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INTRODUCTION: Understanding the genetic
differences that make us human is a long-
standing endeavor that requires the compre-
hensive discovery and comparison of all forms
of genetic variation within great ape lineages.

RATIONALE: The varied quality and complete-
ness of ape genomes have limited comparative
genetic analyses. To eliminate this contiguity
and quality disparity, we generated human and
nonhuman ape genome assemblies without the
guidance of the human reference genome. These
new genome assemblies enable both coarse and
fine-scale comparative genomic studies.

RESULTS: We sequenced and assembled two
human, one chimpanzee, and one orangutan
genome using high-coverage (>65x) single-
molecule, real-time (SMRT) long-read sequenc-
ing technology. We also sequenced more than
500,000 full-length complementary DNA sam-
ples from induced pluripotent stem cells to
construct de novo gene models, increasing our
knowledge of transcript diversity in each ape
lineage. The new nonhuman ape genome as-
semblies improve gene annotation and genomic
contiguity (by 30- to 500-fold), resulting in the
identification of larger synteny blocks (by 22- to
74-fold) when compared to earlier assemblies.
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SMRT assemblies and SV analyses. (Top) Contiguity of the de novo assemblies. (Bottom, left to
right) For each ape, SV detection was done against the human reference genome as represented by
a dot plot of an inversion). Human-specific SVs, identified by comparing ape SVs and population
genotyping (0/0, homozygous reference), were compared to single-cell gene expression differences
[range: low (dark blue) to high (dark red)] in primary and organoid tissues. Each heatmap row is
a gene that intersects an insertion or deletion (green), duplication (cyan), or inversion (light green).
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Including the latest gorilla genome, we now
estimate that 83% of the ape genomes can be
compared in a multiple sequence alignment.
We observe a modest increase in single-
nucleotide variant divergence compared to
previous genome analyses and estimate that
36% of human autosomal DNA is subject to
incomplete lineage sorting. We fully resolve
most common repeat differences, including
full-length retrotransposons such as the African
ape-specific endogenous retroviral element
PtERVI1. We show that the spread of this ele-
ment independently in the gorilla and chim-
panzee lineage likely resulted from a founder
element that failed to segregate to the human
lineage because of incomplete lineage sorting.
The improved sequence contiguity allowed a
more systematic discovery of structural varia-
tion (>50 base pairs in length) (see the figure).
We detected 614,186 ape deletions, insertions,
and inversions, assigning each to specific ape
lineages. Unbiased genome
scaffolding (optical maps,
Read the full article  Pacterial artificial chro-
at http://dx.doi. mosome sequencing, and
org/10.1126/ fluorescence in situ hy-
science.aar6343 bridization) led to the dis-
covery of large, unknown
complex inversions in gene-rich regions. Of the
17,789 fixed human-specific insertions and de-
letions, we focus on those of potential func-
tional effect. We identify 90 that are predicted
to disrupt genes and an additional 643 that
likely affect regulatory regions, more than
doubling the number of human-specific dele-
tions that remove regulatory sequence in the
human lineage. We investigate the association
of structural variation with changes in human-
chimpanzee brain gene expression using cerebral
organoids as a proxy for expression differences.
Genes associated with fixed structural variants
(SVs) show a pattern of down-regulation in
human radial glial neural progenitors, whereas
human-specific duplications are associated with
up-regulated genes in human radial glial and
excitatory neurons (see the figure).

CONCLUSION: The improved ape genome
assemblies provide the most comprehensive
view to date of intermediate-size structural
variation and highlight several dozen genes
associated with structural variation and brain-
expression differences between humans and
chimpanzees. These new references will provide
a stepping stone for the completion of great ape
genomes at a quality commensurate with the
human reference genome and, ultimately, an
understanding of the genetic differences that
make us human.
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Genetic studies of human evolution require high-quality contiguous ape genome
assemblies that are not guided by the human reference. We coupled long-read
sequence assembly and full-length complementary DNA sequencing with a multiplatform
scaffolding approach to produce ab initio chimpanzee and orangutan genome
assemblies. By comparing these with two long-read de novo human genome assemblies
and a gorilla genome assembly, we characterized lineage-specific and shared great

ape genetic variation ranging from single— to mega—base pair-sized variants. We
identified ~17,000 fixed human-specific structural variants identifying genic and
putative regulatory changes that have emerged in humans since divergence from
nonhuman apes. Interestingly, these variants are enriched near genes that are
down-regulated in human compared to chimpanzee cerebral organoids, particularly in
cells analogous to radial glial neural progenitors.

cientists have long been interested in the
functional genetic differences that distin-
guish humans from other ape species (7).
Human and chimpanzee protein-encoding
changes and structural differences in reg-
ulatory DNA or in the copy number of gene
families have all been implicated in adaptation
(2, 3). Indeed, several potentially high-impact reg-
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ulatory changes (4, 5) and human-specific genes
(6-9) that are important in synapse density, neu-
ronal count, and other morphological differences
have been identified. Most of these genetic differ-
ences, however, were not initially recognized upon
comparison of human and ape genomes because
the genetic changes mapped to regions of rapid
genomic structural change that were not resolved
in draft genome assemblies.

Despite recent efforts to sequence and assem-
ble ape genomes (10-12), our understanding of
structural differences, and particularly those spe-
cific to the human lineage, remains far from com-
plete. There are two fundamental problems. First,
there is considerable heterogeneity in the conti-
guity of ape genome assemblies. The presence of
tens to hundreds of thousands of gaps in ape
genomes limits the proportion of the genome
that can be compared in a multispecies sequence
alignment. Therefore, a large fraction of human-
specific insertions and deletions, including those
that alter regulatory sequences, are not resolved.
Second, the higher-quality human genome as-
semblies have often been used to guide the final
stages of nonhuman genome projects, including
the order and orientation of sequence contigs
and, perhaps more importantly, the annotation
of genes. This bias has effectively “humanized”
other ape genome assemblies, minimizing po-

8 June 2018

tential structural and transcript differences ob-
served between the species. Using long-read,
long-range sequence and mapping technologies
(13-15), we generated new great ape genome as-
semblies, along with full-length cDNA annota-
tion, without guidance from the human genome.
We also generated and analyzed an African ge-
nome and an effectively haploid human genome
complement to distinguish fixed differences in
the human ancestral lineage and to further mit-
igate human genome reference biases.

Results
Genome assembly

‘We sequenced two human, one chimpanzee, and
one orangutan genome to high depth (>65-fold
coverage) using single-molecule, real-time (SMRT;
PacBio) sequence data and assembled each ab
initio using the same underlying assembly algo-
rithm (Table 1) (6). For each species, we gener-
ated assemblies ranging from 2.9 to 3.1 giga-base
pairs (Gbp) in size, where most of the euchromatic
DNA mapped to <1000 large contigs (Table 1). We
error-corrected sequence contigs with Quiver (17)
and Pilon (18), followed by a procedure that re-
duced the remaining 1- to 2-bp indels (insertions
or deletions) specifically in regions with clustered
single-nucleotide variants (SNVs) (16). We next
scaffolded the chimpanzee and orangutan ge-
nomes without guidance from the human reference
genome. In total, 93% (2.79 Gbp, excluding chro-
mosome Y) of the chimpanzee-assembled bases
and 92.7% (2.82 Gbp) of the orangutan-assembled
bases were incorporated into chromosomal-level
scaffolds (Table 1). We confirmed most large-scale
chromosomal inversions among the great apes
(19), some of which were absent from previous
assemblies.

Sequence accuracy and quality assessment

More than 96% of our assembled sequence was
concordant by length and orientation by differ-
ent metrics (Table 1) (16). We conservatively
estimate that these assemblies have improved
contiguity for the chimpanzee and orangutan
genomes by 32- and 533-fold, respectively (Fig. 1,
A and B). Consistent with the gorilla genome
(20), the application of long-read sequence data
closed most of the genome gaps in earlier assem-
blies. The extent of the change varied, however,
depending on the prior level of finishing. In the
case of the chimpanzee, 52% of the remaining
27,797 gaps were closed. We added 6.9 Mbp of
new sequence and removed at least 27.2 Mbp
of duplicated or extraneous sequence, possibly
artifacts of scaffolding and gap filling (21). In
the case of the orangutan, we added 54.5 Mbp
of sequence while removing 4.2 Mbp, closing
an estimated 96.8% (305,069/315,124) of the
remaining euchromatic gaps. We determined
the sequence contigs to be highly accurate at
the base-pair level (>99.9%) on the basis of
comparisons of each genome to Sanger end-
sequence data, completely sequenced clone in-
serts, and Illumina whole-genome sequencing
data generated from the same source individ-
uals (Table 1) (76).
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Gene annotation

Nonhuman primate (NHP) genome assemblies
have typically relied almost exclusively on the
human reference to define gene models (table S1).
To provide a less biased source of gene annotation,
we generated long-read transcriptome sequencing
data to produce an average of 658,546 full-length
nonchimeric (FLNC) transcripts from induced
pluripotent stem cells (iPSCs) derived from each
of the three nonhuman ape lineages (16). We
selected iPSC material to maximize transcript
diversity and enrich for early developmental
genes. We next annotated the genomes of chim-
panzee, gorilla, and orangutan, using FLNC tran-
scripts along with short-read RNA-sequencing
(RNA-seq) to guide gene and previously unde-
scribed isoform predictions (22).

The number of genes and most gene models
(coding and noncoding, including long noncod-
ing RNA) are consistent among the different ape
genomes (Table 2). However, we saw differential
mapping of FLNC transcripts that favored the
SMRT assemblies, especially in repeat-rich tran-
scripts (Fig. 1C). Concordantly, human transcript
models (GENCODE V27) aligned better to SMRT
assemblies (Fig. 1D). For chimpanzee, 17,744
human protein-coding transcript models showed
an increase of mapping coverage, which aver-
aged 5.6%. This pattern was more pronounced
in orangutan, where 28,033 of the 91,578 protein-
coding transcript annotations showed an aver-
age improvement of 5.7% in mapping coverage.
Overall, human protein-coding transcript models
mapped to chimpanzee and orangutan SMRT
assemblies with 99.1 and 98.8% average cover-
age, respectively—1.5 and 2.5% improvements.
These improvements stemmed largely from gap
closures, which rescue missing exons and re-

cover more full-length transcripts, including un-
translated regions (UTRs).

We identified a small fraction (~1.5%) of pu-
tative protein-encoding genes present among
NHPs that were absent in human annotations
(GENCODE V27). In addition, a larger fraction
(3.1 to 3.8%) of transcripts exhibited RNA-seq-
or isoform sequencing (Iso-Seq)-supported splice
junctions present in NHPs but not in human
transcripts. Finally, we evaluated the NHP an-
notations, identifying full exons that affect coding
sequences, which have been gained or lost be-
tween humans and other great apes (table S1).

Comparative sequence analyses

We constructed a five-way genome-wide multi-
ple sequence alignment (MSA) of the ab initio
assembled genomes (Table 1) by identifying syn-
tenic (20 kbp) blocks against the human refer-
ence genome. In total, 83% of the ape genome
was represented in MSAs. This allowed us to
identify a comprehensive set of SNVs, indels, and
structural variants (SVs); calculate divergence;
and perform genome-wide phylogenetic analy-
ses (Fig. 2). We observed a modest elevation in
SNV divergence compared to previous genome
comparisons (Fig. 2A and table S2) and estimated
that 35.6% of the human genome is subject to
incomplete lineage sorting among the African
apes (Fig. 2B). Human and chimpanzee branch
lengths are remarkably similar within coding re-
gions (0.026% difference in branch length); how-
ever, we observed a 3.5% slowdown of the human
mutation rate in noncoding regions (23, 24)
(Fig. 2C). Human and chimpanzee branch lengths
were considerably shorter compared to the other
apes, consistent with the hominid slowdown
hypothesis (25).

Repeat comparisons

Although the general repeat content of primate
genomes has been well established (16), the longest
and most complex repetitive regions have been
more difficult to assay. Because long-read se-
quence data resolve most microsatellites and
high-copy interspersed repeats (20, 26), we focused
on comparative analysis of short tandem repeats
(STRs) and endogenous retrovirus elements.
Previous studies have suggested differential
expansion of STR sequences between humans
and other NHPs (27, 28). However, these studies
suffer from ascertainment bias owing to method-
ological differences in genome sequencing or
STR enrichment, differential access to GC-rich
regions, and discovery bias in the human reference
genome.

We analyzed each genome independently and,
after clustering STRs that mapped within 25 bp,
identified a consistent number of STRs per ape
genome (344,354 to 358,622 STR regions; table
S3). Because STRs often map within or adjacent
to other classes of repetitive DNA, we restricted
our analysis to the subset where orthology and
STR lengths were clearly defined (12,694 to
16,138 STRs; fig. S28 and table S4). The average
length difference between human and chimpanzee
STR loci is 0.02 bp, with only a slight difference
in distributions [P = 0.015, Kolmogorov-Smirnov
(KS) test; table S5 and Fig. 2D]. Other ape com-
parisons show a modest increase in overall STR
length (for example, a 1.2-bp average increase in
gorilla versus chimpanzee; P = 8.76 x 102, KS
test). We found no significant difference be-
tween human and chimpanzee STR length in
coding sequences (n = 2199, P = 0.28, KS test) or
UTRs of genes (n = 2794, P = 0.16, KS test),
although we identified 4920 loci preferentially

Table 1. Assembly statistics for the great ape genomes. QV, quality value score; AGP, a golden path assembly; ND, no data.

Ape assembly

Statistic

CHM13_HSAv1* YRI_HSAv1 Clint_PTRv1 GSMRT3.2 Susie_PABv1
(human) (human) (chimpanzee) (gorilla) (orangutan)

Estimated deptht 72 116 117 86.3 94.9
Subread length N50 (kbp)t 16.2 134 174 18.6 16.6
Contigs, initial and final counts§ 1,923 and 1,916 3,645 and 3,642 4,912 and 5,037 15,997 5,771 and 5,813
Assembly size (Gbp) 2.88 2.88 2.99 3.08 3.04
Contig length >3 Mbp (Gbp) 2.65 2.27 245 242 248
Initial and final contig N50 lengths (Mbp)§ 29.26 6.60 12.76 and 12.42 10.02 11.27 and 11.07
Scaffold N50 (Mbp) 83.02 ND 5Ll ND 98.47
Longest contig (Mbp)ll 81 27 80 36 58
BAC concordance (%) 9711 9773 99.13 96.85 96.75
Sequence accuracy (QV) 36 31 331038 30to 38 2810 33
Iso-Seq transcripts 710,974 ND 565,691 881,801 528,145
Contigs in AGP ND ND 685 794 544
Contigs aligned to GRCN38Y 407 (2.8) 1167 (2.8) 656 (2.8) 907 (2.8) 504 (2.8)

(length in Gbp)

*Haploid genome assembly derived from a complete hydatidiform mole.

others) estimated genome size.

FN50 subread lengths of raw input data.

TEstimated coverage in raw SMRT subreads based on 3.5-Gbp (gorilla) or 3.2-Gbp (all

§lnitial and final contigs before and after resolving chimeras by optical map

comparison; note that optical maps are not available for each assembly. These stats do not consider the National Center for Biotechnology Information (NCBI)

minimum-contig length filter.

Kronenberg et al., Science 360, eaar6343 (2018) 8 June 2018

lILongest contig without gross assembly error.
greater than two SDs above the mean, or no coverage were excluded.

9 Contigs with less than 95% of sequence aligning to GRCh38, depth-of-coverage
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expanded in the human lineage (table S6), includ-
ing loci associated with genomic instability and
disease.

Endogenous retroelements are among the
longest retrotransposons within mammalian
genomes (up to 10 kbp) and are frequently mis-
assembled because of their copy number and
sequence identity. The chimpanzee and gorilla
lineages carry an endogenous retrovirus, PtERV1,
that is absent in orangutan and human genomes
(29, 30). None of the PtERV1 integrations between

suggesting either that independent retroviral in-
tegrations occurred in these two lineages (29, 30)
or that humans and orangutans contain extrinsic
factors that differentially restricted propagation
(31). A high-quality map of 540 PtERV1 elements
[both full-length and solo long terminal repeat
(LTR)] in chimpanzee and gorilla (table S7) (16)
shows that their integration events are non-
orthologous (99.8%), biased against genes, and
integrated in the antisense orientation (figs. S30
and S31), consistent with the action of purifying

Using the more complete ape genomes, we
identified only one chimpanzee-gorilla ortho-
logous PtERV1 element, not present in modern
humans, that was lost through incomplete lin-
eage sorting and integrated roughly 4.7 million
years ago [95% highest posterior density: 1.9,
7.2 million years ago; Fig. 2E]. We named this
element the “source PtERV1,” as it was present
in the common ancestor of all African apes
and was likely the progenitor for independent
expansions to nonorthologous loci in the chim-

chimpanzees and gorillas appear orthologous, selection.

panzee and gorilla genomes. The source PtERV1
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Fig. 1. Assembly and annotation of great ape genomes. (A) Comparison of
genome sequence contiguity. Chromosome 3 contiguity is compared
among the great ape genome assemblies by alignment to human reference
genome sequence GRCh38. Contigs larger than (blue) and smaller than
(green) 3 Mbp are compared with the position of SDs (SDs >50 kbp in size,
orange) shown in the reference ideogram. (B) Scatterplot of syntenic-
alignment block lengths (x axis) against GRCh38 versus FALCON assembly
contig N50 length (y axis) of the great ape assemblies. The SMRT assemblies
are Clint_PTRv1, Susie_PABv1, GSMRT3.2, CHM13_HSAv1, and YRI_HSAvVL.
The previous reference genomes are ponAbe2 (GCF_000001545.3),
gorGor4 (GCA_000151905.3), panTro2 (GCF_000001515.2), panTro3
(GCA_000001515.3), panTro4 (GCA_000001515.4), and panTro5
(GCA_000001515.5). (C) Full-length assembled transcripts mapped to
Clint_PTRv1 and panTro3. Each point denotes the number of bases per

Kronenberg et al., Science 360, eaar6343 (2018) 8 June 2018

transcript matching the two assemblies. Repeat content is indicated by gray
shading of the points. Although most of the transcripts map well to both
assemblies (Pearson'’s correlation = 0.95), the subset of differentially
mapped transcripts (12,724; 60% of 21,118) aligns better to Clint_PTRv1l
(dots above the blue dashed line). The histogram inset shows the effect, per
transcript, with a total of 4.8 million more bases aligned to Clint_PTRv1. A,
difference in mapped bases per transcript. (D) Comparative Annotation
Toolkit was used to project transcripts from GRCh38 to Clint_PTRv1,
panTro3, Susie_PABv1, and ponAbe2. Alignment coverage and identity were
compared for orthologous transcripts found in each assembly pair. The
boxplots (left) summarize TransMap differences between the short-read and
SMRT assemblies, in terms of coverage and identity. The solid-shaded
portions of the bar plots (right) represent alignments, which had identical
coverage or identity in both assemblies.

3of11

8T0Z ‘g aunc uo /b1o-Bewasusios aoualos)/:dny woiy papeojumod


http://science.sciencemag.org/

RESEARCH | RESEARCH ARTICLE

was likely missed in earlier genomic studies of
draft genomes because the locus (sharing or-
thology with human chromosome 19) (16) is re-
peat rich and the integration site is an ancient
LTR element.

Structural variation analyses

We focused on identifying all SVs >50 bp in size
within ape genomes because these are the least
well-characterized differences and are more likely
to affect gene function than SNVs (32). SVs were
identified by mapping each assembly back to the
human reference genome, by using the two newly
assembled human genomes as a control for
reference effects and fixed human differences

Fig. 2. Ape genetic diversity
and lineage sorting. (A) SNV
divergence between each pri-

mate assembly and GRCh38

(CHM13_HSAv1 and YRI_HSAv1). We detected
614,186 ape deletions, insertions, and inversions,
with the number of SVs increasing as a function
of evolutionary distance from human (Fig. 3 and
Table 3). We confirmed 92% of 61 events (from
2.7 to 95 kbp in size) by bacterial artificial chro-
mosome (BAC) sequencing (table S8) (three of
the remaining events were polymorphic among
the great apes, suggesting a validation rate of
>95%). We assigned SVs as shared or lineage-
specific and genotyped each at the population
level, with a panel of 86 great apes (33) (Fig. 3A).
We identified 17,789 fixed human-specific struc-
tural variants (fhSVs), including 11,897 fixed

human-specific insertions (thINSs) and 5892 fixed

human-specific deletions (fhDELSs) (Fig. 3A and
table S9). Projecting these onto the human ge-
nome identifies potential hotspots of structural
variation (Fig. 3B).

We annotated fhSVs against chimpanzee and
human gene models (table S10). The Variant
Effect Predictor annotated the loss of 13 start
codons, 16 stop codons, and 61 exonic deletions
in the human lineage. By contrast, we estimate
that fhSVs disrupt 643 regulatory regions near
479 genes (for example, Fig. 3, C to E). Inter-
estingly, 139 of the thSVs intersect with regions
recently classified as super-enhancers (34). A
comparison with a previous analysis of human-
conserved deletions (hCONDELSs) from earlier
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between gorilla and chimpanzee. Bottom, a maximum likelihood phyloge-
netic tree (GTR+Gamma) built from 12,108 bp that supports ILS. Single-
nucleotide polymorphisms that support chimpanzee-gorilla sorting
(CG_HO) and the species tree (CH_GO) are shown as blue and red lines,
respectively. Branch lengths (substitutions per site) are shown above

the lineages, and internal nodes are labeled with bootstrap support
(proportion of replicates supporting split; 1000 replicates).
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versions of the human, chimpanzee, and ma-
caque genomes (5) confirms that 77% (451/583)
of the hCONDELSs intersect the fhDELSs, with
the remainder corresponding primarily to poly-
morphic events in the human population (Fig. 3F).
We also predicted an additional 694 hCONDELSs
(table S11). A comparison of the SMRT gorilla as-
sembly to the human reference genome identified
an hCONDEL sequence previously reported as
affecting an androgen receptor (AR) enhancer
and associated with the loss of penile spines in
humans. In gorilla, this fhDEL involves a complex
SV, including an inversion, that may indepen-
dently influence AR gene expression in the gorilla
lineage (Fig. 3G) (35).

The spectrum of structural variation ranges
from simple insertion and deletion events to
larger events of increasing complexity (Fig. 4).
We identified 46 thSV deletions that putatively
disrupt the orthologous chimpanzee gene, of
which only six were previously reported (5). Seven
of the 46 thSV deletions can also be seen in the
transcript data (Iso-Seq). The largest previously
unidentified thSV deletion is 61,265 bp in size.
It contains almost all of the caspase recruitment
domain family member 8 (CARDS8) gene and
removes 13 exons that are transcribed into full-
length cDNA in the chimpanzee (Fig. 4A). We
also resolve a 65-kbp human-specific deletion
in FADSI and FADS2, genes involved in fatty
acid biosynthesis that have been the target
of positive selection (36) and potential dietary
changes in human evolution (37, 38). The de-
letion brings the promoters of FADSI and FADS2
(major isoform) in closer proximity and shortens
the first intron of the other two FADS2 isoforms
(Fig. 4B). The fhDEL might alter the relative
abundance of the FADS2 isoforms, as supported
by quantifying the number of splice junction-
containing reads specific to each isoform (16).

The relative abundance of the minor FADS2
isoforms is significantly increased in humans
(x*> = 165.65, df = 1, P < 2.2 x 107'5). These
minor isoforms differ only in their N terminus,
and, of the two, one (NM_001281502.1) shows
evidence of encoding a signal peptide (39), po-
tentially altering the protein’s subcellular location.
Because great ape diets range from herbivorous
to omnivorous, genic and structural changes re-
lated to diet metabolism may be of particular
relevance for the evolution of ape species.
We further discovered two thDELs in WEEI
(Fig. 4C) and CDC25C (Fig. 4D), two highly con-
served cell-cycle genes that act as ultrasensi-
tive antagonists during the interphase to mitotic
transition, Go/M (40). WEEI encodes a serine-
threonine protein kinase that delays mitosis by
phosphorylating cyclin-dependent kinase 1 (CDK1),
whereas CDC25C is a member of the phosphatase
gene family and encodes a protein that dephos-
phorylates CDK], triggering entry into mitosis.
Expression of these genes in radial glia is partic-
ularly interesting because additional cell divisions
are thought to have played a role in increasing
the number of cortical neurons in human evo-
lution (41). These cell-cycle regulators that display
different protein sequence or differential expres-
sion between chimpanzee and human are, thus,
candidates for future investigation to explain
neocortical expansion in the human lineage.
We also identified several larger, subcytogenetic
structural differences using optical (Bionano)
(42, 43) and BAC end-sequence mapping data
that were not detected or sequence-resolved in
previous genome assemblies. We validated large
inversions and more-complex SV events by in-
tegrating fluorescence in situ hybridization (FISH)
and large-insert clone sequencing at the break-
points (table S12). We identified 29 human-
chimpanzee-orangutan inversions (16 in chim-

Table 2. Great ape gene and transcript annotation summary. TPM, transcripts per million; NA,

not applicable to this genome; ND, no data.

Ape assembly

Statistic

Clint_PTRvl GSMRT3.2 Susie_PABv1
Genes 55,894 55,985 55,522
Orthologs in human 55,594 (95.4%) 55,570 (95.4*) 54,900 (94.2*)
Isoforms 192,725 192,734 190,716
Coding genes 19,153 19,311 19,043
Previously undescribed predicted genest 300 415 322
Coding isoforms 92,610 92,713 91,578
Trans_cnp't pre@chons with previously undescribed 2.809 2902 2333

splice junctionst

Transcripts with TPM > 0.1 (%) 66.3 67.3 50.6
Transcripts supported by Iso-Seq reads (%) 66.5 46.5 634
Previously unannotated exons identified 29 16 16
Putative exons gained in human 57 NA ND
Putative exons lost in human 13 NA NA

*Percent of GENCODE V27 represented.
V27 annotation.

TPreviously undescribed predicted genes based on GENCODE
FPreviously undescribed splice junctions compared to liftover annotation set from the

human reference genome, where splice junction is supported by NHP RNA-seq.
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panzee, 10 in orangutan, and 3 shared between
chimpanzee and orangutan) ranging from 100 kbp
to 5 Mbp in size, of which 55% (16/29) have not
been previously described (table S12 and Fig. 5)
(44~48). More than 93% of inversions are flanked
by large complex segmental-duplication (SD)
blocks, 38% of which show evidence of other
structural and copy-number variation at the
boundaries of the inversion (Fig. 5).
Interestingly, ~28% (8/29) of these ape-human
inversions are also polymorphic among humans
(49, 50), some in regions previously shown to be
hotspots of recurrent rearrangement and disease
(48, 51). Notably, these regions of genomic in-
stability also associate with expression differences
in radial glial and excitatory neurons between the
species. For example, among the 18 chimpanzee-
human inversions (table S12), we identified 18
differentially expressed brain genes between chim-
panzee and human (10 radial glia, 11 excitatory
neurons, and 3 common to both sets), of which
78% resided in SD regions. Three of these genes
(GLGI1, ST3GAL2, and EXOSC6) were significantly
up-regulated in human and associated with a
5-Mbp human-specific inversion on chromosome
1622 (Fig. 5D). ST3GAL2 encodes the main
mammalian sialyltransferase for GD1a and GT1b
ganglioside biosynthesis in the brain (52).

Radial glial neural progenitor expression
differences and human-specific SVs

Over the course of human evolution, human brain
volume has nearly tripled compared to that of
chimpanzees (53), likely owing to differential
expression of genes during brain development
(6, 8, 54). We investigated the association of
structural variation with changes in human-
chimpanzee brain gene expression using cere-
bral organoids as a proxy for brain expression
differences (55). Importantly, because great ape
brain tissue is largely inaccessible, these organ-
oid models provide a realistic window into devel-
opmental cell behavior and gene expression
differences between human and ape radial glia
and other early developmental cell types (56). We
processed several single-cell RNA-seq brain data
sets from primary human cortex and from human
and chimpanzee cortical organoids, focusing on
cortical excitatory neurons and radial glia (55-57).
Using the new chimpanzee SMRT assembly and
genome annotations increases the sensitivity of
gene expression analyses; our data set reveals
2625 additional chimpanzee genes with expres-
sion in the brain relative to previous studies (58).
After performing unsupervised clustering, we
analyzed 52,875 orthologous genes in 320 pri-
mary neurons, 176 human organoid cells, and
210 chimpanzee organoid cells expressing cor-
tical radial glia and excitatory neuron genes.
Our analysis identified 383 and 219 genes up-
regulated in human radial glial and excitatory
neurons, respectively, when compared to chim-
panzee (table S13) (16). Conversely, we defined a
set of 285 and 165 genes down-regulated in hu-
man radial glia and excitatory neurons (Fig. 6),
respectively; most of these changes have not
been identified previously (56, 59). Because SVs
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Fig. 3. Fixed structural variation and regulatory mutation. (A) The
great ape cladogram with fixed structural variation assigned to lineages

on the basis of assembly comparison, genotyping, and stratification (except for
inversions). The total amount of sequence is shown on the left side of the
branches, and the number of SVs is shown on the right for deletions (blue),
insertions (red), and inversions (magenta). Inversions were assigned to
branches on the basis of the comparison of our five assemblies because
genotyping was less reliable. The cladogram was rooted against Susie_PABV1,
meaning that the assignment of SVs to the orangutan or the common ancestor
of human, chimpanzee, and gorilla is arbitrary. (B) A map of fhSVs. The color
denotes the number of thSVs bases (kbp), within a 1-Mbp sliding window
(0.5-Mbp step). Each chromosome is labeled on the y axis. Key regions are
annotated with genes. (C) The cell specificity for a mouse enhancer element
(mm652, represented as a yellow box) that shares orthology in chimpanzee.
In human, an AluY element has been inserted directly into the mm652
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human reference genome is shown on the bottom (100-kbp window).
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Fig. 4. Examples of intragenic human-specific structural variation.
Shown are annotated MSAs between the human reference (GRCh38) and
NHPs generated with Multiple Alignment using Fast Fourier Transform or
visualized with Miropeats against sequenced large-insert primate clones.
Single-cell gene expression for select genes is highlighted across 4261
cells from developing human telencephalon plotted using t-distributed
stochastic neighbor embedding (tSNE) (66). (A) A 66.2-kbp intragenic
deletion of CARDS removes 13 putative coding exons in human. Iso-Seq
data from chimpanzee and human iPSCs identifies isoforms with and
without the deleted exons, respectively. L, long; S, short; H3K4Me3,
trimethylated histone H3 lysine 4. (B) A 62.5-kbp intergenic deletion of
FADSZ2 is found in humans, along with an altered isoform ratio: The relative
abundance of the long isoforms is increased in humans relative to
chimpanzee, as seen in the counts of junction-spanning short reads
specific to each isoform. Additionally, a previously undescribed, rare
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sequence content in the mRNA. The tSNE plot illustrates that WEEI is
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inverted SD blocks that vary with respect to copy number among
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by BAC end sequencing in chimpanzee (annotated green lines). The
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inversion lies a ~60-kbp duplication block that demonstrates lineage-
specific duplications in great apes. (D) Chromosome inversions,
originally detected by optical mapping and BAC end sequencing,
confirmed by metaphase analysis and interphase FISH experiments.
A human-specific inversion of the chromosome 16g22.1 region was
confirmed with orangutan clones CH276-89P20 (red) and CH276-
192M7 (green) (top), and the 15g25.2 inversion was confirmed using
chimpanzee clones CH251-321P13 (red), CH251-511D5 (green), and
CH251-66E11 (blue) (bottom).

are more likely (32) to affect gene expression, we
considered fhSV overlap on the basis of variant
effect predictor annotations (including GRCh38
and Clint_PTRv1 annotation sets), which corre-
late both coding and noncoding variation to
genes (Fig. 6A). Of the differentially expressed
genes, 252 radial glia genes (P = 9.78 x 1075, y°
test; 252/668) and 123 excitatory neuron genes
(P = 0.27, % test; 123/360) had annotated fhSVs

Kronenberg et al., Science 360, eaar6343 (2018)

associated with them. To test if this observation
was an artifact of gene size, we shuffled thSVs
and counted the number of thSVs that mapped
within 50 kbp of a differentially expressed gene.

Overall, genes down-regulated in humans re-
main enriched for fhSVs, compared to the null
distribution, whereas up-regulated genes did not
show a significant overlap. In particular, genes
down-regulated in human radial glial neural pro-

8 June 2018

genitors showed significant enrichment for struc-
tural variation (P = 0.02; 10* permutations) (Fig.
6B). Although we observe the same trend in ex-
citatory neurons, the effect did not reach signif-
icance. As a control, we repeated the same analysis
for genes mapping to human-specific SDs (54), a
form of structural variation not accessed in this
study. Genes mapping to human SDs were up-
regulated in radial glial and excitatory neurons
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Fig. 6. Structural variation and neural progenitor expression differ-
ences between human and chimpanzee. (A) Volcano plots for
chimpanzee-human gene expression in excitatory neuron (left) and radial
glia (right) organoid single-cell data. Each point represents a gene, with
sufficient data to assess significance between human and chimpanzee
organoid cells. Genes with fhSVs within 50 kbp of their start or end are
indicated with a triangle. The data points are shaded by significance
(lighter shade indicates less significance). (B) Spatial permutation test
for overlap between fhSVs and differentially expressed genes. Each
violin plot shows the null distribution of human-specific SV overlap
(x50 kbp of transcript start or end) with genes that are significantly
differentially down- or up-regulated, relative to chimpanzee. The

horizontal bars and observed counts are overlaid on the null
distribution. (C) Heatmap illustrating the percentile gene expression of
differentially expressed genes near fhSVs (rows) across single cells
(columns), including genes near the start or end of inversions (circles)
and duplicated regions (WSSD) (triangles). Cells include 333 excitatory
neurons (97 chimpanzee organoid, 53 human organoid, and 183 human
primary cells) and 373 radial glia (113 chimpanzee organoid,

123 human organoid, and 137 human primary cells) (56, 57). Expression
patterns include concerted changes between chimpanzee and human cells
across radial glia and excitatory neurons (chimp RG and EN

and human RG and EN), cell-type-specific changes (human EN and human
RG), and conserved radial glia expression (all RG).

Table 3. Summary of great ape genome structural variation. SV events (>50 bp in size) called against the human reference genome (GRCh38) using

smartie-sv.
Ape assembly

Statistic

CHM13_HSAv1 YRI_HSAv1 Clint_PTRv1 GSMRT3.2 Susie_PABv1
Deletion count 9,126 11,747 63,634 73,681 136,980
Insertion count 14,962 14,528 68,589 76,230 142,631
Inversion count 74 55 446 533 969
Deletion size (Mbp) 476 4.85 41.88 4548 84.76
Insertion size (Mbp) 6.85 717 40.34 4753 120.35
Average deletion size (bp) 552 413 658 617 618
Average insertion size (bp) 458 493 588 623 843
Size of largest variation (kbp) [type] 84 [deletion] 124 [insertion] 133 [insertion] 90 [insertion] 123 [insertion]

Kronenberg et al., Science 360, eaar6343 (2018) 8 June 2018
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when compared to chimpanzee (Fig. 6). This as-
sociation identifies dozens of putative candidates
for functional investigation, including some of
the most differentially expressed genes between
humans and chimpanzees in neural progenitor
cells (Fig. 6 and table S14).

Discussion

Our great ape genome assemblies improve se-
quence contiguity by orders of magnitude (20, 60),
leading to a more comprehensive understand-
ing of the evolution of structural variation. Cou-
pling this effort with full-length cDNA sequencing
improved gene annotation, especially for the
discovery of transcripts and isoforms that have
recently diverged between closely related species.
Because genomes of species may be sequenced
and assembled using the same platforms and
experimental designs, we minimized biases intro-
duced by ascertainment or an uneven sequencing
quality between genomes.

These improved genomes yield a comprehen-
sive view of intermediate-size structural var-
iation among apes. As we focused on SVs that
potentially disrupt genes or regulatory sequences,
we began to address potential functional effect.
Differential gene expression, especially in cortical
radial glia, has been hypothesized to be a critical
effector of brain size and a likely selective target
of human brain evolution (41). Nearly 41% of the
genes down-regulated in human radial glia, when
compared to chimpanzee radial glial analogs from
cerebral organoids, associate with an thSV and
most often as a deletion or a retroposon insertion.
These findings are consistent with the “less-is-
more” hypothesis (61), which argues that the loss
of functional elements underlies critical aspects
of human evolution. By contrast, human-specific
gene duplications associate with up-regulated ex-
pression in both neural progenitors and excit-
atory neurons, although the effect is stronger
for the latter. This finding is consistent with re-
cent studies evidencing that human-specific SDs
contribute to cortical differences between humans
and chimpanzees (6-8). It is intriguing that the
repeat-rich nature of ape genomes and, in par-
ticular, the expansion of SDs in the common an-
cestral lineage of the African ape lineage (62)
may have made great ape genomes particularly
prone to both deletion and duplication events,
accelerating the rate of structural changes and
large-effect mutations during the evolution of
these species.

Despite this more comprehensive assessment
of structural variation, not all SV types have been
fully resolved among the great apes. In particu-
lar, we are still missing many larger, more com-
plex events, including inversions and SDs that
have differentially evolved between the lineages.
For example, we recovered only one of five ape
inversions identified by comparative BAC-based
sequencing of a 2-Mbp region of chromosome
16p11.2 (63), although optical mapping techniques
did identify four of the events. In this case, all
inversions are flanked by large blocks of SDs
(>200 kbp) that cannot be currently assembled
by long-read whole-genome sequencing. We pre-
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dict that such large, multi-mega-base pair inver-
sions represent a common uncharacterized source
of human-ape genetic variation that has been
underestimated. Long-range sequencing and map-
ping technologies, such as Strand-seq (49), BAC-
based sequencing (63), optical mapping (table
S12), and longer-read sequencing (64) will be
necessary to sequence resolve such large, more
complex SVs.

Materials and Methods

We sequenced and assembled four genomes
[chimpanzee (Clint), Sumatran orangutan (Susie),
CHM13 (human), and YRI19240 (human)] using
long-read PacBio RS II sequencing chemistry and
the Falcon genome assembler. Sequence contigs
were error-corrected using Quiver (17), Pilon (I18),
and a FreeBayes-based (65) indel correction pipe-
line. A chromosomal-level AGP was generated
using optical maps (Bionano Genomics Saphyr
platform) for scaffold building and bicolor FISH
of ~700 large-insert clones. The Comparative An-
notation Toolkit (CAT) (22) was used to annotate
all of the great ape genomes using the human
GENCODE V27 as reference with a combination
of RNA-seq obtained from SRA as well as Iso-Seq
data specifically from NHP iPSCs. STRs were
defined using RepeatMasker v4.0.1 and Tandem
Repeats multiple sequence Finder v4.07b. Syn-
tenic regions and MSAs were constructed with
MUSCLE (v3.8.31), phylogenetic analyses were
performed using a general time-reversible model
(“GTR+GAMMA”) under a maximum likelihood
RAXML (8.2.3) framework, and phylogenetic
trees were generated using DendroP. A BLASR-
based computational pipeline, smartie-sv, was
developed to align, compare, and call insertions,
deletions, and inversions (https://github.com/
zeeev/smartie-sv). Insertions and deletions were
genotyped against a panel of 45 ape genomes
using SVTyper (paired-end) and WSSD (read
depth). FISH and BAC clone sequencing was
used to estimate sequence accuracy and validate
the breakpoints of complex rearrangements. We
compared SV locations with genes showing dif-
ferential expression during human and chimpan-
zee cortical development using single-cell gene
expression data from cerebral organoid models
and from primary cortex.
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A spotlight on great ape genomes

Most nonhuman primate genomes generated to date have been "humanized" owing to their many gaps and the
reliance on guidance by the reference human genome. To remove this humanizing effect, Kronenberg et al. generated
and assembled long-read genomes of a chimpanzee, an orangutan, and two humans and compared them with a
previously generated gorilla genome. This analysis recognized genomic structural variation specific to humans and
particular ape lineages. Comparisons between human and chimpanzee cerebral organoids showed down-regulation of
the expression of specific genes in humans, relative to chimpanzees, related to noncoding variation identified in this
analysis.
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