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SUMMARY

Understanding the prevailing mutational mecha-
nisms responsible for human genome structural vari-
ation requires uniformity in the discovery of allelic
variants and precision in terms of breakpoint delinea-
tion. We develop a resource based on capillary end
sequencing of 13.8 million fosmid clones from 17
human genomes and characterize the complete
sequence of 1054 large structural variants corre-
sponding to 589 deletions, 384 insertions, and 81
inversions.We analyze the 2081 breakpoint junctions
and infer potential mechanism of origin. Three
mechanisms account for the bulk of germline struc-
tural variation: microhomology-mediated processes
involving short (2–20 bp) stretches of sequence
(28%), nonallelic homologous recombination (22%),
and L1 retrotransposition (19%). The high quality
and long-range continuity of the sequence reveals
more complex mutational mechanisms, including
repeat-mediated inversions and gene conversion,
that are most often missed by other methods, such
as comparative genomic hybridization, single nucle-
otide polymorphism microarrays, and next-genera-
tion sequencing.

INTRODUCTION

Despite significant advances in the discovery and genotyping of

human genome structural variation, only a small fraction of

common structural variation has been resolved at the sequence

level (Conrad et al., 2010b; Freeman et al., 2006; Itsara et al.,

2009; Kidd et al., 2008; Lam et al., 2010; McCarroll et al.,

2008b; Redon et al., 2006). Themajority of human genome struc-

tural variation has been discovered with single nucleotide poly-

morphism (SNP) microarrays and array comparative genomic

hybridization (arrayCGH), approaches that provide limited infor-
mation about the precise structure and location of identified vari-

ants. Because of their dependence on the reference genome,

array-based approaches preferentially detect deletions over

insertions and are unable to directly detect copy-number-neutral

events such as inversions. Higher-density array platforms give

a better estimation of variant sizes, but most breakpoints cannot

be resolved at a scale finer than 50 bp regions (Conrad et al.,

2010b), while targeted next-generation sequencing approaches

have difficulty resolving breakpoints within homologous

segments (Conrad et al., 2010a).

These methodological biases threaten to skew our under-

standing of the underlying mechanisms responsible for the

formation of structural variation and limit our ability to compre-

hensively discover and genotype this form of genetic variation.

We resolve the breakpoints of 1054 structural variants based

on capillary sequencing of clone inserts. The high-quality

sequence of contiguous variant haplotypes allows alternative

structures to be included in future human genome assemblies

and provides the breakpoint resolution necessary to accurately

genotype these variants in sequence data generated from

next-generation sequencing platforms. The sequences and the

associated clones also provide a resource for assessing future

methods for structural variation discovery.

RESULTS

The Human Genome Structural Variation Clone
Resource
The high quality of the reference human genome is due, in large

part, to the fact that it was assembled based on capillary

sequencing of individual large insert clones whose complete

sequence was resolved prior to final genome assembly. This

strategy allowed complex duplicated and repetitive regions to

be incorporated that were missed by other approaches (Istrail

et al., 2004; She et al., 2004). Since genome structural variation

is similarly biased to these regions, we proposed that developing

clone libraries for amodest number of additional genomes would

serve as a valuable resource for characterizing complex and

difficult-to-assay regions of genome structural variation (Eichler
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et al., 2007). The overall strategy involved the construction of

individual genome libraries using a fosmid cloning vector

(40 kb inserts) and capillary sequencing of the ends of the inserts

to generate a high-quality end-sequence pair (ESP). Discrep-

ancies in the length and orientation of these mapped ESPs

with respect to the reference genome serve as signatures of

copy-number variation and inversion, respectively. Since the

underlying clones can be retrieved, the complete sequence

context of the discovered structural variant can also be obtained.

Previously, we discovered and cloned 1695 structural variants

with fosmid libraries derived from nine individuals and presented

sequence of 261 structural variants (Kidd et al., 2008; Tuzun

et al., 2005). We expand this resource to include capillary end

sequencing of 4.1 million additional fosmid clones from eight

additional human genomes (Table S1, available online).

The combined set includes 13.8 million clones derived from the

genomes of six Yoruba Nigerians, five CEPH Europeans, three

Japanese, two Han Chinese, and one individual of unknown

ancestry.

Structural Variant Alleles
Using this resource, we searched for clusters of clones that

suggest a structural difference when compared to the reference.

We discovered a total of 2051 discordant regions (Table S1)

having support from multiple clones for a structure different

from the reference genome. The size distribution of the fosmid

clone inserts limited us to the detection of structural variants

greater than 5 kb in length. Inversions also tend to be biased to

larger events because of the probability of capturing a breakpoint

by a pair of end sequences. While there is no upper bound in the

detection of deletions and inversions, the direct capturing of

insertions larger than the insert size of the clone (40 kb) requires

specialized approaches. For example, new tandem duplications

may be identified with an everted clone mapping signature (Fig-

ure S1) (Cooper et al., 2008) and insertions of novel human

sequence may be identified by read pairs for which only one

end maps (Kidd et al., 2010).

We targeted 1054 structural variants (Table S1) from nine

human genomes and completely sequenced the inserts of

1167 fosmid clones (46.4 Mb of sequence). We identified 81

loci for which breakpoints could not be resolved because of diffi-

culty in clone assembly and the limits of 40 kb fosmid inserts (see

Supplemental Experimental Procedures). We defined break-

points relative to the reference genome assembly following

a two-stage procedure (Kidd et al., 2010) (Figure 1 and Table

S2). We initially distinguished copy-number changes (n = 973

insertion and/or deletions) from balanced genome structural

variants (81 inversions) (Figure 2). The analyzed variants altered

95 gene structures. We estimate that 1.04% (11/1054) of the

sequenced alleles are already known risk factors for common

and rare human diseases (Figure 3 and Table S3).

Breakpoint Features
Using the 40 kb of clone-based sequence, we examined the

sequence features and inferred potential mechanism of origin

for these variants (Table 1). We identified 30 variants associated

with the expansion or contraction of a variable number of

tandem repeats (VNTRs) (Buard et al., 2000; Jeffreys et al.,
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1994; Richard et al., 2008). VNTR repeat units ranged from

17 bp to 6.5 kb with copy numbers ranging from 1 to 319

copies. We identified 198 events (20% of the total insertions

and deletions) that we classified as being the result of L1

retrotransposition. Each of the 198 L1 elements associated with

the retrotransposition events has a sequence identity of at least

97.5% when compared to the L1.3 reference sequence, and

152 are at least 6 kb in size, consistent with full-length elements

that may be capable of subsequent retrotransposition (Beck

et al., 2010). We find evidence for transduction of flanking

sequence for 20% (40/198) of the sites, with the transduced

segment size ranging from 45 to 968 nucleotides (median of

81.5) (Goodier et al., 2000; Moran et al., 1999; Pickeral et al.,

2000). Using the transduced sequence as a marker, we identi-

fied the potential donor location for 30 of these retrotransposi-

tions (20 insertions in the fosmid source sample and 10

insertions in the reference genome). We identified three posi-

tions that have each given rise to multiple LINE insertions (Fig-

ure 2B), suggesting the presence of L1 donor hotspots. We

note that 11 of the 20 L1 insertions in the fosmid source

(including the three recurrent L1 donors) correspond to

elements that have been functionally determined to represent

hot L1s, according to assays performed by Beck et al. (2010).

We found two events consistent with the insertion of an intact

HERV-K element: one insertion in the reference sequence (as

indicated by clone AC209281) and an insertion contained in

clone AC226770. Both events showed less than 1% divergence

from the HERV-K sequence (Dewannieux et al., 2006) and were

flanked by long terminal repeats (Tristem, 2000). Our discovery

size thresholds (>5 kb) preclude the identification of smaller ret-

rotransposition events arising from SVA or Alu repeats that are

common when smaller structural variants are considered (Ben-

nett et al., 2008; Korbel et al., 2007; Lam et al., 2010; Mills et al.,

2006).

We divided the remaining 824 structural variants into two

broad categories. Class I consists of variants with no additional

sequence at the breakpoint junction (Figures 4A–4D and

Figure S2). Class II variants contain an additional sequence,

found across the variant junction, that is not present at either

of the other variant breakpoints (Figures 4E–4G). We also

assessed the presence of extended sequence homology

and the extent of matching sequence at the breakpoints. We

note that microhomology is a qualitative termwithout clear delin-

eation as 1 or 2 bp matches are expected to occur often by

chance (Figure 4) and a range of homologous match lengths is

observed (Conrad et al., 2010a; Lam et al., 2010). Similarly, there

is ambiguity in assigning events to potential mechanisms based

solely on the length of homologous segments. Consequently, we

categorize events based on observed ranges of homology and

consider assignment to specific mechanisms as speculative.

Among the class I events, 49% (289/590) of copy-number

variants contain 2–20 bp of matching sequence, indicating that

microhomology-mediated mechanisms, such as microhomol-

ogy-mediated end joining (MMEJ), contribute to a substantial

fraction (30%) of human structural variation (Table 1) (Hastings

et al., 2009; McVey and Lee, 2008; Payen et al., 2008; Roth

and Wilson, 1986). Although there is large overlap in the variant

size when broken down by extent of homologous sequence
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Figure 1. Sequence and Breakpoint Analyses

Variant breakpoints were defined based on alignments of sequences from the sequenced insertion and deletion alleles. For example, (A) the sequence of fosmid

clone AC207429 is compared with sequence from the corresponding region on chr2. A 10 kb deletion, relative to the reference sequence, is readily apparent

(indicated by the red bracket). The position of segmental duplications, common repeats (LINEs are green, SINEs are purple, and LTR elements are orange),

and RefSeq exons are shown. Sequence segments corresponding to three different breakpoint regions (red, green, and purple bars) are extracted for further

analysis.

(B) The sequence across the variant junction is aligned against each of the other two sequences and the resulting pairwise alignments are merged. The pattern of

sequence identity is assessed to identify the positions where the junction sequence switches from being a better match to the first breakpoint to being a better

match to sequence from the second breakpoint. The breakpoint coordinates correspond to the innermost positions that can be confidently assigned to be before

and after the variant boundary.

(C) The result of aligning the three segments depicted in (A). Alignment columns where the junction sequence matches the sequence from the first (leftmost)

breakpoint are indicated by a 1 while alignment columns where the junction sequence matches the second (rightmost) breakpoint are indicated by a 2. Positions

where all three sequences are the same are indicated by an asterisk (*). The red square highlights the position of the breakpoint coordinates (highlighted in red and

green text). The two breakpoints are separated by seven nucleotides found at both breakpoints with perfect identity (blue text). Highlighted in gray is a 293 bp

segment present at both breakpoints with a sequence identity of 91%. See also Tables S2 and S7.
(Figure 4C), we find that, as a class, the mean size of events

associated withmicrohomology (2–20 bp ofmatching sequence,

n = 289, mean size is 9.7 kb) is significantly smaller (p = 0.02926,

two sample t test) than those showing a hallmark of nonallelic

homologous recombination (NAHR) (R200 bp of matching

sequence, n = 177, mean size is 21.0 kb). The analyzed inver-

sions are overwhelming driven by large homologous segments

with 69% (56/81) of all analyzed inversions containing stretches

of matching sequence at least 200 bp in length. In contrast, only

30% (177/590) of the class I copy-number variants contain

matching breakpoint sequences of at least that length. It is

important to note, however, that our clone end-sequence

mapping strategy is biased toward the detection of larger inver-

sions when compared to copy-number variants. This is a direct

consequence of the probability of capturing a breakpoint that

diminisheswhen inversions become smaller than the clone insert
size. Overall, we find that younger Alu events and segmental

duplications contribute most significantly to the process of

NAHR (Table S4), as expected because of their higher levels of

sequence identity. The strongest enrichment is found for paired

Alu repeats at each breakpoint (5.2-fold enrichment). If each

breakpoint is treated separately, rather than requiring that an

element of the same subfamily be present at both breakpoints

of a variant, then AluY also shows a substantial degree of enrich-

ment (2.6-fold, Table S4). Since AluY is the most recently active

Alu family, dispersed AluY elements are expected to have

a higher degree of sequence identity than other Alu families (Bat-

zer and Deininger, 2002; Cordaux and Batzer, 2009). Closer

examination of the distribution of breakpoints within individual

Alus reveals a nonuniform pattern of breakpoint density (Fig-

ure 3D). The highest density of breakpoints occurs near the posi-

tion of a sequence motif (CCNCCNTNNCCNC) that has been
Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc. 839
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Figure 2. Sequenced Structural Variant Alleles

(A) Size distribution for 1054 sequenced structural variants. Insertions, deletions, and inversions relative to the genome reference assembly are depicted sepa-

rately. Note that the bins are not of equal sizes. The mean size of the sequenced variants is 14.9 kb for deletions, 6.1 kb for insertions, and 196 kb for inversions.

Our variant selection methodology largely identifies deletions greater than �5 kb and insertions from �5 kb to �40 kb in size and is biased against inversions

smaller than �40 kb.

(B) The relationship between the donor site of transduced sequences and LINE insertion position are given for 30 events with a match to hg18 using BLAT. Rela-

tionships are shown for 20 LINE insertions in library source individuals relative to the reference (blue lines) and for 10 insertions in the genome reference (red lines).

The blue circles represent three different loci associated with multiple distinct LINE insertions. See also Figure S1 and Table S1.
associated with meiotic recombination hotspots, is found in

some Alu elements (Myers et al., 2008), and has also been

observed for rearrangements between human and chimpanzee

(Han et al., 2007; Sen et al., 2006).

We find that 16% (153/973) of the insertion and deletion vari-

ants and 9% (7/81) of the inversions contain additional

sequence at the variant breakpoints (class II events; Figure 4).

Many of the additional insertion sequences are relatively short

in length, consistent with nontemplate-directed repair associ-

ated with nonhomologous end joining (Figure 4B). For these

shorter sequences, no inference could be made as to the source

of the additions. However, 41% of all class II variants (66/160)

contain additional sequence at the junction at least 20 bp in

length. Of these longer fragments, 88% (58/66) map to another

location within the human genome. Since we are limited in this

study to directly capturing the breakpoints of insertions smaller

than 40 kb, we repeated this comparison with only deletions

relative to the assembly where we expect to have less of

a bias in terms of variant size. We find that the additional junction

sequences for 30 of 39 class II deletion events at least 20 bp

long map elsewhere in the genome. Seventy-three percent

(22/30) are found on the same chromosome as the variant.

In fact, eight of the insertions map less than 1 kb away from

the variant breakpoint (Figure 4G and Table S5) and all 22 are

less than 250 kb from the breakpoint. This pattern suggests

the action of a replication-associated process that involves

template switching or strand invasion (Hastings et al., 2009;

Lee et al., 2007; Smith et al., 2007). In contrast to the class I

events, only 2% of the class II events (3/160) contained
840 Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc.
stretches of homologous sequence flanking the breakpoint

insertion confirming they arose by mechanisms other than

NAHR. Interestingly, if we examine the sequence context of

these regions, we find that 20% (30/153) of class II events

map within 5 kb of a segmental duplication. This represents

a significant enrichment for proximity to duplicated sequence

(p < 0.002 based on comparisons with randomly sampled

sequences) indicating that regions flanking segmental duplica-

tions may be generally more unstable and susceptible to

multiple mutational processes such as template switching

during replication (Itsara et al., 2009; Lee et al., 2007; Payen

et al., 2008).

Gene Conversion and Structural Variation
During our analysis of putative NAHR events, we identified

10 structural variants having a complex pattern of exchange

inconsistent with a simple model of unequal crossover. The

breakpoint region contains an interleaved pattern of alternating

patches of sequences from flanking homologous segments

(Figure 5). These patterns are reminiscent of multiple rounds of

gene conversion, although each of these events was also asso-

ciated with a copy-number variant event. Using paralogous

sequence variants that distinguish the 50 and 30 homologous

segments, we investigated the overall extent of this nonallelic

exchange (referred to as the conversion tract length), and the

number of switches before unambiguous homology to the 50 or
30 end was re-established. We determined that most (6/10) of

the conversion tracts were relatively short (200–600 bp in length)

with a relatively consistent number (4–6) and length (30–40 bp) of
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Figure 3. Examples of Sequenced Variants
Examples of the complete sequence of structural variant alleles that have been associated with disease risk, including (A) a 45.5 kb deletion upstream ofNEGR1,

(B) a 72 kb deletion of RHD, (C) a 3.9 kb and a 20.1 kb deletion upstream of IRGM, and (D) a 32 kb deletion of LCE3C. See also Table S3.
switches before clear boundaries at the 50 and 30 could be re-es-

tablished (Figure S3). Seven of these events have breakpoints

that map within segmental duplications, and the remaining three

have breakpoints that map within LINEs. Three of the variants

contained at least ten switches. One variant (AC212911) showed

the largest associated conversion tract with a remarkable 182

switches extending over 7.9 kb (Figure 5D). We sequenced the

deletion allele with fosmids derived from three different individ-

uals for one event (AC226182). Each of the three deletion haplo-

types contained identical patterns of interleaved sequence,

a finding that is consistent with the creation of the pattern at

the time of variant formation, or shortly thereafter, rather than

as a result of a continual conversion process between deletion

and insertion alleles leading to a diverse set of related molecules

over time (Figure S3). It is also possible that the conversion

pattern arose before the formation of the structural variant and

that the pattern we observe in sequenced variants is merely

incidental or the result of a series of mismatch repair processes

prior to variant formation. Nevertheless, the observed switch

pattern is reminiscent of patterns of toggling previously

observed at some LINE insertions (Gilbert et al., 2005, 2002;

Symer et al., 2002) and suggests a mechanism of serial strand

invasion/repair during the rearrangement process.
Comparison with Other Genome-wide Studies
and Ascertainment Biases
In this study we focused on systematically characterizing large

structural variants at the single base-pair level. In order to identify

events that may have been missed by the fosmid ESP approach,

we compared our set of structural variants to other studies that

have discovered and genotyped copy-number variants in the

same DNA samples. We focused on five individuals analyzed

by fosmid end sequencing (Kidd et al., 2008), Affymetrix 6.0 mi-

croarray (McCarroll et al., 2008b), and high-density oligonucleo-

tide arrayCGH (Conrad et al., 2010b). A comparison of the three

studies shows that 11%–65% of discovered variants are unique

to a single study and corresponding experimental platform (Fig-

ure 6). The limited overlap should not be surprising since each

approach preferentially identifies a subset of the total collection

of genomic variation. For example, the fosmid ESP mapping

approach can detect insertions of sequence not represented in

the genome assembly (Kidd et al., 2008, 2010), as well as

balanced events such as inversions (not depicted in Figure 6),

whereas array approaches can more readily detect copy-

number variation caused by large duplications.

Differences in ascertainment extend to the resolution of break-

point sequences. The sequenced variants described in this
Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc. 841



Table 1. Summary of Events and Inferred Mechanisms

Event Classification Insertions and Deletions Inversions Potential Mechanisms

Retroelements

L1 198 (20.3%) NA Retrotransposition

HERV-K 2 (0.2%) NA Retrotransposition

VNTR 30 (3.1%) Minisatellite, NAHR

Class I (no additional sequence at breakpoint) 590 (60.6%) 74 (91.3%)

0 or 1 matching nucleotides 82 (8.4%) 10 (12.3%) NHEJ

2–20 matching nucleotides 289 (29.7%) 8 (9.9%) NHEJ, MMEJ

21–100 matching nucleotides 28 (2.9%) 0 NAHR, other

101–199 matching nucleotides 14 (1.4%) 0 NAHR, other

R200 (NAHR) 177 (18.2%) 56 (69.1%) NAHR

Class 2 (additional sequence at breakpoint) 153 (15.7%) 7 (8.6%)

1–10 additional nucleotides 76 (7.8%) 2 (2.5%) NHEJ

>10 additional nucleotides 77 (7.9%) 5 (6.2%) NHEJ, FoSTeS,template switching

Total 973 81

The number of events that fall into each breakpoint class is given. The following abbreviations are used: NHEJ, nonhomologous end joining; FoSTeS,

fork stalling and template switching. See also Table S6.
manuscript include 237 of the regions targeted for array capture

and 454 sequencing (Conrad et al., 2010a). Seventy of these

targeted events were successfully resolved by breakpoint

array-capture experiments (Table S6), with none of the events

containing extended breakpoint homology successfully resolved

by next-generation sequencing.

We also reassessed regions discovered by other studies that

were missed by the fosmid ESP approach. With the standard

fosmid analysis criteria (two ormore discordant cloneswith suffi-

cient quality) (Tuzun et al., 2005), an overlapping deletion site is

only identified for 53% (631/1193) of the corresponding deletion

genotypes reported by Conrad et al. (2010b). The intersection

rate increases to 75% (900/1193 sample-level genotypes) if indi-

vidual deletion clones are considered with reduced quality

thresholds. This suggests that much of the variation missed by

the fosmid ESP approach is a result of random fluctuations in

the level of clone coverage and the quality of individual

sequencing reads (Cooper et al., 2008).

Experimental approaches to discover structural variation can

have reduced sensitivity in regions of segmental duplication

because of difficulty in uniquely mapping reads or designing

array probes (Cooper et al., 2008; Kidd et al., 2008; Tuzun

et al., 2005). We compared the validated structural variants

from Kidd et al. (2008) with those found by read-depth

approaches (Alkan et al., 2009). Alkan et al. (2009) identified

113 genes that differ in copy number among three individuals.

Only 38% of the genes greater than 5 kb (26/69) and identified

as copy-number variable by read-depth intersect with a struc-

tural variant (reported in Kidd et al.[2008]). This result indicates

that even the fosmid ESP approach has underascertained

copy-number variation associated with the most variable dupli-

cated sequences.

We identified 81 loci during our sequence analysis with

evidence for a nonreference structure for which we could not

unambiguously define the variant breakpoint (see Supplemental

Experimental Procedures). Of these 81 loci, 63 are associated
842 Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc.
with segmental duplications, including ten examples of tandem

duplications. We note that 23 of these duplication-containing

loci map near gaps in the National Center for Biotechnology

Information (NCBI) build36 genome assembly or to sequences

that have been assigned to a chromosome but not fully inte-

grated into the genome reference sequence. Duplication-medi-

ated copy-number variation remains underascertained in terms

of sequence-level resolution of variant haplotypes and muta-

tional mechanism analysis. If we adjust for these biases, we esti-

mate that the fosmid ESP approach has minimally missed at

least 106 structural variants associated with segmental

duplications.

DISCUSSION

We describe a clone resource from 17 human DNA samples that

provides 135-fold physical coverage of the human genome. The

corresponding catalog and clones can be used to further charac-

terize almost any segment of human euchromatin. We used this

resource to assess breakpoint characteristics of 1054 events.

The nature of our experimental design permitted us to discover

moreeventsmediatedby larger segmentsof homology,providing

a more complete assessment of human genetic variation. Of

particular interest are complex events whose sequence features

have been difficult to previously assess at a genome-wide level.

The high quality and length of the sequenced fosmids combined

with defined paralogous sequence events allowed us to quantify

alternating sequence matches suggestive of interlocus gene

conversion (Bayés et al., 2003; Lagerstedt et al., 1997; Reiter

et al., 1997; Visser et al., 2005).

Using this resource, we obtained the complete structure of

several alleles that have been associated with disease, including

a deletion variant upstream of the NEGR1 gene associated with

increased body mass index (Willer et al., 2009) (clone

AC210916), two deletion polymorphisms upstream of the

IRGM gene associated with Crohn’s disease (Barrett et al.,
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Figure 4. Variant Breakpoint Analyses

(A–D) Class I variants are defined as those without additional nucleotides at the breakpoint. (A) A histogram of the extent of matching breakpoint sequence (black)

and extended breakpoint homology (gray) is shown for 590 class I copy-number events. The red line corresponds to the expected distribution of breakpoint

match lengths found from 100 random permutations. Note that bin sizes are not equal. The increase in extended homology segments 250–299 bp in length corre-

sponds to variants having Alus at their breakpoints. (B) As in (A) zoomed in to show variants having a matching sequence of 20 bp or less. (C) Box plot of variant

size partitioned by length of extended breakpoint homology for 590 class I copy-number variants (red line: median; blue box: interquartile range; whiskers: within

1.53 interquartile range). (D) Breakpoint density map within a consensus Alu repeat sequence based on 269 copy-number variant events (blue box: RNA pol III

promoter; black boxes: AT-rich segment between the two monomers that make up the Alu element and the poly A tail; purple box: position of motif

(CCNCCNTNNCCNC) found in some Alus and associated with recombination hotspots [Myers et al., 2008]).

(E–G) Class II variants contain additional sequence across the breakpoint junction. (E) A class II variant containing a 55 nucleotide-long stretch of additional

sequence (in blue) that is not found at either breakpoint. (F) Histogram of the length of additional sequence found at variant breakpoints (black) and the length

of detected extended homology between breakpoint sequences (gray) for 153 class II copy-number variants. (G) Genomic location for class II unmatched

sequences (>20 bp) associated with deletions. The black lines connect the positions of a class II deletion variant (relative to the genome assembly) and the cor-

responding location where the additional sequence across the variant breakpoint can be found. The relationship for 31 deletion variants is depicted. One event

involves a match to unlocalized sequence on chromosome 1 (chr1_rand). See also Figure S2 and Tables S4 and S5.
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Figure 5. Breakpoint Assessment Using Paralogous

Sequence Variants

(A) Schematic comparison of the structures of the insertion

and deletion haplotypes of a putative NAHR variant. The blue

and red boxes represent homologous sequences present at

the breakpoints, which mediate the rearrangement. The blue

and red vertical lines identify paralogous sequence variants

that distinguish the 50 and 30 copy of the matching sequence.

Scanning along the deletion allele, which is missing the inter-

vening sequence, one observes single nucleotides specific

with the 50 breakpoint, followed by a stretch of sequence

that matches both, then sequences that match the 30 break-
point.

(B) Representation for three variants showing a classic NAHR

pattern. Each line represents the deletion allele corresponding

to the indicated variant. We note a single unexpected paralo-

gous sequence variant mismatch located 145 bp past the 30

breakpoint, which could correspond to a SNP, short gene

conversion, or alignment artifact because of the placement

of indels between 50 and 30 segments.

(C) Representation of four variants having breakpoints that

show a pattern of alternating sequences that match the 30

then 50 breakpoints.
(D) An extreme pattern of alternating matches that contains

182 switches spanning over a 7.9 kb interval.

(E) Rearrangements associated with gene conversion. See

also Figure S3.
2008; Bekpen et al., 2009; McCarroll et al., 2008a) (clone

AC207974), and the deletion of the LCE3B and LCE3C genes.

In total, we conservatively estimate that 1.04% (11/1,054) of

the discovered variants are associated with disease. This yield

of disease-causing alleles rivals that found by genome-wide

association studies using SNPs, which have identified 779

genome-wide associations based on genotyping of at least

100,000 SNPs (http://www.genome.gov/multimedia/illustrations/

GWAS2010-3.pdf).

Although the functional significance ofmany of the other struc-

tural variants remains to be determined, the clone resource and

availability of the complete sequence of variant haplotypes will

facilitate future disease association through the rapid design of

assays to test for association with disease (Abe et al., 2009; An

et al., 2009; Kidd et al., 2007) or direct comparison with short

sequencing reads from next-generation sequence platforms

(Kidd et al., 2010; Lam et al., 2010).

We investigated this approach for 1024 non-VNTR sequenced

structural variants (Table S7) and found that 71% (726/1024) of
844 Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc.
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the variants are uniquely identifiable with a read

length of 36 bp and uniqueness threshold permit-

ting up to one substitution. This includes 32 inver-

sions—balanced events that are invisible to array-

based genotyping approaches. As read lengths

increase to 100 bp, we estimate that 88% (902/

1024) of these variants could be genotyped. The

construction of complete alternative haplotypes

then facilitates the use of read-pair information to

distinguish among distinct structural configurations

(Antonacci et al., 2010).

Although, short read technologies may miss

some of the breakpoint sequences, there are
any advantages to the application of short read technology

genome structural variation. This includes the detection of

ousands more events per individual genome, especially vari-

nts below the detection threshold of the fosmid ESP approach.

he dynamic range response and the sequence specificity of

ext-generation sequencing allow absolute copy number and

e identity of duplicated genes to be accurately predicted.

ne of the strengths of this clone resource, however, is that it

ermits the iterative assessment of predicted variants. Clones

ay be retrieved corresponding to structural variants discovered

y other methods applied to these 17 individuals, including

ewly developed approaches such as methods for identifying

ansposon insertions (Huang et al., 2010; Witherspoon et al.,

010). Sequencing would provide complete information

garding the structure of additional events, thereby providing

resource set of sequenced variant haplotypes. The availability

f the underlying clones and potential location of the variant

ithin a specific DNA sample provides an approach for more

lly exploring the genetic architecture andmutational properties
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Figure 6. Comparison of Events Detected from Three Studies

Only variants estimated to be >5 kb are included. The Kidd et al. (2008) set

includes sites of insertion or deletion in one of the five samples relative to

the genome assembly; the Conrad et al. (2010b) set includes gains and losses

in at least one of the five samples relative to a reference arrayCGH sample; and

the McCarroll et al. (2008b) set includes CNVs that were successfully geno-

typed on the Affymetrix 6.0 platform and are variable among the five included

samples. Prior to comparison, the variant sets within each study were merged

into a single, nonredundant interval set, and any overlap among regions

between studies was sufficient regardless of which sample a variant was

detected in.
of these regions. Thus, we predict that such a resource will be

a valuable complement for understanding the true complexity

of human genetic variation as human genomes become routinely

sequenced using short read sequencing technology.
EXPERIMENTAL PROCEDURES

Identifying and Sequencing Variant Clones

Sites of structural variation, relative to the reference genome assembly, were

identified through fosmid ESP mapping. Briefly, genomic DNA was obtained

from transformed lymphoblastoid cell lines (available from the Coriell Cell

Repository) and approximately 1 million 40 kb fragments from each individual

were cloned into fosmid vectors. Paired end sequences were obtained from

both ends of each fragment with standard capillary sequencing. The resulting

ESPsweremapped onto the reference assembly to identify clusters of multiple

clones from a single individual showing the same type of discordancy (Tuzun

et al., 2005). We previously identified 1695 structural variants that have been

experimentally validated (Kidd et al., 2008). In this manuscript, we focus on

1054 events for which complete, finished clone sequence is available. High-

quality finished sequence was obtained for all fosmid inserts with capillary-

based shotgun sequencing and assembly with the procedures established

for sequencing clones as part of theHumanGenomeProject. Somesequenced

clones contain gaps in simple sequence repeats that are not related to the

detected structural variants. For one individual, NA18956, additional clones

were selected with a relaxed threshold of two standard deviations larger or

smaller than the observed mean insert. In some cases, multiple clones were

sequenced for a single event, whereas in other loci a single clone sequence

appeared to containmultiple distinct variants relative to the genome reference.

Identifying Variant Breakpoints

Sequences of individual fosmid inserts were initially compared to the NCBI

build36 (UCSC hg18) genome reference assembly with the programmiropeats
(Parsons, 1995) with a match threshold of �s 400. Images summarizing these

comparisons that included annotations of the repeat content, predicted and

observed segmental duplications (with DupMasker [Jiang et al., 2008]), and

RefSeq exons were prepared and examined to identify clones harboring

a structural difference relative to the build36. Clones that mapped to unas-

signed or random parts of the reference genome or that do not contain an

entire event (such as clones that contain one edge of a tandem duplication)

were omitted from analysis. Approximate variant breakpoints were determined

utilizing the context provided by long stretches of contiguous matching

sequence. In many cases, the pattern of common repeats or segmental dupli-

cations was a useful aid in this assessment.

For each variant, three sequenceswere extracted and aligned. In the case of

a deletion, two sequences at the variant boundaries are extracted from the

genome assembly and one sequence (termed the deletion junction sequence)

is extracted from the clone. For insertions, the junction sequence is extracted

from the genome assembly and two sequences corresponding to the variant

boundaries in the fosmid clone are extracted. For inversions, a single break-

point is directly captured in the sequenced clone. However, the position of

the other breakpoint can be inferred based on a comparison with the genome

assembly. Thus, for inversions, two sequences are extracted from the

assembly at the edges of the inferred inversion and the third sequence is

extracted from the clone. For inversion analysis, one of the chromosome-

derived segments is reverse-complimented prior to alignment.

An alignment is then constructed from the extracted breakpoint segments

(Kidd et al., 2010). First, an optimal global alignment is computed between

the junction fragment and each of the other two fragments with the program

needle with default parameters (Rice et al., 2000). These alignments are then

merged to yield a single, three-sequence alignment. From this alignment,

the innermost positions that can be confidently assigned to be before and after

the structural variant are identified. The resulting positions are used to define

membership as a class I or class II variant and correspond to the breakpoint

match length depicted in Figure 4. Extended breakpoint homology was deter-

mined with both cross_match (http://www.phrap.org/, -minmatch 4 -max-

match 4 -minscore 20 -masklevel 100 -raw -word_raw) without complexity-

adjusted scoring (Chiaromonte et al., 2002) and bl2seq (-W 7 -g F -F F -S 1

-e 20) to identify the longest extent and identity of additional matching

sequence (termed extended breakpoint homology) that included the two

breakpoints. For putative NAHR events, we additionally determined the

longest stretch of 100% perfect identity as well as a parsimonious matching

metric to account for mutations after the time of variant formation (Figure S2).

VNTR and Retroelement Analysis

Events associated with tandem repeats were characterized with the output

from miropeats (Parsons, 1995), tandem repeats finder (Benson, 1999),

DupMasker (Jiang et al., 2008), and RepeatMasker (Smit et al., 1996–2004).

Potential L1 insertions were characterized with both the TSDfinder program

(Szak et al., 2002) and the results of the breakpoint identification and charac-

terization process.

Genotyping Structural Variants with Diagnostic K-mers

Diagnostic k-mers were identified for each variant (Table S7) by extracting

overlapping k-mers of the indicated size across each sequenced breakpoint.

K-mers were then searched against the build36 genome sequence and a set

of sequenced fosmids with mrsFAST (http://mrfast.sourceforge.net/). To be

considered diagnostic, a k-mer must be unique (within the given edit distance

threshold) to the allele variant from which it was derived (Kidd et al., 2010).
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Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum.

Genet. 73, 131–151.

Beck, C.R., Collier, P., Macfarlane, C., Malig, M., Kidd, J.M., Eichler, E.E.,

Badge, R.M., and Moran, J.V. (2010). LINE-1 retrotransposition activity in

human genomes. Cell 141, 1159–1170.

Bekpen, C., Marques-Bonet, T., Alkan, C., Antonacci, F., Leogrande, M.B.,

Ventura, M., Kidd, J.M., Siswara, P., Howard, J.C., and Eichler, E.E. (2009).

Death and resurrection of the human IRGM gene. PLoS Genet. 5, e1000403.

Bennett, E.A., Keller, H., Mills, R.E., Schmidt, S., Moran, J.V., Weichenrieder,

O., and Devine, S.E. (2008). Active Alu retrotransposons in the human genome.

Genome Res. 18, 1875–1883.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA

sequences. Nucleic Acids Res. 27, 573–580.

Buard, J., Shone, A.C., and Jeffreys, A.J. (2000). Meiotic recombination and

flanking marker exchange at the highly unstable human minisatellite CEB1

(D2S90). Am. J. Hum. Genet. 67, 333–344.

Chiaromonte, F., Yap, V.B., and Miller, W. (2002). Scoring pairwise genomic

sequence alignments. Pacific Symposium on Biocomputing 7, 115–126.
846 Cell 143, 837–847, November 24, 2010 ª2010 Elsevier Inc.
Conrad, D.F., Bird, C., Blackburne, B., Lindsay, S., Mamanova, L., Lee, C.,

Turner, D.J., and Hurles, M.E. (2010a). Mutation spectrum revealed by break-

point sequencing of human germline CNVs. Nat. Genet. 42, 385–391.

Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts,

J., Andrews, T.D., Barnes, C., Campbell, P., et al; Wellcome Trust Case Control

Consortium. (2010b). Origins and functional impact of copy number variation in

the human genome. Nature 464, 704–712.

Cooper, G.M., Zerr, T., Kidd, J.M., Eichler, E.E., and Nickerson, D.A. (2008).

Systematic assessment of copy number variant detection via genome-wide

SNP genotyping. Nat. Genet. 40, 1199–1203.

Cordaux, R., and Batzer, M.A. (2009). The impact of retrotransposons on

human genome evolution. Nat. Rev. Genet. 10, 691–703.

Dewannieux, M., Harper, F., Richaud, A., Letzelter, C., Ribet, D., Pierron, G.,

and Heidmann, T. (2006). Identification of an infectious progenitor for the

multiple-copy HERV-K human endogenous retroelements. Genome Res. 16,

1548–1556.

Eichler, E.E., Nickerson, D.A., Altshuler, D., Bowcock, A.M., Brooks, L.D.,

Carter, N.P., Church, D.M., Felsenfeld, A., Guyer, M., Lee, C., et al; Human

Genome Structural Variation Working Group. (2007). Completing the map of

human genetic variation. Nature 447, 161–165.

Freeman, J.L., Perry, G.H., Feuk, L., Redon, R., McCarroll, S.A., Altshuler,

D.M., Aburatani, H., Jones, K.W., Tyler-Smith, C., Hurles, M.E., et al. (2006).

Copy number variation: new insights in genome diversity. Genome Res. 16,

949–961.

Gilbert, N., Lutz-Prigge, S., andMoran, J.V. (2002). Genomic deletions created

upon LINE-1 retrotransposition. Cell 110, 315–325.

Gilbert, N., Lutz, S., Morrish, T.A., and Moran, J.V. (2005). Multiple fates of L1

retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25,

7780–7795.

Goodier, J.L., Ostertag, E.M., and Kazazian, H.H., Jr. (2000). Transduction of

30-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet.

9, 653–657.

Han, K., Lee, J., Meyer, T.J., Wang, J., Sen, S.K., Srikanta, D., Liang, P., and

Batzer, M.A. (2007). Alu recombination-mediated structural deletions in the

chimpanzee genome. PLoS Genet. 3, 1939–1949.

Hastings, P.J., Ira, G., and Lupski, J.R. (2009). A microhomology-mediated

break-induced replication model for the origin of human copy number varia-

tion. PLoS Genet. 5, e1000327.

Huang, C.R., Schneider, A.M., Lu, Y., Niranjan, T., Shen, P., Robinson, M.A.,

Steranka, J.P., Valle, D., Civin, C.I., Wang, T., et al. (2010). Mobile interspersed

repeats are major structural variants in the human genome. Cell 141, 1171–

1182.

Istrail, S., Sutton, G.G., Florea, L., Halpern, A.L., Mobarry, C.M., Lippert, R.,

Walenz, B., Shatkay, H., Dew, I., Miller, J.R., et al. (2004). Whole-genome

shotgun assembly and comparison of human genome assemblies. Proc.

Natl. Acad. Sci. USA 101, 1916–1921.

Itsara, A., Cooper, G.M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss,

R.M., Myers, R.M., Ridker, P.M., Chasman, D.I., et al. (2009). Population anal-

ysis of large copy number variants and hotspots of human genetic disease.

Am. J. Hum. Genet. 84, 148–161.

Jeffreys, A.J., Tamaki, K., MacLeod, A., Monckton, D.G., Neil, D.L., and

Armour, J.A.L. (1994). Complex gene conversion events in germline mutation

at human minisatellites. Nat. Genet. 6, 136–145.

Jiang, Z., Hubley, R., Smit, A., and Eichler, E.E. (2008). DupMasker: a tool for

annotating primate segmental duplications. Genome Res. 18, 1362–1368.

Kidd, J.M., Newman, T.L., Tuzun, E., Kaul, R., and Eichler, E.E. (2007). Popu-

lation stratification of a common APOBEC gene deletion polymorphism. PLoS

Genet. 3, e63.

Kidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, N., Graves,

T., Hansen, N., Teague, B., Alkan, C., Antonacci, F., et al. (2008). Mapping and

sequencing of structural variation from eight human genomes. Nature 453,

56–64.



Kidd, J.M., Sampas, N., Antonacci, F., Graves, T., Fulton, R., Hayden, H.S., Al-

kan, C., Malig, M., Ventura, M., Giannuzzi, G., et al. (2010). Characterization of

missing human genome sequences and copy-number polymorphic insertions.

Nat. Methods 7, 365–371.

Korbel, J.O., Urban, A.E., Affourtit, J.P., Godwin, B., Grubert, F., Simons, J.F.,

Kim, P.M., Palejev, D., Carriero, N.J., Du, L., et al. (2007). Paired-end mapping

reveals extensive structural variation in the human genome. Science 318,

420–426.

Lagerstedt, K., Karsten, S.L., Carlberg, B.M., Kleijer, W.J., Tönnesen, T., Pet-

tersson, U., and Bondeson, M.L. (1997). Double-strand breaks may initiate the

inversion mutation causing the Hunter syndrome. Hum. Mol. Genet. 6,

627–633.
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