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While exome sequencing is readily amenable to single-nucleotide variant discovery, the sparse and nonuniform nature of
the exome capture reaction has hindered exome-based detection and characterization of genic copy number variation. We
developed a novel method using singular value decomposition (SVD) normalization to discover rare genic copy number
variants (CNVs) as well as genotype copy number polymorphic (CNP) loci with high sensitivity and specificity from
exome sequencing data. We estimate the precision of our algorithm using 122 trios (366 exomes) and show that this
method can be used to reliably predict (94% overall precision) both de novo and inherited rare CNVs involving three or
more consecutive exons. We demonstrate that exome-based genotyping of CNPs strongly correlates with whole-genome
data (median r2 = 0.91), especially for loci with fewer than eight copies, and can estimate the absolute copy number of
multi-allelic genes with high accuracy (78% call level). The resulting user-friendly computational pipeline, CoNIFER (copy
number inference from exome reads), can reliably be used to discover disruptive genic CNVs missed by standard ap-
proaches and should have broad application in human genetic studies of disease.

[Supplemental material is available for this article.]

Targeted capture and sequencing of coding exons (‘‘exome se-

quencing’’) has revealed common single-nucleotide polymorphisms

(SNPs), rare sequence variants, short indels, and breakpoints of

structural variation (Ng et al. 2009; for review, see Bamshad et al.

2011) but has been largely refractory to the discovery of copy

number variants (CNVs). In contrast to whole-genome sequencing

data, exome capture and sequencing results in nonuniform read-

depth between captured regions and strong systematic biases be-

tween batches of samples. These biases, as well as the sparse nature

of the capture, make exome sequencing unsuitable for ‘‘tradi-

tional’’ CNV detection algorithms, such as raw read-depth (Alkan

et al. 2009; Chiang et al. 2008; Yoon et al. 2009), read-pair align-

ment (Korbel et al. 2007, 2009; Hormozdiari et al. 2009), or split-

read mapping (Ye et al. 2009; Karakoc et al. 2011). In this study, we

combine read-depth data from exome sequencing with singular

value decomposition (SVD) methods to discover rare CNVs and

genotype known copy number polymorphic (CNP) regions from

eight HapMap samples and 122 autism spectrum disorder (ASD)

mother-father-proband trios sequenced as part of separate study to

primarily discover de novo SNPs and indels (O’Roak et al. 2012).

We validated the discovered events using orthogonal data sets,

including whole-genome sequencing and tiling array comparative

genomic hybridization (array-CGH) data for HapMap samples, as

well as SNP array and quantitative PCR for events discovered in the

autism trios. In light of the tens of thousands of exomes antici-

pated to be sequenced and analyzed in the near future, we believe

this method will have widespread application for the discovery

and association of both rare and common copy number variation

in disease and will complement existing methods to discover single-

nucleotide variation from exome sequencing data.

Methods

Samples and data sets
We used exome sequencing data from eight HapMap individuals
(NA12878, NA15510, NA18507, NA18517, NA18555, NA18956,
NA19129, and NA19240) and exomes from 122 mother-father-
proband ASD trios (for 366 total individuals). In addition, we uti-
lized exome data from 533 individuals from the NHLBI Exome
Sequencing Project (ESP) as a means to derive accurate estimates
of the distribution of sequence coverage at each exon. Underlying
exome sequence data are available from the Short Read Archive for
the HapMap exomes (SRA039053) and from the dbGaP exchange
area (for ASD exomes: phs000482.v1.p1; for ESP exomes: phs000
279.v1.p1, phs000290.v1.p1, phs000291.v1.p1, phs000281.v1.p1,
phs000254.v1.p1, with additional cohorts pending; more infor-
mation at http://evs.gs.washington.edu/EVS/). All exomes were
captured using either the Roche NimbleGen EZ Exome SeqCap
version 2 (for ESP samples and ASD trios) or version 1 (for HapMap
samples) in-solution exome capture kits (44 Mbp captured,
including 36-Mbp exon target). Short-read sequencing was
performed using either an Illumina HiSeq 2000 platform or an
Illumina GAII, with a mix of 50-bp and 76-bp paired-end reads
(Table 1; for additional details, see Supplemental Note).

Mapping

Sequence reads were divided into nonoverlapping 36-bp constit-
uents and mapped to exons and the 300-bp flanking sequence of
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the repeat-masked hg19 reference sequence using mrsFAST (Hach
et al. 2010), allowing for up to two mismatches per 36 bp. We cal-
culated RPKM (reads per thousand bases per million reads sequenced)
(Mortazavi et al. 2008) values for 194,080 exome capture targets (see
Supplemental Note) and excluded from further analysis 3964 probes
with a median RPKM of less than one, as these probes were likely
failed or improperly targeted. The median RPKM for our probes was
17.5, with a standard deviation of 22.0 and a maximum of ;900.

Singular value decomposition

RPKM values were transformed into standardized z-scores (termed
ZRPKM values) based on the mean and standard deviation
across all analyzed exomes and organized into an exon-by-
sample matrix (X). Using SVD, we decomposed X into three
matrices:

X ¼ USVT :

The values in the S matrix, known as
‘‘singular values,’’ can be used to examine
the relative amount of contributed vari-
ance from each component. We used a
plot of these singular values, known as a
‘‘scree plot,’’ to identify this experimental
noise. Our analysis reveals that the first
10–15 components disproportionally con-
tribute to the variance of the data (Sup-
plemental Fig. S2). Given that we expect
biological variation, in the form of rare
CNVs as well as common CNPs, to be a
minor contributor to the overall variance
of the exon-by-sample matrix X, we for-
mulated the basis of our algorithm by
eliminating these strongest components.
We selected the number of components
for elimination based on the inflection
point of the scree plot. Algorithmically, in
order to remove the strongest k compo-
nents, we set S1. . .Sk to zero to form S9, and
then recalculate X as the dot product of U,
S9, and VT (Fig. 1). We termed these final
values SVD-ZRPKM values—each of which
represents the normalized relative copy
number of an exon in a sample.

Discovery of rare CNVs
and genotyping CNPs

For discovery of rare CNVs (Fig. 1; Sup-
plemental Fig. S1), we removed between
12 and 15 (k) singular values, a number we

empirically adjusted based on the inflection point of the scree plot
(Supplemental Fig. S2). We set discovery thresholds at �1.5 or +1.5
SVD-ZRPKM for rare deletions and duplications, respectively, and
required at least three exome probes to exceed the threshold (Sup-
plemental Note). For genotyping CNP regions in the genome, we
opted to remove only five components in order to prevent the SVD
algorithm from removing bona fide signal from highly CNP loci
(Supplemental Note; Supplemental Fig. S11). The signal intensity
was calculated by determining the average of the SVD-ZRPKM
values for the exons/targets in the region of interest. As the output
from our algorithm provides a relative value, we estimated absolute
copy number from the SVD-ZRPKM values via two methods: (1)
using population frequency information of copy number states
(Campbell et al. 2011) and (2) creating a standard curve using a copy
number estimated from whole-genome sequencing data of matched
HapMap samples (Sudmant et al. 2010; Supplemental Note).

Table 1. Cohorts analyzed

Cohort
No. of

samples Capture version
Passed

QC

Average no. of
mapped 36mers

(mrsFAST)

Average no. of
mappings
(mrsFAST)

Average
total reads
sequenced

Average
on-target

reads
Median

read-depth

HapMap 8 Roche NimbleGen EZ
Exome SeqCap Version 1

8 138,593,483 158,568,475 174,108,136 76,003,440 903

Autism trios 122 probands
and

Roche NimbleGen EZ
Exome SeqCap Version 2

366 119,461,629 143,574,053 105,207,851 66,589,392 763

244 parents
NHLBI Exome

Sequence Project
613 533 127,125,719 152,787,950 169,462,468 68,366,770 813

Figure 1. Method overview and CNV discovery. Exome sequencing reads from FASTQ files were
divided into nonoverlapping 36-bp constituents (A) and aligned to targeted regions (B), allowing for up
to two mismatches per 36-bp alignment. (C ) For each exon or targeted region, we calculated RPKM
values and then transformed these into ‘‘ZRPKM’’ values based on the median and standard deviation of
each exon across all samples. (D) ZRPKM values were inputted into the SVD transformation, where we
removed the first 12–15 singular values. Finally, a centrally weighted 15-exon average was passed over
the SVD-ZRPKM values in order to reduce false positives, and a 61.5 SVD-ZRPKM threshold was used to
discover CNVs. (E) Final image shows ZRPKM values from 1000 consecutive exons on chromosome 16,
plotted for 533 ESP exome background samples (black traces) and NA18507 (pink trace). Blue bar
corresponds to a rare duplication in NA18507 at the METTL9/OTOA locus at chr16p12.2 that was val-
idated by SNP microarray CNV analysis.
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The SVD method depends on concurrently analyzing many
samples, so that systematic noise becomes evident and can sub-
sequently be removed. For the eight HapMap samples, we included
an additional 533 ESP samples and removed 12 components. For
analysis of the ASD trios, we combined the 122 trios (366 samples)
with 366 randomly selected samples from the ESP data set and
removed 15 components. In our comparison of mrsFAST and BWA
mappings, we used 492 ESP samples (for which BWA mappings
were available) and the eight HapMap samples. Overall variance
was lower in the BWA-based mappings, thus only six components
needed to be removed during the SVD normalization.

Quality control

To control for sample and probe performance, we performed two
separate checks using SVD-ZRPKM values: (1) We excluded from
further analysis any probe with a median RPKM across all analyzed
samples #1, as such probes were likely failed or improperly targeted
probes, and (2) we excluded samples if the standard deviation of
their SVD-ZRPKM values exceeded 0.5. As both the z-transformation
and the SVD algorithm are dependent on the analysis of all samples
concurrently, we recomputed both the ZRPKM and SVD-ZRPKM
values after having removed poorly performing samples.

Validation

We specifically selected samples that had been subjected to ex-
tensive prior experimental validation. Copy number variation of
the eight HapMap samples was previously assessed by array-CGH,
whole-genome shotgun sequencing, and targeted clone sequenc-
ing (Kidd et al. 2008; The 1000 Genomes Project Consortium 2010;
Sudmant et al. 2010; Conrad et al. 2011). Accurate estimates of
copy number for duplicated loci were determined experimentally
by single-channel array-CGH data and qPCR (Sudmant et al. 2010;
Campbell et al. 2011). CNV data for the 366 autism exomes were
obtained by SNP Microarray (Illumina 1M) and by targeted array-
CGH as described previously (Sanders et al. 2011; O’Roak et al.
2012). Additionally, we used a custom NimbleGen array-CGH chip
or specific quantitative PCR assays to validate additional events
discovered that were not confirmed by existing SNP or array data
(for details and primers used, see Supplemental Note).

CoNIFER implementation

We implemented our algorithm as a collection of python programs
under the name CoNIFER (copy number inference from exome
reads), available at http://conifer.sourceforge.net. CoNIFER can
accept files containing BAM alignment files or RPKM values from
samples and outputs a number of charts (e.g., scree plots), a text file
containing calls, and images corresponding to each call. Addi-
tionally, the raw SVD-ZRPKM values can be saved, facilitating
genotyping of CNP loci and further analysis. The computational
resources to run CoNIFER are lightweight. BAM-format files can
be converted into read-depth files in ;20–30 min; then given
read-depth or read-count values for targeted exons or probes, the
CoNIFER and the SVD-normalization can be run with minimal
hardware requirements (e.g., 500 samples processed in <1 h using
#4 GB of memory).

Results
Our method exploits differences in sequence read-depth from

exome data sets to predict copy number variation (Fig. 1). We fo-

cused on characterizing two distinct classes of genetic variation:

rare CNVs and CNPs. The former are individually rare in pop-

ulations (<1% frequency) and are predominantly found in unique

regions of the genome. In contrast, CNPs are common, both be-

tween individuals and between populations, and are frequently

associated with segmental duplications (Girirajan et al. 2010). The

absolute copy number of multi-allelic CNPs embedded in seg-

mental duplications ranges widely from zero to more than 40

copies, and this variation is typically referred to as multi-copy or

multi-allelic (Sudmant et al. 2010). Our approach utilizes relative

read-depth values for each exon; for exons with highly diverse

copy number across a population, the population standard de-

viation will be high as well, thus shrinking the range of relative

values observed at that exon (although this does not diminish the

signal itself, only the absolute values). In effect, this makes

a threshold-based discovery algorithm less sensitive for CNPs and

exons of high copy number diversity, but does not impact geno-

typing of these CNPs and exons when their location is known.

Because of these fundamental differences, we chose to pursue the

characterization of CNVs and CNPs differently: For CNVs, dis-

covery within the exome data was unbiased by location, whereas

for CNPs, we used a priori information regarding the location of

copy number variable loci.

CNV discovery in HapMap samples

In order to assess the precision of our method, we intersected our

exome-based deletion and duplication calls from five of the

HapMap control exomes with a previously generated call set from

high-resolution array-CGH data (Conrad et al. 2011). Of the 32

events detected by CoNIFER (Supplemental Table S1), seven were

rare CNVs and 25 were CNPs; after intersecting with the reference

set and requiring 10% reciprocal overlap, our method yielded 6/7

(86%) precision for rare CNVs and 16/25 (64%) for CNPs (Table 2;

Supplemental Table S2). Examination of the discordant calls

revealed that the one rare CNV did not pass the 10% reciprocal

overlap cutoff because a single distant exome probe was included

in the call, and 7/10 discordant calls were located in genes such as

C4A, PGA3/4, GSTT1, and CCL3/4. For these regions, the discrep-

ancy between our method (a reference-free approach) and the

reference-based array-CGH calls is not unexpected (i.e., the ‘‘ref-

erence effect’’). The last two events were duplications in HERC2P3

and PI4KAP2, both found in a highly repetitive region of the ge-

nome in which array-CGH is likely ineffective.

We also estimated sensitivity for detecting CNVs using the

Conrad data set: Starting with 486 high-resolution array-CGH calls

that overlapped at least three exome probes, there were five rare

CNVs (<1% population prevalence) in unique portions of the ge-

nome within the five overlapping samples between our data set

and the samples examined by Conrad and colleagues (2011). Our

algorithm identified 5/5 of these rare CNVs (Supplemental Table

S2). Close examination of the remaining 481 Conrad calls reveals

that three are false positives (Supplemental Fig. S7) and 20 reside in

somatically rearranged regions (Supplemental Fig. S4). However,

the majority of the remaining regions are either found within

segmental duplications (416/481, 86%) or are polymorphic but

not duplicated (i.e., zero, one, or two copies; 42/481, 8.7%) (Sup-

plemental Table S2). For these regions, the SVD-ZRPKM values can

be used to resolve the copy number for each region individually

(for description of the method, see below). When we examined

378 of these 481 calls for which whole-genome absolute copy

number estimates were available (Sudmant et al. 2010), we find

that the SVD-ZRPKM signal at 222/378 (59%) of these strongly
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correlated (r2 $ 0.9) with whole-genome

copy number, indicating that the SVD-

ZRPKM signal at these loci accurately

characterizes the copy number of in-

dividuals. Furthermore, across loci with

reference genome copy number less

than eight (276/378), the median r2 is

0.95, with strong correlations seen at

186/276 (67%) loci. This included 40/42

(95.2%) of the polymorphic CNPs not

mapping within annotated segmental re-

gions (Supplemental Table S2)—the two

regions that failed, KRTAP9-2 and ZNF468,

are part of more ancient duplications that may complicate exome

capture.

CNV discovery in ASD trios

We next estimated the precision of our method for rare CNVs using

exome sequence from 109 ASD probands trios for which Illumina

1M SNP microarray data were available (Sanders et al. 2011; O’Roak

et al. 2012). Initially, 317 autosomal calls of three or more exons

were detected in 104 probands (Supplemental Fig. S3); however, to

assess the accuracy of our algorithm in detecting rare CNVs, we

filtered calls where (1) the call overlapped segmental duplications

or nonunique portions of the genome by >50% (153/317, 48%), or

(2) the call was found in a somatically rearranged locus, such as the

HLA locus (one call). Additionally, we filtered calls if the call was

the duplication of a gene known to exist as a processed pseudogene

in that individual (40/317, 13%; for methods and discussion, see

Supplemental Fig. S17; Supplemental Note), as such events—while

detectable from exome data using our algorithm and other

sequence-based algorithms—cannot be detected using SNP micro-

array platforms, which predominately place probes in intronic or

nongenic sequence. In the remaining set of 124 putative CNVs

in 74 probands, we identified eight events as de novo, 87 events

as inherited from either parent, and 29 events which resembled

polymorphic CNPs in the population (Supplemental Table S3).

Next, we orthogonally validated these CNVs and CNPs using

Illumina 1M SNP microarray data for events large enough to span

enough SNP probes. This comparison resulted in initial overall

concordance of 95/124 (77%) (Table 3). We experimentally vali-

dated a subset of the remaining events using qPCR and array-CGH

by designing a customized oligonucleotide microarray. These ex-

periments confirmed 15/18 (83%) events (Supplemental Figs. S19,

S20; Supplemental Table S3). In summary, our method discovered

and confirmed seven novel rare CNVs and four novel CNP loci; for

both categories, the events are too small to be detected using high-

density SNP microarrays. Taken together, 117 of our 124 putative

CNV calls were validated, leading to orthogonally validated pre-

cision of 94% (Table 3).

Finally, we gauged the sensitivity for discovery of rare CNVs

using our algorithm against previously discovered and annotated

CNVs in the ASD probands (Supplemental Table S8; Sanders et al.

2011). There were 109 possible calls in the overlapping set of pro-

bands with a minimum of three exome probes and <50% segmental

duplication content; of these, Sanders and colleagues considered 64

to be high-confidence CNV calls based on $20 SNP probes. When

we applied our algorithm to the same samples, we found a total of

83/109 (76%) CNVs; for CNVs with $20 Illumina SNP probes, our

discovery climbs to 54/64 (84%). These calls are listed in Supple-

mental Table S4. When we examined the concordance rate between

platform of calls primarily within segmental duplications, our

exome-based method recovers only 10/52 calls (19%). As described

elsewhere within this work, we suggest that the copy number of

these known regions be estimated via the genotyping approach

using the mean of SVD-ZRPKM signals across the region.

Genotyping CNP variants

We took two approaches in assessing our method’s ability to de-

termine the copy number of CNPs: (1) a relative correlation ap-

proach between the continuous SVD-ZRPKM values and whole-

genome-sequence derived copy number estimates, and (2) an un-

supervised clustering approach of exome-based genotype values in

order to derive absolute copy number states for CNP loci.

For the first approach, we selected 62 previously identified

CNP loci and genes (Supplemental Table S5) and calculated the

copy number of each locus based on whole-genome read-depth

data using previously described methodology, which has been

experimentally validated using single-channel array-CGH inten-

sity data (Sudmant et al. 2010). For each locus, we correlated the

estimated whole-genome copy number with the average of SVD-

ZRPKM values for the exons in the locus (Fig. 2). The median

r2 value between exome-based and whole-genome–based geno-

typing at each locus was 0.91 (Fig. 3A; Supplemental Table S5),

indicating a high degree of reliability between exome and whole-

genome copy number estimation for CNP loci. Furthermore, after

stratifying the results by the median copy number of each locus,

we found that for loci with median copy number of eight or less, 32

of 39 loci (82%) were highly correlated (r2-value $ 0.9), but for loci

with median copy number greater than eight, the median locus

r2 was only 0.32.

Second, we assessed the accuracy of our approach in de-

termining the absolute copy number of common CNPs. We le-

veraged available genotype information for seven of the HapMap

samples in this study across 43 autosomal CNP loci previously

studied by Campbell and colleagues (Supplemental Table S6;

Campbell et al. 2011). For each locus, we again used the locus average

of the SVD-ZRPKM values and clustered these genotype values using

an unsupervised clustering algorithm (Supplemental Note). Each

cluster was then assigned the most likely copy number based on the

most common copy number state previously identified. By use of

Table 2. Precision of exome-based CNV calls in HapMap samples

Rare CNVs Common CNPs Total

$10% reciprocal overlap 6/7 (86%) 16/25 (64%) 22/32 (69%)
Any overlap 7/7 (100%) 19/25 (76%) 26/32 (81%)
No overlap — 6/25 (24%) 6/32 (19%)

Table 3. Validation of exome-based CNV calls in autism probands

SNP microarray
validation

(Sanders et al. 2011)
Custom array-CGH
or qPCR (this work)

Total calls
validated

De novo 6/8 concordant 0/2 validated 6/8 (75%)
Inherited 79/87 concordant 5/5 validated by CGH 86/87 (99%)

2/2 validated by qPCR
CNP 10/29 concordant 5/6 validated by CGH 25/29 (86%)

3/3 calls in in BTNL3/8
locus by qPCR

All 95/124 (77%) 15/18 (83%) 117/124 (94%)

Krumm et al.
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this unsupervised method, we correctly predicted absolute copy for

235/301 (78%) calls (Fig. 3B; Supplemental Table S6) with an overall

absolute genotype correlation across all 43 CNP loci of r2 = 0.73.

Our algorithm uses relative read-depth values (introduced

both by the z-transformation and the SVD algorithm itself) in or-

der to overcome significant batch biases in exomes, thus sacrificing

the genome-wide linear model of read-depth and copy number

exploited by whole-genome structural variation discovery algo-

rithms. Nonetheless, the two approaches presented above can be

used to ‘‘anchor’’ the relative SVD-ZRPKM values to absolute copy

Figure 2. CNP locus genotyping of RHD and C4A. (A) SVD-transformed values for exons for the Rhesus deletion factor locus (RHD/RHCE) show distinct
copy number states across both paralogous genes. (B) Histogram of average SVD-ZRPKM values for the ESP data set (533 individuals) and seven HapMap
samples. Clustering was performed using an unsupervised algorithm (Supplemental Note). (C ) Correlation between SVD-ZRPKM genotype values (y-axis)
and absolute copy number estimate (x-axis) based on whole-genome read-depth for seven HapMap samples and experimentally validated by array-CGH.
(D–F) Similar to above, for C4A locus.

Figure 3. Genotyping accuracy across 62 CNP loci. (A) Distribution of correlation coefficients of SVD-ZRPKM to whole-genome copy number estimate
(Sudmant et al. 2010) across 62 CNP loci for seven HapMap samples, split by the median copy number of each locus. For loci with copy number less than
eight, 32/39 had strong correlations between exome and whole-genome estimates, indicating that exome-based SVD-ZRPKM can be used to genotype
such loci. (B) Results from unsupervised clustering algorithm for 43 autosomal loci for which genotype information was available (Campbell et al. 2011).
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number. First, the strong r2 correlation for many loci can be ex-

ploited as a ‘‘standard curve’’ for each locus, and the absolute copy

number for exome samples can be estimated. Alternatively, SVD-

ZRPKM values can be clustered (Supplemental Note) into copy

number groups, thus facilitating absolute copy number estimates

without the use of whole-genome data.

Methodological considerations

The number of components selected for removal is an important

parameter in our algorithm and warrants further consideration.

Removing too few components leaves the algorithm at risk for

residual systematic bias; conversely, removing too many compo-

nents will begin to remove bona fide signal from exomes, espe-

cially at large, common segmental duplications within which

a large proportion of analyzed exomes contribute a strongly altered

read-depth signal. We tested how well the SVD algorithm could

remove systematic noise without removing signal from biological

events (e.g., CNVs and CNPs). First, we examined the recall rate

and signal-to-noise ratio (SNR) of CNVs discovered via our algo-

rithm in the ASD probands as we removed additional components.

For rare CNVs, we found that even if 30 components were re-

moved, 56/57 CNVs survived SVD transformation (Supplemental

Fig. S11); furthermore, the SNR for these CNVs remained robust at

even higher SVD (50–100) cutoffs (for an example, see Supple-

mental Fig. S13). In contrast, for common CNPs, recall rate and

SNR dropped more rapidly starting at 30 SVD components. As sug-

gested, such CNPs should be genotyped at comparatively lower SVD

cutoffs in order to preserve their signal. In a second experiment, we

calculated the concordance of our calls with the Illumina SNP-based

calls (Sanders et al. 2011) at increasing SVD removal thresholds

(Supplemental Fig. S12). We found that removing up to 30 SVD

components did not adversely affect the fraction of discovered

CNVs; in contrast, this did reduce the fraction of nonconcordant

calls (i.e., fewer false positives).

Another important consideration for exome sequencing is

the total number of on-target reads (i.e., reads that map to a captured

region). For our algorithm, we have simulated the effect of lower

overall exome coverage by down-sampling 10 exomes each at 75%,

50%, and 25% of their original coverage (simulating between 14

million and 153 million on-target 36mers per exome). The RPKM

normalization robustly corrects for lower coverage, and we find

that the signal for rare CNVs is only minimally affected at lower

coverage levels. However, using our algorithm we find analyzing

exomes with fewer on-target reads results in increased variance

across their SVD-ZRPKM values, indicating a higher level of ran-

dom noise and leading to potentially reduced sensitivity and

specificity. In both simulations (Supplemental Fig. S15) and our

empirical results (Supplemental Fig. S16) of the ASD proband exomes,

we suggest a minimum of 50 million on-target reads.

We also assessed the effect of multiple versus unique mapping

in CNV detection. As we generated our read-depth estimates from

mrsFAST-based alignments, in which reads can map to a virtually

unlimited number of locations given a set edit distance, we were

interested to see how our method would perform using alignments

that included only reads with unique mappings. Such alignments

are commonly created for the discovery of SNPs and SNVs, anal-

yses that are easily confounded when multiple mappings are

considered. We used available BWA-based alignments that were

generated using commonly used parameters and filtering steps

suitable for SNP-centric analyses, including removal of reads with

multiple mappings (Supplemental Note). We calculated RPKM

values from these BWA alignments for the HapMap samples and

a subset of the ESP exomes. We observed that signal for rare de-

letions and duplications in the HapMap samples was attenuated

(Supplemental Fig. S5), and that the median SNR for the seven rare

deletions and duplications was 58% lower for the BWA-based

mappings (Supplemental Table S7; Supplemental Note). In addi-

tion, we genotyped 47/62 loci in Supplemental Table S5 and found

a striking difference in the correlation between BWA-based map-

pings (median r2 = 0.36) and mrsFAST-based mappings (median

r2 = 0.92). The remaining 15/62 loci did not have any probes with

adequate BWA read-depth, making them intractable and false

negatives by this approach. The difference in correlation with

mrsFAST mappings was mostly notable for loci with copy numbers

ranging between seven and 12 (Supplemental Fig. S6B). These data

highlight the importance of considering alignments with multiple

mappings enabled, especially for loci with increased copy number

(e.g., the LRRC37A3 locus) (Supplemental Fig. S6C). We wish to

emphasize that these observed differences are not reflective of the

difference of BWA and mrsFAST per se, although enabling multiple

mappings for BWA comes at significantly increased computation

expense (Hach et al. 2010). In addition, the complete removal of

reads with multiple mappings may be overly stringent, and it is

possible that better results may be obtained when using ‘‘default’’

BWA parameters where a randomly chosen mapping for reads with

multiple mappings is kept. However, even in this case, we expect

significant attenuation of signal in duplicated portions of the ge-

nome, as each read could only increase signal by an average of 1/N

(where N is expected copy number) in comparison to a robust

treatment of multiple mappings.

Finally, we compared our algorithm to ExomeCNV

(Sathirapongsasuti et al. 2011), which is designed to detect copy

number aberration in the context of cancer using closely matched

tumor–normal pairs of exomes. Nevertheless, we were interested

to see if ExomeCNV could be used to detect germline variation. We

analyzed (using default settings) (see Supplemental Note) four

HapMap exomes with NA19240 as the reference and compared the

results to a validated call set from these genomes (Conrad et al.

2011). Overall, ExomeCNV predicted 450 CNVs, of which only 63

(14%) had >10% reciprocal overlap with the validated call set. In

contrast, our algorithm identified 24 calls among these four sam-

ples, of which 21 (88%) overlapped the validated call set. We note

that ExomeCNV uses uncalibrated read-depth to estimate copy

number, and depending upon batch effects, this can result in the

algorithm reporting a significant fraction of the exome as non-

diploid (Supplemental Fig. S7). Furthermore, similar to the BWA-

based alignments (see above), ExomeCNV has limited dynamic

range in CNP loci and duplicated genes: The average r2 correlation

across tested CNPs was 0.57 (compared to our algorithm, r2 = 0.92)

(Supplemental Fig. S8).

Discussion
We have outlined a method for making read-depth data from

exomes amenable to rare CNV discovery, as well as copy number

genotyping of CNP loci. We used SVD normalization to overcome

a host of coverage biases introduced by the capture and sequencing

of exomes. Our method allows for differing sample preparations

and capture reactions to be integrated into the same experiment,

provided each ‘‘batch’’ is sufficiently large (n $ 8). This includes

correct normalization of the X chromosome, such that deletions

and duplications can be assayed regardless of the sample’s sex.

Additionally, our method can integrate exomes captured with
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different exome capture target designs: The eight HapMap exomes

were captured using the Roche NimbleGen SeqCap EZ version 1,

while all other exomes in our experiments were captured using

the SeqCap EZ version 2 capture kit. We have successfully used the

CoNIFER method on a variety of other platforms, including the

Illumina SureSelect exome capture platform, older NimbleGen

capture designs, as well custom Agilent designs. Remarkably, we

find that sufficient dynamic range response remains to accu-

rately predict the copy of duplicated genes up to eight copies.

The upper limit of this response is likely an effect of the stoichi-

ometry of the exome-capture reaction, and we suggest that this may

be improved simply by adjusting the concentrations and targets of

exome-capture platforms.

Owing to the significantly lower probe density and the tar-

geted nature of exome-capture platforms, our algorithm cannot

fully replace currently available high-density array-CGH or SNP

microarray platforms if genome-wide detection of CNVs is the

goal. Currently, available exome capture platforms target fewer than

200,000 exons or regions within the genome, while other platforms

contain upward of 1 million probes. The estimated sensitivity for

exome-based discovery of rare CNVs containing three or more

exons is ;76% (Supplemental Table S4) in comparison to high-

density array platforms; therefore, some exonic CNVs are likely

to be missed by our approach. We emphasize that these metrics

are based on relatively unique regions of the genome (<50%

segmental duplication) where performance is optimal. The tar-

geted nature of the exome capture gives our algorithm increased

power to detect genic CNVs and CNPs <14 kbp in size (Supple-

mental Fig. S18), as well as the ability to genotype (but not neces-

sarily discover) copy number for more complex genic regions poorly

characterized by SNP microarrays (see below). For 10-kbp events

intersecting at least three exons, we have determined that our al-

gorithm has 8.9-fold increased power over Illumina 1M Duo SNP

microarrays. In analyzing the ASD probands, we have found several

examples of such small CNVs not previously detected using SNP

microarrays and have confirmed these events using a targeted array-

CGH platform.

Another important consideration in interpreting exome read-

depth data is the presence of polymorphic processed pseudogenes.

In our study of autism trios, we found that 13% (40/316) of events

correspond to changes in the copy of processed pseudogenes residing

elsewhere in the genome (Supplemental Table S3; Supplemental Fig.

S17). Such events have been difficult or impossible to discover using

traditional SNP microarray approaches, as the probes for these

assays often do not explicitly target the coding exons themselves.

While such events may be easily inferred based on the absence of

intronic sequence, a comprehensive catalog of polymorphic

processed pseudogenes, we predict, will improve the detection of

bona fide exonic deletions and duplications.

An important note of caution is that the nature of the

z-transformation paired with the SVD component removal makes

our algorithm unsuitable for the detection of chromosomal aneu-

ploidy. Although detecting such events using read-depth is pos-

sible in principle, our algorithm processes each chromosome

separately, and extremely large events are likely to be normalized

as part of the first few components. Although we know of no

aneuploidy in the exomes we analyzed, we have observed such

normalization when considering the X chromosome. Removing

as few as three components fully eliminates the difference in copy

number of the X chromosome between males and females (Sup-

plemental Fig. S22), although rare CNVs and smaller CNPs can

still be accurately assayed on the X chromosome.

Furthermore, the z-transformation required to normalize the

read-depth data necessitates the distinction between discovery of

rare CNVs and the genotyping of polymorphic CNPs. We have

shown that the CoNIFER method can detect rare CNVs and that

the transformed read-depth signal preserves information about the

copy number for CNPs. However, for highly polymorphic CNPs

(often in annotated segmental duplications), discovery using fixed

thresholds is comparatively less sensitive. Therefore, CoNIFER is

limited in its power to discover novel CNP loci without a priori

knowledge of their location (although more complex segmenta-

tion algorithms tuned specifically for such discovery could be ap-

plied to the SVD-ZRPKM values).

Based on our results and simulations, there are a few practical

considerations to ensure successful analysis of exomes using the

CoNIFER software program. First, all of our exomes were captured

from genomic DNA that had not undergone whole-genome am-

plification (WGA), and we have found that WGA exomes perform

very poorly in our analysis. Second, we recommend sequencing

exomes to a minimum coverage of 50 million on-target 36mers.

Third, although any short-read alignment tool can be used in

principle, we strongly recommend using alignments that have

enabled multiple mappings per read. Finally, a primary feature of

CoNIFER is the ability to mix capture reactions, experiments, and

sequencing runs, but care should be taken when combining data

across significantly different platforms—in these cases, only the

common set of probes between platforms should be used in order

to avoid false negatives.

We envision a number of algorithmic improvements. Although

using mrsFAST mappings both increases the SNR for rare CNVs and

improves genotyping accuracy for CNPs, these mappings often

cannot distinguish between paralogous genes. By restricting the

RPKM calculation to exons and regions that contain paralog-spe-

cific single-nucleotide variants (Sudmant et al. 2010), we hope to

be able to extend our method to genotype duplicated genes in a

paralog-specific manner. We also expect to lower the minimum

number of exons required to detect a CNV. We applied our method

to genotyping single exons (such as the third exon of GHR) (Santos

et al. 2004) and found the SVD-ZRPKM values robustly distin-

guished different copy number classes of a single exon. By devel-

oping a discovery set of CNP exons, genes, and loci—as well as

their copy number states in populations—future disease-associ-

ation studies will be better informed. Finally, though array-based

technologies have described many CNP–disease associations

(Girirajan et al. 2010), discovery of loci has been limited to those

with low median copy number, and our approach here will be

able to examine CNP loci with higher copy number. By use of our

approach with large clinical cohorts currently undergoing exome

sequencing, we expect to find new disease associations with rare

CNVs, CNP loci, and paralog-specific copy number of known

CNP loci.
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