) Overlap of the M_Best modules found using different co-expression cutoffs and 

M1_Best (found using the default cutoff r2>0.37), marked with a circle. b) M_Best using different co-expression 

cutoffs was found to have a significantly higher score in comparison to the top-scored module (200 simulations) 

using the null model Null-1 (p<0.005). 

a) 

b) 
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3) Robustness to average density (    ) and average co-expression (    ) thresholds 

To set the thresholds for      and     , we have created 1,000,000 connected components of 

different sizes (k = 15, 20, 25, 30 and 35) using a random walk strategy in the PPI network. We 

then set      to be the 95
th

 percentile of the average density of these components. To set the 

threshold     , we used a more conservative formula and take the 95
th

 percentile of 

 
∑   

 
 

 
     where    are the co-expression values (  ) between every two genes in the component 

(Supplementary Figure 3).  

 

 

 

 

Supplementary Figure 3. The thresholds of average co-expression and edge density used for different k values. 

 

We investigated the robustness of MAGI to each of these parameters using the ASD+ID dataset. 

We found that the resulted modules are highly robust to moderate changes to both parameters in 

terms of the score of the identified modules as well as the genes included in them. The change in 

the score of the modules found for different values of   (ranging from 0.3 to 0.53) is less than 

3% (Supplementary Figure 4a). The total overlap between the extended modules for different 

thresholds of   (ranging from 0.3 to 0.53) and the module found using the default  =0.415 (for 

k=35) is higher than 93% on average (Supplementary Figure 4b). This shows that MAGI in 

general and the ASD+ID modules specifically are very robust to changes in   paramter. Similar 

robustness results were obtained for the   parameter (Supplementary Figure 5).  
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Supplementary Figure 4. Robustness of the ASD+ID modules to changes in the   parameter. The seed pathways 

detected for the ASD+ID mutations were used to generate 5000 clusters, resulting M1_Best and M1_Extended_for 

different β values ranging from 0.3 to 0.53. In all these analyses k was set to be 35. a) The score of M1_Best for 

different values of  . b) The fraction of overlap between M1_Extended modules found for different values of   in 

comparison to M1_Extended module found using the default  =0.415 for k=35.  

 

 

Supplementary Figure 5. Robustness of the ASD+ID modules to changes in the   parameter. The seed pathways 

detected for the ASD+ID mutations were used to generate 5000 clusters, resulting M1_Best and M1_Extended_for 

different   values ranging from 0.02 to 0.15. In all these analyses k was set to be 35. a) The score of M1_Best for 

different values of  . b) the fraction of overlap between M1_Extended found for different values of   in comparison 

to M1_Extended found using the default  =0.085 for k=35. 
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4) Robustness to PPI networks 

The reported M1 and M2 modules were found using the union of two PPI networks, namely, the 

HPRD dataset and the STRING dataset (with confidence score higher than 700 and experimental 

score higher than 400). To test the robustness of these results to changes in the input PPI 

network, we run MAGI on various PPI networks, given in Supplementary Table 1. 

Supplementary Table 1. Properties of the different PPI networks used to test the robustness of MAGI. 

PPI network #Nodes #Edges 

HPRD 9607 39042 

HPRD+STRING (Confidence score>400) 12023 77233 

HPRD+ STRING (Confidence score>500) 11612 72162 

HPRD+ STRING (Confidence score>600) 11375 68349 

HPRD+ STRING (Confidence score>700) 10581 52801 (Used in the paper) 

HPRD+ STRING (Confidence score>800) 10377 49363 

HPRD+ STRING (Confidence score>900) 10191 46305 

BioGrid – v 3.2.97  14882 112859 

BioGrid – v3.2.15 18359 147715 
 

We compared the M1_Best modules found using all these PPI networks to the M1_Best module 

reported for the HPRD+STRING (confidence score>700). The overlap of the modules is shown 

in Supplementary Figure 6.  
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Supplementary Figure 6. Fraction of overlap between M1_Best and M_Best modules produced by MAGI using 

different PPI networks as input. Parameters were fixed to the same values used to discover M1_Best. 

 

MAGI’s performance  

1) MAGI outperforms both the naïve greedy and greedy with local search methods 

We compared the results of MAGI for ASD+ID probands and siblings run for different k values 

against two standard approaches of greedy and greedy combined with local search. As the set of 

constraints and objective functions defined for MAGI are not covered by any available tool, we 

cannot compare our results with a direct implementation of the published tools for module 

discovery. However, we can implement and test the main approaches suggested for finding 

modules by imposing the same constraints as in MAGI. For this, we have implemented a 

standard greedy approach (similar to what was done in NETBAG (Gilman et al., 2011) and an 

approach that combines greedy with local search (Greedy_LS) and compared their results against 

MAGI. The results show that for all different sizes MAGI outperforms the modules discovered 

using the greedy approaches (Supplementary Figures  

Supplementary Figure 7 andSupplementary Figure 9). Moreover, the greedy with local search 

approach, which similar to MAGI guarantees to find a local maximum, also underperforms in 

comparison to MAGI.  
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Supplementary Figure 7. Comparison of the scores of the best modules found using MAGI (blue line), a greedy 

approach (red line) and a greedy approach with additional local search (green line). The three methods were applied 

on the ASD+ID dataset using different k values. 

 

 

 

 

Supplementary Figure 8. Comparison of the scores of the best modules found using MAGI (blue line), a greedy 

approach (red line), and a greedy with additional local search (green line) using the sibling data. 
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2) MAGI seeds selection outperforms greedy seeds selection 

We compared the score of the seed pathways (of size 8) found using MAGI’s color-coding 

approach to the score of the seed pathways found using a greedy traversal of the networks. On 

the real data, the highest scoring seed using MAGI’s color coding approach was found to have a 

higher score (42.37) compared to the score of the greedy graph traversal starting from 1000 

random genes (for which the score was 40.1). Similarly, applying 100 simulations of randomly 

distributing the ASD+ID mutations (accounting for gene length), Supplementary Figure 9 shows 

that as expected the best seed found using the color-coding algorithm consistently outperformed 

the one found using the greedy traversal approach.  

 

Supplementary Figure 9. The maximal score of the seed pathways of length 8 found using MAGI discovery (red) 

compared to that of the seeds found using a greedy traversal (blue). 

 

3) Local search improvement 

We also compared the score of the M_Best module found using MAGI default clustering 

approach that includes a local search step after merging the seed pathways (using the random-

walk) to the M_Best module found without using the local search step. Using 100 simulations of 

random permutations of the mutations, we found that in most cases (99 out of 100) the local 

search step improves the total score of the resulted module (Supplementary Figure 10).  

 

Supplementary Figure 10. The score of best module found using MAGI with and without the final local search 

step. 
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Comparison of M1_Extended and M2_Extended to previously published 

networks  

We have compared M1_Extended and M2_Extended to recently published co-expression based 

modules for ASD (Parikshak et al., 2013; Willsey et al., 2013), PPI-based approaches 

(AXAS(Cristino et al., 2014), SteinerNet (Tuncbag et al., 2012)) as well as other previously 

published modules associated with autism (NETBAG (Gilman et al., 2011), DAWN (Liu et al., 

2014)). Some of these modules overlap with M1_Extended and/or M2_Extended (Supplementary 

Table 2). 

Supplementary Table 2. Overlap of M1_Extended and M2_Extended with modules previously published (Cristino 

et al., 2014; Gilman et al., 2011; Parikshak et al., 2013; Willsey et al., 2013). The table is sorted based on the 

overlap among the modules. Three values are presented for every two modules compared: (i) |module1-module2|, 

i.e., the number of genes that are found in module1 but are not found in module2; (ii) |module1 & module2 |, i.e., the 

number of genes found in the intersection of module1 and mofule2; (iii) |module2-module1|, i.e., the number of 

genes that are found in module2 but are not found in module1. Only modules for which the intersection with 

M1_Extended or M2_Extended is not empty are shown. The table is sorted by the fraction of overlap from high to 

low. 

module1 
(MAGI) 

module2 |module1 - 
module2| 

|module1 & 
module2| 

|module2 - 
module1| 

M2_Extended DAWN_C6 19 5 18 

M1_Extended SteinerNet 35 45 403 

M2_Extended DAWN_C1 21 3 29 

M1_Extended DAWN_C1 74 6 26 

M2_Extended AXAS_M24 22 2 19 

M1_Extended DAWN_C4 76 4 12 

M1_Extended Willsey_Per3_5 71 9 154 

M1_Extended AXAS_M1 53 27 673 

M1_Extended AXAS_M3 65 15 380 

M1_Extended DAWN_C2 77 3 16 

M2_Extended AXAS_M11 20 4 109 

M1_Extended Willsey_Per4_6 73 7 160 

M1_Extended Parikshak_M3 55 25 825 

M1_Extended Willsey_Per8_10 73 7 181 

M2_Extended SteinerNet 13 11 437 

M1_Extended DAWN_C7 78 2 11 

M1_Extended DAWN_C5 78 2 13 

M2_Extended NETBAG 22 2 70 

M2_Extended Parikshak_M16 15 9 449 

M2_Extended AXAS_M2 11 13 667 

M1_Extended AXAS_M13 77 3 95 
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M2_Extended Willsey_Per3_5 21 3 160 

M2_Extended Willsey_Per4_6 21 3 164 

M1_Extended AXAS_M4 75 5 265 

M1_Extended AXAS_M16 78 2 60 

M1_Extended AXAS_M8 77 3 151 

M1_Extended AXAS_M15 78 2 80 

M1_Extended DAWN_C6 79 1 22 

M2_Extended Parikshak_M13 17 7 697 

M2_Extended Willsey_Per8_10 22 2 186 

M1_Extended AXAS_M2 73 7 673 

M1_Extended Parikshak_M2 73 7 681 

M2_Extended AXAS_M12 23 1 110 

M2_Extended AXAS_M10 23 1 113 

M1_Extended AXAS_M19 79 1 57 

M1_Extended NETBAG 79 1 71 

M1_Extended AXAS_M14 79 1 81 

M1_Extended AXAS_M9 79 1 118 

M1_Extended AXAS_M7 79 1 154 

M1_Extended Parikshak_M16 78 2 456 

M1_Extended AXAS_M6 79 1 197 

M1_Extended AXAS_M5 79 1 198 

M2_Extended AXAS_M1 23 1 699 

M2_Extended Parikshak_M17 23 1 801 

M1_Extended Parikshak_M17 79 1 801 
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1) Comparison of M1_Extended and M2_Extended to recently published co-expression 

based networks for ASD (Parikshak et al., 2013; Willsey et al., 2013) 

Two recent papers by Parikshak et al. (2013) and Willsey et al. (2013) provided modules using 

co-expression networks from the BrainSpan Atlas and the same set of de novo mutations from 

ASD studies. Since each method satisfies a different set of conditions, comparing them directly 

is quite challenging. Here we compare the significant modules reported in these publications 

(modules M2, M3, M13, M16 and M17 for Parikshak et al. (2013), and modules Per_4_6, 

Per_8_10 and Per_3_5 for Willsey et al. (2013)) with our M1_Extended and M2_Extended based 

on three different categories: 1) overlap with the other approaches in terms of genes included in 

the modules (Supplementary Figure 11); 2) enrichment in known KEGG pathways using the 

DAVID tool (Supplementary Figures Supplementary Figure 12and Error! Reference source not 

found.); and 3) enrichment in genes associated with neurodevelopmental diseases 

(Supplementary Figures Supplementary Figure 14 and Supplementary Figure 15), based on OMIM 

(www.omim.org) or AISS (Krumm et al., 2013). 

 

Supplementary Figure 11. Venn diagram of the total number of genes reported as part MAGI’s modules (green) 

compared to the ones found in the significant modules for ASD reported by Willsey et al. (2013) (orange), and 

Parikshak et al. (2013) (blue). Gene names are reported for genes that carry de novo mutations in probands or genes 

that are associated with neurodevelopmental diseases (based on OMIM). Genes with de novo truncating mutations 

are colored in red. Genes that are associated with neurodevelopmental diseases are marked with “+”. 

 

 

 

http://www.omim.org/
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Supplementary Figure 12. The enrichment of KEGG pathways (using the DAVID tool) for M1_Extended and 

modules previously reported (Parikshak et al., 2013; Willsey et al., 2013) that show expression patterns during brain 

development similar to M1_Extended. Only pathways significant (p<0.05) in at least one of the modules predicted 

in any of the three studies are shown. Cancer-related pathways are not shown. P-values are presented for p<0.05 

(after Bonferroni correction). 

 

Supplementary Figure 13. The enrichment of KEGG pathways (using the DAVID tool) for M2_Extended and 

modules previously reported (Parikshak et al., 2013; Willsey et al., 2013) that show expression patterns during brain 

development similar to M2_Extended. Only pathways significant (p<0.05) in at least one of the modules predicted 

in any of the three studies are shown. Cancer-related pathways are not shown. P-values are presented for p<0.05 

(after Bonferroni correction). For M2_Extended the most significant pathway is the long-term potentiation pathway 

(known to be related to passing signaling between neurons). 
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We compared the enrichment of M1_Extended and M2_Extended in genes associated with 

neurodevelopment diseases (OMIM and AISS) to that of the significant modules reported in the 

other two studies (Parikshak et al., 2013; Willsey et al., 2013). For OMIM, we used the set of 

genes that are found in the PPI network and are annotated in the OMIM dataset with the explicit 

terms: “autism”, “mental retardation”, “development delay”, “macrocephaly” or “microcephaly”. 

For AISS, we used the union of the genes with known neurodevelopment phenotype (Krumm et 

al., 2013) and the OMIM set. The p-value provided is using Fisher’s exact test. Only p-values 

lower than 0.05 are reported (after Bonferroni correction).  

 
Supplementary Figure 14. Enrichment of different modules in genes in the OMIM set. P-values are presented for 

p<0.05. 
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Supplementary Figure 15. Enrichment of different modules in genes in the AISS set. P-values are presented for 

p<0.05.  

 

2) Comparison of M1_Extended and M2_Extended to other networks for ASD (AXAS, 

SteinerNet, NETBAG, and DAWN) 

For AXAS comparisons, we obtained 30 modules from the author of AXAS, from which we 

considered 26 modules that include at least 10 genes. For the Steiner tree comparisons, we have 

applied the tool SteinerNet (http://fraenkel.csbi.mit.edu/steinernet/) to construct the Steiner tree 

using MAGI’s gene scores for each node and PPI edges that were all given the same score (1.0). 

The resulted connected component contained 448 nodes (genes). Interestingly, M1_Extended and 

M2_Extended overlap more significantly with the SteinerNet module compared to random 

modules (connected components in PPI) of the same size (p<0.001 and p<0.01, respectively). 

For NETBAG comparisons, we used the autism module reported in the NETBAG manuscript 

(Gilman et al., 2011). This module includes 72 genes. For DAWN comparisons, we used the 

seven modules reported in Figure 4 of the DAWN manuscript (Liu et al., 2014). 

The SteinerNet tool was run on the PPI network only and therefore the resulting module was not 

required to show high gene co-expression. Similarly, NETBAG and the AXAS modules did not 

take into account co-expression information. Here, we show that these modules have a higher 

fraction of genes that show no co-expression during brain developed compared to MAGI’s 

modules. 
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We compared the pairwise distribution of gene co-expression values for different modules. A 

substantial number of gene pairs (>10%) in the AXAS, SteinerNet and NETBAG modules were 

found to have a very low co-expression value (r
2
<0.01). In contrast, almost none of the gene 

pairs found in the reported MAGI’s module have such a low co-expression. Finally most 

modules by DAWN (except 2) have over 10% of their gene pairs with very low co-expression 

value.  

 

 

 

 

Supplementary Figure 16. A histogram-like distribution of pairwise co-expression values (r
2
) between every two 

genes in the SteinerNet module (blue), M1_Extended (red), and M2_Extended (green), respectively. Modules 

detected by MAGI do not have any pair of genes with r
2
<0.01, while the SteinerNet module has around 23% of such 

pairs. For comparison, the distribution of the pairwise co-expression values of all the genes is shown (purple). 
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Supplementary Figure 17. A histogram-like distribution of pairwise co-expression values (r
2
) between every two 

genes in the NETBAG module (blue), M1_Extended (red) and M2_Extended (green) modules, respectively. 

Modules detected by MAGI do not have any pair of genes with r
2
<0.01, while the NETBAG module has around 

18% of such pairs. 

 

Finally for every AXAS module, over 15% of gene pairs were found to have a co-expression 

value lower than 0.01. The exact percentage of gene pairs with such a low co-expression value is 

provided in supplementary table 3. 

We also compared the average number of truncating mutations per gene seen in normal 

population for each module, using the Exome Sequencing Project (ESP). We expect that disease 

modules would be depleted for genes for which truncating mutations are common in the general 

population. On average, genes in the union of M1_Extended and M2_Extended have 0.17 

truncating mutations in the ESP. In contrast, from the genes in the NETBAG module and the 

SteinerNet module have on average 1.87, and 1.96 truncating mutations, respectively. The 

average number of truncating mutations in ESP for each of the AXAS modules is reported in 

supplementary table 3. 
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Supplementary Table 3. Comparison to the AXAS networks in terms of co-expression and truncated mutations 

found in the ESP dataset. 

 Fraction of gene 
pairs with co-

expression r2<0.01 

Avg # truncating 
mutations per 

gene in ESP 

M1_AXAS 0.28 1.152857143 

M2_AXAS 0.3 1.482352941 

M3_AXAS 0.17 1.420253165 

M4_AXAS 0.23 1.637037037 

M5_AXAS 0.3 1.59798995 

M6_AXAS 0.47 2.181818182 

M7_AXAS 0.27 1.425806452 

M8_AXAS 0.26 1.824675325 

M9_AXAS 0.29 1.394957983 

M10_AXAS 0.24 1.631578947 

M11_AXAS 0.26 1.876106195 

M12_AXAS 0.36 1.189189189 

M13_AXAS 0.29 1.510204082 

M14_AXAS 0.15 2.329268293 

M15_AXAS 0.27 1.707317073 

M16_AXAS 0.22 1.85483871 

M17_AXAS 0.34 2.803278689 

M18_AXAS 0.18 2.254237288 

M19_AXAS 0.12 1.120689655 

M20_AXAS 0.29 0.98 

M21_AXAS 0.22 1.931818182 

M22_AXAS 0.27 1.666666667 

M23_AXAS 0.18 1.647058824 

M24_AXAS 0.3 1.80952381 

M25_AXAS 0.64 1.3 

M26_AXAS 0.37 0.384615385 

M1_MAGI 0 0.1625 

M2_MAGI 0 0.208333333 
The fraction of genes pairs with average co-expression lower than 0.01 and the total number of 

truncating mutations found in the ESP for the DAWN modules are given in supplementary table 

4. 

. 
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Supplementary Table 4. The average LoF mutations in ESP per gene for modules reported in DAWN and 

fractionation of pairwise genes with co-expression r
2
<0.01.  

 Fraction of gene pairs with 
co-expression r2<0.01 

Avg # truncating 
mutations per gene in 

ESP 

C1 0.185 0.9 

C2 0.09 2 

C3 0.22 1.4 

C4 0.12 1 

C5 0.35 0.6 

C6 0.2 0.6 

C7 0.025 1 

M1_MAGI 0 0.1625 

M2_MAGI 0 0.208333333 
 

Comparison of KEGG pathways enrichment for M1_Extended, M2_Extended, NETBAG, 

SteinerNet, and the AXAS modules with the highest overlap with MAGI’s modules (M1_AXAS, 

and M2_AXAS) is shown in Supplementary Figures Supplementary Figure 18, Supplementary 

Figure 19, Supplementary Figure 20, and Supplementary Figure 21. 

 

Supplementary Figure 18. The enrichment for significant KEGG pathways after Bonferroni correction (p<0.05) 

for MAGI’s modules and the SteinerNet module. Modules reported by MAGI are found to have higher enrichment 

to known pathways. The two common pathways between M1_Extended and SteinerNet are Wnt and TGF-beta 
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signaling, for which the MAGI module M1_Extended is found to have higher enrichment with lower p-value 

compared to the SteinerNet module. Cancer-related pathways are not shown. 

 

 

Supplementary Figure 19. The enrichment for significant pathways after Bonferroni correction (p<0.05) from 

KEGG database for MAGI’s modules and the NETBAG module. The NETBAG module was not found to be 

significantly enriched in any of the known KEGG pathways. The two KEGG pathways that are presented for 

NETBAG are the ones with the lowest P-values. Cancer-related pathways are not shown. 
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Supplementary Figure 20. Enrichment of significant KEGG pathways (p<0.05 after Bonferroni correction) for 

M1_Extended (red) and the first AXAS module (blue), M1_AXAS, which has the highest number of shared genes 

with M1_Extended. Cancer-related pathways are not shown. 
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Supplementary Figure 21. Enrichment of significant KEGG pathways (p<0.05 after Bonferroni correction) for 

M2_Extended (green) and the first AXAS module (blue), M2_AXAS, which has the highest number of shared genes 

with M2_Extended. Cancer-related pathways are not shown. 

 

We also compared the average number of LoF and missense mutations per gene, as well as the 

average gene score, between the SteinerNet module and the M1_Extended and M2_Extended 

modules. M1_Extended and M2_Extended were found to be more enriched in LoF mutations and 

have a higher average gene score compared to the SteinerNet module (Supplementary Figure 

22). 
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Supplementary Figure 22. A comparison of the average number of LoF mutations and missense mutations per gene, as well 

as the average gene score (i.e., summation of score of all genes in each module divided by size of the module), is shown for the 

SteinerNet module and the M1_Extended and M2_Extended modules. 

 

Enrichment for KEGG pathways of M1_Extended and M2_Extended  

To calculate the confidence intervals for pathway enrichment for both M1_Extended and 

M2_Extended we used Fisher’s exact test to calculate the p-value, confidence intervals and odds 

ratio (OR), as reported below: 

Supplementary Table 5. OR and confidence intervals for the significant KEGG pathways found for M1_Extended. 

M1_Extended p-value OR Confidence interval 

Cell cycle 6.50E-011 19.3 [8.6, 40.6] 

Wnt signaling pathway 1.20E-007 11.9 [5.09, 25.8] 

Notch signaling pathway 1.10E-006 22.1 [7.1, 57.4] 

TGF-beta signaling pathway 4.40E-005 11.1 [3.7, 27.8] 

Ubiquitin mediated proteolysis 6.60E+005 8.2 [3.01, 19.4] 

Adherens junction 0.00027 10.1 [3, 27.1] 

Jak-STAT signaling pathway 0.0061 4.7 [1.4, 12.5] 
 

 

For M2_Extended the highest enrichment that was found was for the long-term potentiation 

pathway with p<7.3e-9, OR=69 and confidence interval between 18 and 246. 
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Significance of M1_Best and M2_Best vs. Sib1_Best and Sib2_Best 

For calculating the significance of modules we used simulations in which we permuted the 

mutations based on three different null models (Null-1, Null-2 and Null-3). For Null-1 we 

distributed the mutations based on gene length (i.e., the probability of a mutation being assigned 

to a gene was directly correlated to its coding sequence length). For Null-2 and Null-3 the 

probability of assigning a mutation to a gene was based on observation of mutations in ESP 

dataset (Tennessen et al., 2012) or the whole genome as reported in (Kong et al., 2012). For 

Null-2 and Null-3 these probabilities were calculated as described in (O'Roak et al., 2012).  

For Null-2 and Null-3 the distribution of the mutations was also aware of the degree distribution 

of genes with mutation in PPI network. To address the simulation, we adopted an approach 

similar to that reported in Jia et al. (2012). In each simulation, we shuffle the mutations from the 

real data based on the probabilities calculated for each null model, such that every mutation from 

the real data is assigned to a new gene. In addition, to account for the PPI degree, mutations are 

assigned only to genes for which the degree in the PPI is similar to that of the original gene 

carrying the real mutation. If the degree of the original gene is lower than 2
5
, the new gene is 

required to have the exact same degree. For degrees higher or equal to 2
5
, we consider three 

category of [2
5
-2

6
, 2

6
-2

7
, >2

7
] and assign mutations only to genes that are in the same category as 

the original gene. 

The reason for using these categories is that the higher the degree, the fewer the genes sharing 

that same degree in the PPI. This approach guarantees that the genes carrying the permutated 

mutations based on Null-2 and Null-3 have a similar degree distribution to that of the original 

data. 

The p-values for probands and siblings using the three Null modules for M1 and M2 are shown 

below. 
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Supplementary Figure 23. Significance of M1. a) The M1_Best score (dashed black line) shown in comparison to 

the top-scored module of 200 simulations using three different null models (Null-1, Null-2, and Null-3). b) The 

number of LoF mutations covered by the top-scoring module (M1_Best) found using proband mutations versus the 

number of simulated LoF mutations covered by the top-scoring modules found under the same simulations. c) The 

score of the top module found using sibling and control mutations (dashed black line) in comparison to the top-

scored module of 200 simulations with the same number of mutations using the three null models. The sibling 

simulations were performed without using the ESP constraint (although similar results were obtained when an ESP 

constraint was applied). d) The number of LoF mutations covered by the top-scoring module found using sibling 

mutations versus the number of simulated LoF mutations covered by the top-scoring modules found using the three 

null models. Sibling simulations were performed without filtering based on ESP controls. 
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Supplementary Figure 24. Significance of M2. See legend of Supplementary Figure 23.  

To compare the scores of the best modules found using probands data to the score of the best 

modules found using the three null models, we run 200 simulations for each null model. We then 

compared the ratio of the scores of M1_Best (or M2_Best) to the score of the best modules found 

on the simulation datasets models (Supplementary FiguresSupplementary Figure 25Supplementary 

Figure 26). We found that the M1_Best module has a score that is approximately 30% higher than 

null models. We repeated the analysis for the best modules found using sibling datasets. Clearly, 

the modules found using the probands mutations have significantly higher scores than null 

models, while the score of the modules found for siblings are quite similar to that of the null 

models. In all these analyses we used the exact same control threshold.  
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Supplementary Figure 25. The ratio of the score of the highest scoring module found using ASD+ID dataset 

(M1_Best) vs. the highest scoring modules found using Null1, Null2 and Null3 for 200 different simulations is 

shown as a red bar chart. The ratio of the highest scoring modules found using sibling data (Sib1) against Null1, 

Null2 and Null3 is depicted as the blue bars. 

 

Supplementary Figure 26. The ratio of the score of the highest scoring second module found using ASD+ID 

dataset (M2_Best) vs. the highest scoring modules found using Null1, Null2 and Null3 for 200 different simulations 

is shown as a red bar chart. The ratio of the highest scoring second modules found using sibling data (Sibs) against 

Null1, Null2 and Null3 is depicted as blue bars. 
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Gene Ontology (GO) 

GO terms with p-value<0.05 (with FDR correction) according to DAVID (Huang da et al., 2009) were 

given together with the enrichment fold as input to REVIGO (Supek et al., 2011). The summarized list is 

presented in Supplementary Figures Supplementary Figure 27 and Supplementary Figure 28. 

 

Supplementary Figure 27. GO terms enrichment in M1_Extended. Column labels show the p-values after FDR 

correction. 

 

  Supplementary Figure 28. GO terms enrichment in M2_Extended. Column labels show the p-values after FDR 

correction. 
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Gene expression of M1_Extended and M2_Extended 

 

 

Supplementary Figure 29. Normalized expression of different brain subtissues for M1_Extended during brain 

development. 
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Supplementary Figure 30. Normalized expression of different brain subtissues for M2_Extended during brain 

development. 
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Supplementary Figure 31. Average normalized expression of all brain subtissues for the modules (a) M1_Extended 

and (b) M2_Extended during brain development. Gray dots represent the average normalized expression of all the 

genes in the module for each time point and subtissue. 
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Supplementary Figure 32. Expression of M1_Extended in different tissues, using the Gene Atlas (Gene Expression 

Omnibus accession number GSE1133). 
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Supplementary Figure 33. Expression of M2_Extended in different tissues, using the Gene Atlas (Gene Expression 

Omnibus accession number GSE1133). 

 

Detecting modules for specific brain regions 

To detect modules for specific brain regions, we have calculated the co-expression between 

every pair of genes (using Pearson correlation coefficient) during four main clusters of brain 

regions, considering the times points from 8PCW to 1 year after birth. The clusters that were 

considered are the ones previously analyzed by (Willsey et al., 2013) namely: (1) Primary visual 

cortex - superior temporal cortex, or V1C-STC cluster; (2) Prefrontal and primary motor-

somatosensory cortex or PFC-MSC cluster; (3) Striatum (STR), hippocampus (HIP), and 

amygdaloid complex (AMY); (4) Mediodorsal nucleus of thalamus - cerebellar cortex or MD-

CBC cluster. We then applied MAGI using these co-expression values and detect the M1_Best 

and M2_Best modules for each of the brain regions clusters. The resulted M1_Best modules are 

different to some extent from the full-brain M1_Best but still show a remarkable overlap with the 

modules found using the full expression dataset. Specifically, the M1_Best and M2_Best modules 

found using the MD-CBC cluster show the least overlap with the full-brain modules. The 

majority of the genes found in M1_Extended and M2_Extended are not shared among the best 

detected modules found for the MD-CBC brain region. For comparison, we also used the 

neocortex (including both the V1C-STC and the PFC-MSC cluster) as an additional cluster, 

similar to Kang et al. (2011). 
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Supplementary Figure 34. Overlap among the genes found in M1_Best for specific brain regions. Marked in red 

are genes that are also part of the M1_Best calculated using the full-brain expression data.  

 

Similar results were found when using Spearman’s rho instead of Pearson correlation coefficient 

to calculate co-expression. The overlap among the modules found using the two different co-

expression values (Pearson vs. Spearman) was found to be high (>0.7) for each of the brain 

regions. 
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Supplementary Figure 35. The overlap between the extended modules found using co-expression values calculated 

using the Pearson correlation coefficient and Spearman’s rho for four different brain regions.  

 

Comparing the M1_Best module found for the neocortex region to the modules found for the 

V1C-STC and the PFC-MSC regions shows high overlap among the three modules. 



40 
 

 

Supplementary Figure 36. Overlap among the genes found in M1_Best for the neocortex region and the V1C-STC 

and PFC-MSC brain regions. 

 

Similarly, for M2_Best there is also a clear overlap among the modules found for three regions 

(V1C-STC; PFC-MSC; STR, HIP, and AMY) and the M2_Best module found for the full-brain 

expression data (using Pearson correlation coefficient for co-expression values). However, for 

the region MD-CBC, M2_Best is quite different. 
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Supplementary Figure 37: Overlap among the genes found in M2_Best for specific brain regions. Marked in red 

are genes that are also part of the M2_Best calculated using the full-brain expression data. 
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Force-directed representation of MAGI’s modules 

 

 

Supplementary Figure 38: Force-directed layout of M1_Extended. Genes detected as part of module M1_Extended 

are displayed as graph nodes. Node colors reflect the score of each gene based on the number and type of de novo 

mutations: the more intense red color indicates a higher score while gray indicates a score of zero (no de novo 

mutations observed). Edges (black lines) between two nodes represent genes that interact with each other according 

to the PPI network and are also highly co-expressed (Pearson correlation coefficient r
2
>0.37, i.e., the genes are 

included in the top 5% of gene-pair co-expression during brain development). The network is displayed with the 

force-directed layout function of Cytoscape (Shannon et al., 2003) using the co-expression (r
2
) as the edge weight. 
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Supplementary Figure 39. Force-directed layout of M2_Extended. Genes detected as part of module M2_Extended 
are displayed as graph nodes. Node colors reflect the score of each gene based on the number and type of de novo 
mutations: the more intense red color indicates a higher score while gray indicates a score of zero (no de novo 
mutations observed). Edges (black lines) between two nodes represent genes that interact with each other 
according to the PPI network and are also highly co-expressed (Pearson correlation coefficient r

2
>0.37, i.e., the 

genes are included in the top 5% of gene pair co-expression during brain development). The network is displayed 
with the force-directed layout function of Cytoscape (Shannon et al., 2003) using the co-expression (r

2
) as the edge 

weight. 

 

Genes carrying de novo mutations are more connected 

Looking at the entire PPI network, there are 517 genes carrying either LoF or missense de novo 

mutations, with 252 edges connecting them. We randomly sampled 10,000 sets of 517 genes 

from the PPI and found that a random set are connected with an average of 125.72 edges. Genes 

with either LoF or missense de novo mutations were found to be significantly connected 

compared to these random sets (p<0.00029). 
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Supplementary Figure 40. Genes carrying de novo LoF or missense mutations in probands that are included in the 

PPI network (n=517) are connected by a total of 252 protein interactions (black dashed line). For comparison, 

10,000 random sets of genes of the same size (n=517) were sampled. The histogram shows the number of protein 

interactions connecting each such random set. Genes carrying de novo LoF or missense mutations are found to have 

a significantly higher number of protein interactions connecting them (p<0.00029). 

 

Similarly, considering only de novo missense mutations, there are 421 genes with missense 

mutations in the PPI network, connected by 180 edges. Using similar random sampling of sets of 

size 421, we found that the average number of edges in these samples is 83.0485 and that the 

genes carrying de novo missense mutations are significantly connected (p<0.00019998). 

 

De novo LoF mutations are enriched in genes that co-express with MAGI’s 

modules 

Many of the genes that carry de novo LoF or missense mutations in probands in the ASD+ID 

dataset were not identified as part of the two reported modules (M1_Extended and 

M2_Extended). We investigated the possibility that these genes are related to M1_Extended and 
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M2_Extended. For this, we calculated the average co-expression of each gene that is not covered 

by either M1_Extended or M2_Extended with the genes in M1_Extended and M2_extended 

modules most confident genes - only genes with confidence score >0.99 (in the inner most circle 

of Figures 2 and 3) were considered. Interestingly, genes showing high co-expression with 

M1_Extended or M2_Extended are significantly enriched (1.95x and 1.38x, respectively) in de 

novo LoF mutations, while genes that have low co-expression with both of them are significantly 

depleted (0.84X) in LoF mutation in probands (Supplementary Figure 41). The exact mirror 

image observed for LoF mutations in ESP/control data ( 

Supplementary Figure 42). 

 

Supplementary Figure 41. Each point represents a gene with LoF mutations (green) or missense mutations (red) in 

ASD+ID probands. The x-axis represents the average co-expression with the genes in module M1_Extended (only 

genes with confidence score >0.99 were considered). The y-axis represents the average co-expression with the genes 

in module M2_Extended. The enrichment and p-values were calculated considering the length of the genes in each 

group. Enrichment and depletion are represented using blue and yellow background colors, respectively. 
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Supplementary Figure 42. Each point represents a gene with LoF mutations in the ESP. The x-axis is the average 

co-expression with the genes in module M1_Extended (the genes with confidence score >0.99) and y-axis is the 

average co-expression of the genes with the genes in module M2_Extended. Enrichment and depletion are 

represented using blue and yellow background colors, respectively. 

 

IQ distinction of modules 

We investigated the IQ of probands carrying de novo mutations in the detected modules. We 

found that probands with de novo LoF mutations in M1_Best have a significantly lower IQ 

compared to other probands that have LoF mutations outside of the module (n1 = 17, median1 = 

61 vs. n2 = 108, median2 = 81.5) with p<0.028 (Mann-Whitney two-sided test). The significance 

increases when testing probands with de novo LoF or missense mutations in M1_Best (n1 = 37, 

median1 = 71) compared to probands with a de novo LoF or missense mutations only outside of 

M1_Best (n2 = 421, median2 = 84) with p<0.008. Similarly, probands with de novo mutations in 

M1_Extended were found to have significantly lower IQ than other probands when focusing on 

LoF mutations only (p<0.018) or LoF and missense mutations (p<0.016). Unfortunately, there is 

no available information on the IQ of individuals from the two ID studies, but most of the 

mutations covered by M2_Extended are coming from these studies. In order to account for these 
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two studies, we have therefore used a different strategy. We divided the probands from all six 

ASD+ID studies into two groups: (i) probands with ID, including all the probands from the two 

ID studies and probands from the four ASD studies that have IQ<70 and (ii) probands without 

ID, including all the probands from the four ASD studies that have IQ≥70. We found that the 

number of individuals with IQ<70 with LoF or missense mutations in M2 (both M2_Best and 

M2_Extended) was highly enriched compared to probands with LoF or missense mutations 

outside the module (p<0.0062). 

 

Supplementary Figure 43. (a) The IQ of the probands with de novo LoF mutations in M1_Best compared to the IQ 

of other probands with de novo LoF mutations. (b) The IQ of probands with de novo LoF or missense mutations 

inside M1_Best compared to the IQ of other probands with de novo LoF or missense mutations. (c) The number of 

probands with ID (blue bars) or without ID (red bars) that have de novo LoF or missense mutations in genes inside 

M1_Best or genes outside of M1_Best. (d) The number of probands with ID (blue bars) or without ID (red bars) that 

have de novo LoF or missense mutations in genes in M2_Best or outside M2_Best. 

 

Similar results are found when looking at male and female samples separately. The average IQ of 

male probands with de novo LoF mutations inside M1_Extended (median IQ=76) is significantly 
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lower in comparison to other male probands with de novo LoF mutations (median IQ=83) with 

p<0.036. A similar trend is observed for female samples with median IQ of 52.5 for probands 

with LoF mutation inside of module versus other female probands with LoF mutations with 

median IQ of 75. However, due to the low number of female probands with de novo mutations in 

our cohort (n=30), the results are not significant (p<0.159). 

 

KEGG pathway enrichment for M1_Extended with cancer pathways  

 

Supplementary Figure 44. The KEGG pathway enrichment for M1_Extended including the cancer-related 

pathways (which were excluded from previous figures).  

 

Cross validation 

We also performed a leave-25%-out cross-validation analysis. For this we have randomly 

partitioned the mutations to a training set of size 75% and a validation set of size 25%. We then 

run MAGI on the training set and calculate the number of mutations in the validation set that are 

found in the detected module. We ran the above experiment 100 times and the distribution on 

number of mutations covered from the smaller set is provided below. In 94% of these runs, at 

least one mutation from the validation set was covered in the resulted module, while the expected 

number of mutations found in a module of size ~50 genes is strictly lower than 1 (assuming total 
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number of genes is ~25,000). The distribution of number of mutations covered is given in 

Supplementary Figure 45.  

 

 

Supplementary Figure 45. Histogram of the number of mutations covered in the leave-25%-out cross-validation 

(100 simulations).  
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