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Autism spectrum disorder (ASD) is a common neurodevelopmental 
disorder diagnosed in approximately 1 of 88 children1 and manifests 
as deficits in social behavior and language development, as well as 
restricted or stereotyped interests. ASD is highly heritable, with con-
sensus estimates suggesting that ~50–60% of ASD etiologies are genetic 
in origin2,3. In particular, de novo mutations have been implicated as an 
underlying genetic cause in autism, and these mutations have provided 
a rich source for understanding pathogenic genes and neurobiological 
mechanisms in ASD4–10. However, de novo mutations are rare, and 
previous work suggests that they could account for the development 
of ASD in only 25–30% of cases9, a fraction of the cases likely to have a 
genetic basis. This suggests that other genetic factors contribute to ASD, 
including both rare and common inherited genetic variation2,11.

Previous reports have put forward genetic models for ASD in 
which rare, inherited CNVs or disruptive SNVs are disproportionally  
inherited by affected probands when compared to their unaffected 
siblings10–15. Specifically, it has been posited that risk factors for 
autism must exist that are essentially non-penetrant in females but 
are preferentially transmitted to affected sons. Although CNVs show 
some evidence of this transmission pattern12,16, conclusive evidence 
from SNVs has been lacking17. We sought to test this hypothesis by 
reanalyzing exome sequence data from a family-based study design, 
where there are sequence data from a single autism proband, an  
unaffected sibling and both parents. Our goals were to assess and 
quantify this SNV transmission disequilibrium, to identify potential  
candidate genes associated with ASD risk, and to integrate both  
inherited and de novo factors to create a unified ASD risk model for 
rare disruptive SNV and CNV alterations.

RESULTS
SNV	discovery	and	quality	control
To generate a standard call set of inherited variants for analysis, we 
reprocessed 8,917 exomes sequenced at 3 different genome centers4,5,7–9.  
The set included 2,377 families from the Simons Simplex Collection 
(SSC)—of which 1,786 consisted of exome sequence data from 
both parents, an affected child and an unaffected sibling (referred 
to here as ‘quad’ families). In combination, we identified a total of 
1,303,385 transmitted variants called by both the Genome Analysis 
Toolkit (GATK) HaplotypeCaller and FreeBayes and passing  
our quality filters (Table 1 and Online Methods). Of these variants, 
31% were not observed in dbSNP (v137). As a quality control check, 
we generated a principal-component analysis (PCA) graph for the  
transmitted variants and compared the results to the self-identified  
ancestry of the samples (Supplementary Fig. 1). As expected, 
the numbers of rare variant alleles in probands and siblings were 
highly correlated (r2 = 0.99; Fig. 1a), with no significant difference 
in heterozygosity observed within proband-sibling pairs (Fig. 1b).  
Using the FreeBayes and GATK intersection set, we found a median 
of 23,055 transmitted variants per exome for probands and siblings 
(95% confidence interval (CI) = 15,885–27,845 variants; Fig. 1c).  
A median of 377 (95% CI = 154–692) sites per family were new and 
not observed in dbSNP (v137); conversely, a median of 98.6% of sites 
were in dbSNP (Fig. 1e), and 99.7% of those were in agreement with 
respect to the alternate allele (Fig. 1f ). The intersection set of variants  
had a median transition-to-transversion (Ti/Tv) ratio of 2.94 (95% 
CI = 2.79–3.03) for all sites, a ratio of 2.95 (95% CI = 2.83–3.04)  
for dbSNP sites and a ratio of 1.94 (95% CI = 1.05–2.75) for new sites. 
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In addition, we compared SNPs from exome calls with SNP calls from  
existing Illumina SNP microarray data18 (S.J. Sanders, personal communi-
cation) and found the median genotype-level concordance to be 99.4% 
(Fig. 1d) (for a median of 17,731 overlapping SNPs in 3,052 offspring  
in 1,796 families for which microarray data were available).

Although discovery of de novo events was not the primary goal of 
this study, our use of independent SNV callers allowed us to identify 
additional de novo mutations (Table 2). Our reanalysis pipeline pre-
dicted 1,544 de novo SNVs not previously reported (Supplementary 
Table 1). We selected a subset of 141 events for Sanger-based validation  
because they represented either new recurrences or likely gene- 
disruptive (LGD) events. Of these new sites, 55% (77) were confirmed 
to be de novo as well as an additional 132 events that had been called 
but not confirmed in previous studies (Supplementary Table 2).  
Post-hoc analysis using three different classifiers (support vector 
machine (SVM), decision tree and random forest) suggested that  
the allele balance (defined as the number of reads supporting the 

alternate allele divided by the total number of reads covering that site) 
in each proband was the best individual predictor of validation for a 
de novo variant and that classification models could accurately predict 
which events were most likely to be validated (Online Methods and 
Supplementary Fig. 2). Extrapolating the allele balance in probands 
across all untested candidate variants in probands (n = 771) suggests 
that there are 463 (60%) additional true de novo variants in probands 
(at an allele balance cutoff of >0.3); similarly, the predictions generated 
by the random forest model suggest that 445 (58%) additional de novo 
variants in probands would be validated.

After validation, we identified 21 new recurrently mutated  
genes (Table 2). Notably, these validated mutations established  
recurrent de novo mutations for GIGYF2 and SSPO (encoding a  
brain-secreted protein involved in axon growth), as well as added  
a new LGD mutation to GIGYF1 and to ASH1L for a total of three  
LGD de novo mutations each.

SNV	transmission	disequilibrium
We tested for transmission disequilibrium between probands  
and siblings using Fisher’s exact and Mann-Whitney U tests and by 
logistic regression (where the dependent variable was the presence  
of a variant found in a proband or sibling). We considered only trans-
mitted variants reported using both FreeBayes and GATK and defined 
private events as those unique to a single family. When considering 
all rare or private protein-altering mutations (LGD and missense) 
together, we observed no statistically significant difference in the 
overall burden within proband-sibling pairs. Under the assumption 
that LGD mutations in genes intolerant to deleterious mutations 
would be more likely to be pathogenic, we repeated the analysis using 
residual variation intolerance score (RVIS) values19,20. Restricting 
our analysis to private LGD mutations in genes with the lower 50% 
of RVIS values, we observed a significant enrichment for transmis-
sion in probands when compared to siblings (odds ratio (OR) = 1.14,  

table 1 sNV and cNV discovery
Variants Quads (n = 1,786) Trios (n = 591) All (n = 2,377)a

All 1,123,040 614,190 1,737,230

SNVs 1,060,422 581,154 1,641,576

Indels 56,008 31,501 87,509

Private SNVs or indels 52,279 12,634 64,913

CNVs 6,610 1,535 8,145

Deletions 2,289 492 2,781

Duplications 4,321 1,043 5,364

<500 kb 6,369 1,480 7,849

>500 kb 241 55 296

Summary of SNVs, indels and CNVs from exome sequence data for 2,377 families 
(1,786 quads and 591 trios) from the Simons Simplex Collection (SSC), including 
transmitted SNV and indel calls from the intersection of GATK HaplotypeCaller and 
FreeBayes lists and all CNVs with orthogonal validation.
aEvents in each category are given as the sum of quad and trio numbers, resulting in ~1.6 million  
SNVs and indels (the number of unique independent sites is ~1.3 million).
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Figure 1 SNV quality assessment. SNVs  
were identified on the basis of the intersection  
of calls from the FreeBayes and GATK variant  
callers. (a) Proband-sibling concordance for  
number of private SNVs (Pearson’s r2 > 0.99)  
stratified by population (as calculated by  
PCA using EIGENSTRAT on SNV markers).  
(b) The number and distribution of private  
heterozygous genotypes do not differ  
significantly between mothers, fathers,  
probands and siblings (P > 0.3 for all  
comparisons). (c) The number of transmitted  
SNVs per exome for SNVs in dbSNP (blue) and new SNVs (green). (d) Concordance between exome and SNP microarray calls18 (S.J. Sanders, 
personal communication). (e) Fraction of events per exome found in dbSNP. (f) Genotype concordance of SNVs found in dbSNP, per exome.
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P = 0.0002, Fisher’s exact test) and at a family level (P < 0.0001,  
two-tailed paired t test; Fig. 2a).

This signal persisted for all LGD mutations in genes (regardless  
of frequency) with RVIS values below the 50th percentile (OR = 1.06;  
P = 0.03, Fisher’s exact test; P = 0.02, two-tailed paired t test). 
Furthermore, RVIS was a significant predictor of proband or sibling 
inheritance in a logistic regression model built on all LGD muta-
tions (P = 0.028, OR = 1.01 per RVIS percentage point). As suggested  
by this model, the burden of private LGD mutations in genes with 
progressively lower RVIS values continued to increase (Fig. 2b).  
At the extreme, the burden between probands and siblings in genes 
with the lowest 1% of all RVIS values reached an OR of 1.4 (although 
this comparison was not statistically significant, owing to the small 
number of mutations present at this threshold in the current data 
set). When we examined the fractions of probands and siblings who 
inherited LGD SNVs in highly conserved genes (RVIS values below the  
10th percentile), we found that 50.6% of probands (903/1,786 quads) 
and 47.9% of siblings (855/1,786 quads) harbored such events, a  
difference of 2.7%. Finally, we performed extensions of the rare variant–
transmission disequilibrium test (RV-TDT)21 at the individual gene 
level comparing transmission of rare variants to probands and siblings  

within the SSC families. Several promising 
candidate genes emerged (Supplementary 
Table 3), although none survived a multiple-
testing correction (Online Methods).

We considered the relationship between 
the set of private LGD mutations in RVIS-
restricted genes and phenotypic features of 
the SSC families (Fig. 3). First, we exam-
ined how inherited burden correlated with 
the overall clinical diagnosis. For the 1,575 
probands with a diagnosis of ‘autism’ or ‘per-
vasive developmental disorder’ (PDD), the 
OR values were 1.15 and 1.18 (P = 0.001 and 
0.05), respectively. In contrast, probands with 
a diagnosis of ‘Asperger’s syndrome’ (n = 205)  
showed a lower OR of 1.04 (P > 0.7; Fig. 3a) 
for inherited gene-disruptive mutations. 
Consistent with this observation, we found 
that probands with full-scale IQ between 
70 and 100 had an OR of 1.18 (P = 0.002), 
whereas those with an IQ above 100 had a 
lower, non-significant OR of 1.06 (Fig. 3b). 
For probands in the SSC, IQ and clinical 
diagnosis were weakly correlated (r2 = 0.18, 
P < 1 × 10−10; Supplementary Fig. 3), but 
we note that burden of private LGD muta-
tions in RVIS-restricted genes in probands 
depends on both IQ and clinical diagnosis: for 
probands diagnosed with autism or PDD and 
a full-scale IQ above the median for the SSC 

probands at large (IQ = 84), the OR was 1.1, whereas the burden for 
probands with Asperger’s syndrome of similar IQ was 1.03. Similarly, 
the OR of this burden for probands with autism and IQ above 100 was 
1.19, whereas that for probands with PDD or Asperger’s syndrome at 
this IQ threshold was less than 1 (Supplementary Table 4).

Our previous work with CNVs suggested that simplex families 
could be distinguished into two groups on the basis of their overall 
social responsiveness scale (SRS) T-scores22. Probands and siblings 
with very different SRS scores (‘SRS-discordant’ sibling pairs) should 
show stronger transmission disequilibrium when compared to sibling 
pairs in which unaffected siblings show elevated ASD symptomatology  
(‘SRS-concordant’ sibling pairs; Online Methods). Using our previous  
threshold definitions12, we observed a stronger proband-sibling  

table 2 Additional genes with recurrent de novo mutations

Gene

Krumm  
proband  
count

Iossifov  
proband  
count

De Rubeis  
proband  
count

Mutation  
type

Number of  
Sanger-validated  

mutations

Number of  
sibling  

mutations P

ASH1L 1 1 1 2 N, 1 FS 3 0 5.70 × 10−6

CCDC88C 1 1 0 2 M 2 0 0.07

CDC42BPB 1 1 1 1 N, 2 M 3 0 8.45 × 10−4

CGNL1 1 1 0 2 M 2 0 0.04

CUL7 1 1 0 2 M 2 0 0.04

DMXL2 1 1 0 2 M 2 0 0.07

FAM92B 1 1 0 2 M 2 0 7.96 × 10−3

GIGYF2 1 1 1 1 N, 2 M 3 0 3.40 × 10−4

GRIK5 1 1 1 3 M 3 0 0.01

HECW2 1 1 0 2 M 2 0 0.05

P4HA2 1 1 1 3 M 3 0 1.21 × 10−4

PHRF1 1 1 1 3 M 3 0 0.20

PYHIN1* 1 1 1 1 N, 2 M 3 0 5.53 × 10−4

RAB43 1 1 0 2 M 2 0 1.10 × 10−3

RBM27 1 1 0 2 M 2 0 4.63 × 10−3

SCN4A* 1 1 0 2 M 2 0 0.17

TBC1D31 1 1 0 2 M 2 0 7.29 × 10−3

TET2 1 1 0 2 M 2 0 0.02

XIRP1* 1 1 0 2 M 2 0 0.07

ZNF462 1 1 1 1 FS, 2 M 3 0 4.03 × 10−3

SSPO 2 0 0 1 S, 1 M 2 0 0.91

New validated de novo events (Krumm, this study) are compared to previously discovered events (Iossifov et al.9,  
SSC; De Rubeis et al.10, Autism Sequencing Consortium (non-SSC probands)). The total number of events in 
probands (n = 2,377) is contrasted to the total number of de novo events in siblings (n = 1,786). All genes except 
those with an asterisk are brain expressed according to the Gene-Tissue Expression (GTEx) portal. P values are based 
on O’Roak et al.6; recurrence in genes with marginal or non-significant P values is potentially by chance. Mutation 
type: N, nonsense, FS, frameshift; M, missense; S, splice site.
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Figure 2 Transmission disequilibrium of SNVs in ASD. (a) Private, 
inherited LGD SNVs (red bars) in genes not tolerant to functional variation 
were significantly enriched in probands. The analysis examined only SNVs 
in genes with an RVIS value in the bottom 50%. Non-private, rare variants 
and inherited missense SNVs (gray bars) are not enriched in probands.  
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differential of 3.7% for private LGD SNVs in conserved genes (RVIS 
below the 10th percentile) for SRS-discordant quads only (probands, 
484/923; siblings, 450/923), whereas SRS-concordant quads had only 
a 1.6% differential (probands, 419/863; siblings, 405/863).

CNV	discovery	and	validation
Because exome and SNP microarray data provide the opportunity 
to accurately detect a subset of smaller CNVs within the exonic 
regions of genes12, we also revisited the burden of both inherited and  
de novo CNVs with respect to autism. We characterized CNVs from 
1,266 quads with available SNP microarray data (validation shown 
in Supplementary Fig. 4) and tested an additional 50 samples with 
CNVs of interest identified by array comparative genomic hybridiza-
tion (aCGH). We focused in particular on validating smaller CNV 
events that affected genes recurrently affected by de novo SNVs, such 
as DSCAM, CHD2, ARID1B and TNRC6B (Supplementary Table 5).  
We identified a total of 2,891 CNVs with an excess of autosomal events 
in probands when compared to siblings (854 versus 743; OR = 1.25,  
P = 0.006, binomial two-sided test). The overall ratio of duplications 
to deletions was 1.6, consistent with previous results for a smaller 
SSC data set12. Restricting the analysis to de novo CNVs, we identi-
fied, as expected, a more significant 2.4-fold excess (P = 6.7 × 10−5, 
paired t test) in probands (n = 79) when compared to siblings (n = 33),  
driven primarily by deletions (P = 4.2 × 10−5, paired t test) and not 
duplications (P = 0.18, paired t test) (Table 3). Overall, de novo CNVs 
were larger in probands than in siblings (P = 0.03, Wilcoxon) and 

carried genes with significantly lower total RVIS values (P = 0.02, 
Wilcoxon). Both FMRP and CHD8 target genes were enriched in  
de novo CNVs (OR = 3.1 and 2.7; P = 6.6 × 10−4 and 1.7 × 10−3, Fisher’s 
exact test and P = 1.4 × 10−4 and 2.6 × 10−4, paired t test, respectively), 
and this is likely owing, in part, to the larger size of the de novo events 
among probands.

The validated inherited CNV data set (frequency < 0.8%) consisted 
of a total of 1,485 events (n = 775 in probands and n = 710 in siblings) 
from 1,266 quads. We replicated the previously reported12 preferen-
tial transmission of CNVs to probands when compared to siblings  
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a bFigure 3 Transmitted mutations and their effect on phenotype.  
(a) Private, inherited LGD SNVs are enriched in probands with autism  
or PDD diagnosis but not Asperger’s syndrome (AS) diagnosis.  
(b) Private, inherited LGD SNVs are primarily enriched in probands  
with lower IQ than average (<100). (c) We observe transmission  
disequilibrium of rare, inherited CNVs in SRS-discordant families  
(proband SRS score > 75, sibling SRS score < 50) but not in families  
where the SRS score was mild or more balanced between the proband  
and sibling. (d) Rare, inherited CNVs are enriched in probands (versus  
their siblings) with IQ <70, but the effect is not significant in probands  
with IQ >70. All tests and reported P values are paired t tests based on 
proband-sibling pairs. All analyses were restricted to genes with RVIS  
values below the 50th percentile. NS, not significant.

table 3 cNV burden and transmission

Data set Inheritance ORa P (t test) t-test mean of the differencesa

Number of CNV events

Probands Siblings

All De novo 1.90 (1.32, Inf) 6.7 × 10−5 0.46 (0.28, Inf) 79 33

All inheritance 1.10 (0.95, Inf) 0.03 0.08 (0.02, Inf) 775 710

Maternal 1.15 (1.00, Inf) 0.01 0.11 (0.04, Inf) 411 357

Paternal 1.02 (0.89, Inf) 0.59 0.02 (−0.05, Inf) 364 353

Deletions De novo 3.07 (1.79, Inf) 4.2 × 10−5 0.68 (0.43, Inf) 49 13

All inheritance 1.11 (0.96, Inf) 0.05 0.09 (0.01, Inf) 297 262

Maternal 1.08 (0.90, Inf) 0.20 0.08 (−0.02, Inf) 156 139

Paternal 1.09 (0.90, Inf) 0.14 0.09 (−0.01, Inf) 141 123

Duplications De novo 1.20 (0.74, Inf) 0.18 0.21 (−0.05, Inf) 30 20

All inheritance 1.12 (0.98, Inf) 0.20 0.05 (−0.02, Inf) 478 448

Maternal 1.16 (0.99, Inf) 0.03 0.11 (0.03, Inf) 255 218

Paternal 1.00 (0.86, Inf) 0.67 −0.02 (−0.11, Inf) 223 230

Duplications <100 kb De novo 0.60 (0.27, Inf) 0.55 −0.15 (−0.57, Inf) 9 12

All inheritance 1.12 (0.97, Inf) 0.38 0.04 (−0.04, Inf) 315 298

Maternal 1.19 (0.99, Inf) 0.01 0.15 (0.05, Inf) 177 143

Paternal 0.98 (0.81, Inf) 0.22 −0.08 (−0.19, Inf) 138 155

Test results (one-sided paired t test) are shown for all CNV events, deletions, duplications and small (<100 kb) duplications.
aNumbers in parentheses indicate 95% confidence intervals.
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Father Mother

Proband Sibling

De novo SNVs (disruptive)

De novo CNVs

Inherited CNVs (rare)

1.72

Odds ratio

P(ASD) ~ �0 + �1 (de novo SNVs) +

             �2 (de novo CNVs) + �3 (inherited CNVs) +

                �4 (inherited SNVs) + strata (family)

P value

2.05

1.23

<1 × 10–5

0.0004

0.01

Inherited SNVs (rare) 1.11 0.0002(P = 0.03, paired t test). This effect was driven 
almost exclusively by smaller (<100 kb)  
maternally inherited events (P = 0.01, paired 
t test). In contrast to de novo events, for 
inherited CNVs, there was no difference in the size of the CNVs 
transmitted in probands relative to those transmitted in siblings  
(P = 0.59, Wilcoxon). Similar to our observations of SNV mutations 
in conserved genes, we found that genes within CNV intervals in 
probands had a lower average RVIS than those in siblings, with the 
difference borderline statistically significant (P = 0.05, Wilcoxon).

To more fully understand the potential biology of these inherited 
CNV events, we tested whether the CNVs were enriched in either 
FMRP23 or CHD8 (ref. 24) targets. Although no overall enrichment 
of FMRP (P = 0.22) or CHD8 (P = 0.19) target genes was observed 
among inherited CNVs, when we restricted the analysis to mater-
nally inherited duplications, we observed a significant enrichment for 
CHD8 targets (OR = 1.5; P = 0.02, Fisher’s exact test and P = 3.9 × 10−3,  
paired t test). In particular, this enrichment was strongest for small 
duplications (<100 kb) (OR = 1.5; P = 0.05, Fisher’s exact test and  
P = 7.4 × 10−3, paired t test). As truncating mutations of CHD8 have 
been associated with a subtype of autism characterized by macro-
cephaly25, we tested whether patients carrying CNVs that intersected 
CHD8 target genes showed any deviation in head circumference. We 
specifically stratified the patient population into two groups: those 
containing a maternally inherited CNV with a CHD8 target and 
those that had a maternally inherited CNV without a CHD8 target. 
We then tested whether there was an enrichment of macrocephalic 
or microcephalic patients in carriers of CNVs with CHD8 targets. 
Interestingly, we observed a modest enrichment for macrocephaly in 
patients with maternally inherited autosomal deletions containing 
CHD8 targets (OR = 2.9, P = 0.03, Fisher’s exact test), including for 
smaller deletions (<100 kb) (OR = 3.5, P = 0.04, Fisher’s exact test). 
The reciprocal was also observed, with enrichment for microcephaly 
with borderline significance in maternally inherited autosomal dupli-
cations containing CHD8 targets (OR = infinity, P = 0.04, Fisher’s 
exact test) (Supplementary Fig. 5). As a control, we repeated the 
same analysis for inherited CNVs carrying FMRP targets, which we 
did not expect to have any relevance for head circumference, and we 
found no statistically significant enrichment for increased head size 
among carriers of CNVs with these targets.

SNV	and	CNV	integration	and	sex	bias
We jointly examined SNVs and CNVs at a gene level to identify 
potentially new ASD candidate genes (Supplementary Table 6). On 
the basis of our findings, we considered all de novo CNVs, private, 
inherited SNVs in genes with an RVIS below the 50th percentile and 
rare, inherited CNVs where at least one gene had an RVIS below the 
50th percentile; we then created a combined gene-level table identify-
ing several candidate genes. In particular, the three highest-ranked 
genes—RIMS1, CUL7 and CSMD1—each display brain-specific 
expression or have identified neural functions (Supplementary Fig. 6).  
The highest-ranked gene, RIMS1, had two de novo LGD mutations 

and two private, inherited LGD mutations in probands. Additionally, 
there were six rare, inherited LGD mutations in probands (two were 
shared with siblings and one was found in a trio) and one muta-
tion in a sibling alone. CUL7 had two de novo and two inherited 
LGD mutations in probands (none in siblings). Finally, CSMD1  
had three de novo missense mutations in probands, four LGD SNVs 
(one was shared with a sibling and one was found in a trio) and 
five rare, inherited CNVs (one was shared with a sibling and one  
was found in a trio). (See Supplementary Fig. 6 for details and the 
locations of these variants.)

We quantified the risk for ASD by examining de novo and inherited 
CNVs and SNVs using a conditional logistic regression model (Fig. 4;  
see Online Methods). In this model, the binary outcome of an ASD 
proband or unaffected sibling is predicted by four independent 
counts: (i) the number of de novo CNVs; (ii) the number of de novo 
LGD SNVs; (iii) the set of rare, inherited CNVs; and (iv) the set of 
private, inherited LGD SNVs in genes with an RVIS below the 50th 
percentile (Supplementary Table 6). Additionally, we accounted for 
familial stratification effects by adding a family-level stratum to the 
model. Using data from the 1,786 quads, we found robust effects for 
de novo events (Supplementary Table 7): each de novo CNV increased 
the risk for ASD by 2.05-fold, whereas each de novo SNV increased 
risk by 1.72-fold (P = 0.0004 and P < 1 × 10−7, respectively). In  
addition, the results from this analysis show a significant role for 
inherited mutations in ASD risk: rare, inherited CNVs contribute  
an increased risk of 1.23 (P = 0.01), and private LGD SNVs have an 
OR of 1.11 (P = 0.0002). These results suggest that each of the four 
types of mutations modeled additively contribute to the risk of ASD 
and that they do so in a statistically independent manner.

Finally, by calculating the attributable fraction in the population 
(Supplementary Fig. 7), we were able to identify the contribution 
of each variant type as follows: de novo LGD SNVs, 6.62% (4.18%, 
8.99%); private, inherited LGD SNVs, 8.54% (−24.23%, 32.66%); 
de novo CNVs, 2.92% (1.37%, 4.44%); rare, inherited CNVs, 3.18% 
(−3.71%, 9.6%). Whereas these values give high confidence for de novo 
events, the contributions of the inherited events are less clear. When 
stratifying by inheritance and RVIS for private, inherited LGD SNV 
events, the results became much tighter and showed a clear contribu-
tion for maternal events (7.15% (−0.25, 14.01%)) and not for paternal 
events (1.01% (−6.56%, 8.04%)). The same was found for maternal 
duplications (2.99% (−0.45%, 6.31%)), especially those under 100 kb 
in size (2.65% (−0.16%, 5.38%)).

Specifically, we extended the work to investigate the roles of mater-
nally transmitted events to males and females. First, we assessed the 
attributable fractions in all quad families and subsequently in quads 
with male probands and female probands separately. For LGD SNVs, 
we were able to identify private, maternally inherited LGD SNVs in 
genes with RVIS values below the 50th percentile as the category 

Figure 4 Combined risk model for SNVs and 
CNVs (inherited and de novo). Integrative risk 
model for ASD, based on de novo and inherited 
events and covering both SNVs and CNVs. The 
model used is a stratified logistic regression 
model, which uses proband-sibling pairs to 
estimate the OR (i.e., risk) of ASD for each type 
of event (supplementary table 7).
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with the highest attributable fraction (estimated) in the population 
(8.32% (0.56%, 15.48%)) in the families with male probands, whereas 
the families with female probands had a value of –2.33% (−29.06%, 
18.87%) in this same category. No effect was observed for paternally 
inherited LGD events. This is in stark contrast to de novo LGD events, 
which contribute 5.7% (−2.26%, 13.04%) of the attributable fraction 
in females (Supplementary Fig. 7). Although larger sample sizes 
will be required, these findings are consistent with the maternal bias 
observed for large and small CNVs and now extend the observation 
to maternally inherited SNVs. To further explore this difference, we 
examined all four possible quad types based on sex: male proband/
male sibling, male proband/female sibling, female proband/male 
sibling and female proband/female sibling. These observations for 
maternally inherited LGD SNVs held true regardless of the sex of the 
sibling (Supplementary Fig. 7 and Supplementary Table 8)26.

DISCUSSION
In this study, we have explored the effect of rare, inherited variation 
on the risk of autism. Our results provide some of the first genetic 
evidence that private, inherited SNVs that truncate proteins are 
enriched in autism probands. Remarkably, this effect is only observed 
for truncating SNVs that disrupt genes intolerant to functional varia-
tion and shows bias in transmission from mothers to their sons. The 
effect becomes more pronounced the more intolerant the gene is to 
mutation, consistent with the notion that such genes are subject to 
strong selective pressure. While the effect is strongest for individuals 
with a diagnosis of autism, it is most significant for SRS-discordant  
quads and probands with an IQ between 70 and 100. Extending 
previous work12–14 on the role of rare inherited CNVs, we report 
that smaller maternally inherited duplications show the largest bias 
toward transmission to probands, and these duplications are enriched 
for gene targets of CHD8. The reciprocal shift in macrocephaly and 
microcephaly when comparing CHD8 target gene duplications and 
deletions, respectively, is intriguing but warrants further investiga-
tion. In addition, the application of two SNV callers identified 77 
additional de novo SNVs that were previously missed9. The recurrent 
hits highlight potential new pathways such as the insulin-like growth 
factor protein-interaction network (Fig. 5). This is interesting because 
variable levels of IGF1 are considered a biomarker of autism27 and are 
of potential therapeutic relevance28.

In some cases, inherited and de novo mutations of both SNVs and 
CNVs converge on the same gene (Supplementary Table 6). RIMS1 
has been previously suggested as an ASD candidate as a result of 
recurrent de novo truncating mutations4,29. In this analysis, we also 
find a nominally significant transmission disequilibrium of private, 
disruptive events of RIMS1 to probands (P = 0.013, TDT-Combined 
Multivariate and Collapsing (CMC) analytical21) but not siblings  
(P = 0.841) (Supplementary Table 3). The gene displays brain- 
specific expression, and disruption of the gene in mice leads to 

increased postsynaptic density and impaired learning. CUL7 has 
two de novo and two LGD-inherited mutations in probands (none 
in siblings); functionally, it is an E3 ligase with high cerebellar brain 
expression and a selective role in neural dendrite patterning and 
growth30. For the highly conserved gene CSMD1, there are three  
de novo missense mutations, one shared inherited LGD SNV, and four 
rare inherited focal CNVs (one shared with siblings). Overall, there 
are eight events in ASD probands and two in siblings clustered at the 
exon-dense 3′ end of CSMD1, a region nearly devoid of exonic CNVs 
in the Database of Genomic Variants (DGV; Supplementary Fig. 8). 
Functionally, CSMD1 exhibits strong and specific brain expression; 
this gene has been associated with schizophrenia31, and damaging 
variants of the gene segregated in two ASD families with distantly 
related probands32.

We also identified candidate genes for which no de novo events have 
yet been reported despite evidence of over-transmission of private LGD 
events to affected probands within the SSC families (Supplementary 
Tables 3 and 6). Using the RV-TDT on rare inherited events, we iden-
tified candidates that have not yet reached locus-specific significance, 
including LZTR1 (commonly deleted in DiGeorge syndrome33) and 
CENPJ (a gene with autosomal recessive mutations known to cause 
microcephaly and intellectual disability34). While these genes and 
genes like RIMS1 may represent important risk factors for ASD, the 
fact that gene-disruptive events are inherited from normal parents 
and/or occasionally transmitted to unaffected siblings argues that 
they are neither necessary nor sufficient to cause autism. This stands 
in contrast to other genes, such as ADNP, CHD8 or DYRK1A, where 
de novo LGD mutations have been observed almost exclusively in 
probands. In fact, genes enriched for de novo LGD mutations have 
significantly fewer inherited LGD mutations than expected from ran-
domly sampled gene sets (empirical P < 1 × 10−4, see Online Methods 
and Supplementary Fig. 9), suggesting that inherited and de novo 
mutation risk factors may often target different genes.

We hypothesize the second class of inherited-LGD genes simply 
predisposes an individual to ASD, requiring additional genetic or 
non-genetic factors to reach a disease state. Notably, the largest effect 
appears to be for maternal transmission to sons, consistent with other 
recent findings16 and models of autism11. Such oligogenic models 
have been proposed previously for CNVs35 as well as other forms of 
severe mutation associated other human diseases36,37. The availability 
of CNVs and SNVs from exome sequence data is the first step toward 
obtaining a more complete genetic picture at an individual level in 
the context of autism. In this light, it is interesting that our analysis  
uncovered a paternally inherited two-exon intragenic deletion of 
NRXN3 and a de novo missense mutation of NLGN2 in proband 
13367.p1 (Supplementary Fig. 10). Both of these genes have been 
identified as ASD risk factors, but crucially, they are also protein-
protein interacting partners. The neuroligin-neurexin interaction 
has long been hypothesized to be a key underlying pathway in ASD 

GIGYF1

GRB10

GIGYF2

TNRC6B
ZNF598 RBM12

Part of IGF
signaling pathway

De novo
LGD SNV

De novo
missense SNV

De novo
CNV deletion

Figure 5 Networks and pathways. A highly interconnected network was 
identified on the basis of new de novo mutations identified in this study 
(note: one additional de novo missense mutation was recently identified 
in an independent study10). Gene Ontology (GO) annotation of the 
genes in this network suggests involvement of the insulin-like growth 
factor (IGF) signaling pathway (GIGYF1, GIGYF2 and GRB10; accession 
GO:0048009), which has been previously implicated in the development 
of ASD28. Furthermore, GIGYF2 and ZNF598 form part of the m4EHP 
mRNA-binding complex and have widespread roles in translational 
repression, especially in the brain and lungs38. Red stars, de novo LGD 
mutations (frameshift, stop gain, splice site); blue stars, de novo missense 
mutations; purple star, CNV deletion.
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pathology, but to our knowledge, this is the first identification of a 
case with mutations in both binding partners. As the genetic profile 
of the SSC becomes more complete through full genome sequencing, 
it is likely that examples supporting an oligogenic model for ASD will 
become more prevalent and informative to our understanding of the 
genetic etiology.

URLs. epiR, http://cran.r-project.org/web/packages/epiR/index.html.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Raw data (including BAM files, VCF files, addi-
tional data files and the software pipelines) have been deposited in 
the National Database for Autism Research (NDAR) under study 353 
(doi:10.15154/1151812). 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METHODS
Data sets. We analyzed exome data from 2,377 families with ASD (2,391 before 
quality control) from the SSC39, including 1,786 quads and 591 trios (total of 
8,917 exomes). These exomes were recently analyzed for de novo variants4,5,8,9 
but were reanalyzed here to increase sensitivity and to create a unified call 
set for private variants (Table 1). The raw sequence data for these exomes 
are available in the National Database for Autism Research (NDAR), and the 
reanalyzed data, including the complete variant call format (VCF) files from 
the SNV call set and bioinformatics pipelines for this study, are available (see 
URLs). We used Illumina 1M, 1MDuo or Omni2.5 SNP microarray data for 
1,266 complete quads for CNV validation18 (S.J. Sanders, personal commu-
nication). Relevant phenotype scores were extracted for both SRS (parent-
assessed T-scores22) and full-scale IQ (as in Krumm et al.12) from the SSC 
Simons Foundation Autism Research Initiative (SFARI) Base. Normalized head 
circumference scores were determined as previously described40. Published 
databases of FMRP23 and CHD8 (ref. 24) target genes were used to assess 
enrichment of targets within CNVs. The institutional review board (IRB) of 
the University of Washington approved this study (IRB 46179).

Sequence data processing. Reads from all 8,917 exomes were realigned using 
BWA-MEM41 (v0.7.5a, options -k 17) to the 1000 Genomes Project Phase 1  
reference genome (hg19/GRCh37). We mapped all available libraries for  
samples, including single-end and paired-end reads where appropriate. 
Mapped BAM files were processed according to GATK42 best practices, 
including duplicate marking and mate fixing. We applied GATK (v. 2.7-4) 
IndelRealigner in a family-aware manner, ensuring that each member of a 
family was realigned at the same positions across the family. Base qualities  
were recalibrated using GATK. We next used QPLOT43 and computed  
24 read- and exome-level statistics (Supplementary Table 9) for quality con-
trol assessment. Finally, to ensure that we did not have any sample, family or 
data mix-ups, we used a custom-developed tool (S.J. Sanders, personal com-
munication) to identify and match 287 polymorphic SNPs in each exome to an 
existing database of ‘SNP fingerprints’ derived from Illumina SNP microarray 
data18 and 96 SNP fingerprints collected by the Rutgers sample distribution 
center. We excluded 14 families for issues with sample identity, and concord-
ance by center is shown in Supplementary Table 10.

SNV discovery. To identify SNVs, we batched families into groups of 16–20 
families, or approximately 70 exomes, to ensure better sensitivity for events. 
We called SNVs and indels with both the GATK HaplotypeCaller (v 2.7-4) 
and FreeBayes44 (v0.99) to within 20 bp of the NimbleGen EZ-SeqCap v2.0 
targets. Family-level VCF files from FreeBayes and GATK were merged into a 
union set. Merged VCF files were annotated using SnpEff45 (v 3.4i), dbNSFP46 
(v2.1), CADD score47, dbSNP (v137), tandem repeats and segmental duplica-
tions. Allele frequency was estimated by counting non-reference alleles across 
all parents (n = 4,754).

For de novo events, we applied a minimum read depth of 6 alternate alleles 
in offspring and a read depth of >10 reference reads in parents and allowed for 
no more than 2 low-quality bases of the de novo variant. Because the FreeBayes 
and GATK SNV calling routines report only the number of high-quality reads 
supporting the alternate or reference allele, we queried the original BAM files 
at each site to include the count of low-quality bases in these filters. To exclude 
common artifacts, we only considered de novo sites that were private to a fam-
ily. Inherited events were derived from the intersection set of both algorithms, 
with a minimum depth filter (DP > 20) and quality filter (QUAL > 50) for all 
events (Fig. 1 and Supplementary Fig. 11). In addition, we applied a batch 
exclusion filter, which filtered out variants found at high frequency exclusively 
in one batch (3 or more times among 16–20 families). Using the FreeBayes 
and GATK intersection set, we found a median of 23,055 transmitted variants 
per exome for probands and siblings (95% CI = 15,885–27,845; Fig. 1c) and a 
median of 26,920 transmitted variants per family (95% CI = 23,394–31,401).  
A median of 377 (95% CI = 154–692) sites per family were new and not 
observed in dbSNP (v137); conversely, a median of 98.6% of sites were in 
dbSNP, and 99.7% of these were in agreement with respect to the alternate 
allele. Overall, 81% of all transmitted variants were found by both FreeBayes 
and GATK, 12% were found by FreeBayes alone and 7% were found by  
GATK alone. The intersection set of variants had a median Ti/Tv ratio of 

2.94 (95% CI = 2.79–3.03) for all sites, a ratio of 2.95 (95% CI = 2.83–3.04)  
for dbSNP sites and a ratio of 1.94 (95% CI = 1.05–2.75) for new sites.  
Of all the inherited mutations in the intersection set, an average of 341  
(95% CI = 133–632) sites were new and not observed in dbSNP (v137);  
98.6% of sites were in dbSNP with a concordance rate of 99.7% (for all  
transmitted variants, 93.4% of variants were found in dbSNP and 99.5% were 
concordant). In addition, we compared SNPs from exome calls with SNP  
calls from existing Illumina SNP microarray data18 (S.J. Sanders, personal 
communication) and found the median genotype-level concordance to  
be 99.4% (for a median of 17,731 overlapping SNPs in 3,052 offspring  
in 1,796 families for which microarray data were available).

Modeling de novo SNV validation efficiency. We used the Sanger sequencing 
validation results from our 141 tested de novo SNV events to better understand 
which SNV calls would be the most likely to validate. In this post-hoc analysis, 
we constructed a feature matrix of 77 validated events (truly de novo) and  
63 ‘invalidated’ events (which turned out to be inherited or otherwise not 
present), along with event- or site-level quality data emitted by GATK and/or 
FreeBayes (Supplementary Table 1). This quality information included data 
such as QUAL (Phred-scale quality score for the assertion made for the alternate 
allele), BaseQRankSum, MQ (mapping quality), MQ0 (number of reads with 
mapping quality equal to 0 covering the variant) and MQRankSum (z score  
from Wilcoxon rank-sum testing of alternative versus reference read mapping 
qualities), as well as sample-specific data for allele depth, allele quality and 
GATK-specific fields such as PL (Phred likelihood). As many of the invali-
dated events were found to be present in one of the parents (i.e., they were 
inherited heterozygous SNVs), we also included the maximum (or minimum, 
when appropriate) values of both parents for PL and GQ (genotype quality). 
For values that were not outputted by both FreeBayes and GATK, we imputed 
values on the basis of the mean of all values not missing.

Using this feature matrix, we investigated three types of classifiers present in 
the Python Scikit-Learn package48: an SVM (linear kernel; ‘svm.SVC’ module),  
a decision tree (‘tree.DecisionTreeClassifier’) and a random forest model 
(‘ensemble.RandomForestClassifier’, with ‘n_estimators’ = 200). We estimated 
all accuracy statistics by cross-validation (scores are the reported average from 
cross-validation; Supplementary Table 11). Using these data, the random  
forest method had the best overall performance across most performance  
metrics, although the SVM method had slightly better recall. For the  
decision tree and random forest methods, we were able to compute matrices 
corresponding to individual feature importance with respect to classification  
(Supplementary Table 12; note that this is not possible using the SVM  
implementation). For both classifiers, we found that the most important  
feature was the proband’s allele balance, and this finding was recapitulated 
when observing the allele balance values directly (Supplementary Fig. 2).

CNV discovery. We used the CoNIFER49 and XHMM50 algorithms to discover 
copy number variation from exome data at a single-exon resolution. Identification 
with CoNIFER was carried out as described12. Briefly, we split reads into 36-mers 
and aligned them using mrsFAST51 to NimbleGen EZ-SeqCap v.2 targets and 
flanking sequence. Using CoNIFER, we processed all samples with the specific 
setting of –components-removed equal to 40. CNV calls were made using the 
CoNIFER tools package, which implements DNAcopy52. In parallel, XHMM 
was applied using best-practice guidelines. GATK was used to calculate depth of 
coverage (from BWA-MEM alignments) for each individual, and all individuals 
were then combined into one composite file. The XHMM-specific steps included 
hard filtering of samples and targets, PCA on the data, filtering on the basis of 
the PCA results and discovery of CNVs. Post-discovery CNVs were genotyped 
by family, and a score cutoff of 10 was ultimately used to determine inheritance 
in families on the basis of SQ and NQ values50.

Using the union of the XHMM and CoNIFER call sets, we first genotyped 
all loci across family members to recover false negative calls and then identified 
transmitted and de novo CNVs. CNVs were clustered into copy number–variable  
regions, or CNVRs (as previously described12), and then annotated with family 
frequency across the entire cohort. To focus our analysis on the CNVs most 
likely to be relevant to ASD pathogenesis, we restricted our analysis to rare 
CNVs found at frequency <0.8% (<10 events/1,266 families) mapping outside 
of repetitive genomic elements (Supplementary Fig. 12).
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Validation experiments. Our reanalysis pipeline identified 1,544 new  
candidate de novo SNVs not detected by previous analyses of the same data set 
(Supplementary Table 1). Using Sanger sequencing, we attempted validation 
of 141 (of the 1,544) previously unidentified de novo variants, including all 
new LGD (stop-gain, frameshift and splice-site) events, as well as recurrent 
missense mutations in autism candidate genes53. We were able to validate 77 
new sites (55%). These SNVs included various functional classes: 1 codon 
change plus codon deletion, 11 frameshift mutations, 51 missense mutations, 
3 splice-site acceptor mutations, 4 splice-site donor mutations, 6 stop-gain 
mutations and 1 stop-loss mutation. In addition, we also validated by Sanger 
sequencing another 132 previously called9 but not confirmed events, resulting 
in a total of 209 validated de novo SNVs and indels (Supplementary Table 2).  
This new analysis identified 21 new recurrently hit genes not identified in  
previous studies (Table 2). We did not attempt validation of any inherited 
SNVs but rather used the intersection of the FreeBayes and GATK sets to 
obtain the highest-quality variant events (all rare SNVs are shown in the 
Supplementary Data Set).

We used SNP microarray data (available for 1,266 quads) for validation of 
CNV events discovered using CoNIFER and XHMM. Probe-level copy number 
estimates were generated for each array sample using Corrected Robust Linear 
Model with Maximum-Likelihood Classification (CRLMM) software54,55.  
A permutation-based method examined the mean copy number of all probes 
in each CNVR versus random sampling of the same number of probes from 
the genome (n = 10,000) to assess event confidence. Events with permutation 
P < 0.01 and with percentile ranking of <30 or >70 were considered to be 
validated deletions and duplications, respectively (a full list of validated events 
for all quads and trios is provided in Supplementary Table 13). To further 
validate and genotype de novo events, we employed the CRLMM method to 
recall genotypes in trios and were able to recover events that were truly de novo 
as well as events inherited from a parent but missed in the exome analysis. 
Our final CNV data set for all statistical testing consisted of validated events 
in the 1,266 quads for which SNP microarray data were available. We further 
tested an additional 50 de novo CNVs in individuals lacking SNP microar-
ray data by aCGH12 using a customized Agilent Technologies microarray. In 
this design, we targeted events and flanking genomic regions (up to 5 kb or 
three exons) where probe density ranged from a spacing of 150 bp to 5 kb, 
depending on the size of the event. Of these CNV events, 26 were validated, 
of which 21 were confirmed to be de novo whereas 5 were transmitted events 
(Supplementary Table 5).

Statistical analyses. We tested for transmission disequilibrium between 
probands and siblings in aggregate with a Fisher’s exact test (by comparing 
summed proband and sibling variant counts for LGD versus non-LGD events) 
and at the level of each proband-sibling pair using the Mann-Whitney U test 
(by comparing the variant counts in each proband-sibling pair). In addition, 
we used a logistic regression model in which the dependent variable was the 
presence of a variant in a proband (true or false), and the independent variables 
were characteristics of the variant (such as its frequency or conservation score). 
Note that we applied a different conditional logistic regression to assess the 
risk by variant class to affected and unaffected individuals within the families.  
We used RVIS19 to identify genes that were not tolerant of functional or 
deleterious mutation in control populations (defined here by an RVIS value 
below the 50th percentile) and hypothesized that the score may have similar 
relevance to ASD genes (see also ref. 20). We examined the RVIS profile of 
genes in a protein-protein interaction network based on published de novo 
mutations in ASD53 and found that these ASD-related genes had an average 
RVIS percentile of 26.3. This average was significantly lower than those for 
randomly picked sets of genes, suggesting that RVIS percentile is a relevant 
predictor of ASD genes (P < 1 × 10−6, permutation testing; Supplementary 
Fig. 13). To integrate both CNV and SNV data for specific genes, events were 
tabulated on the basis of variation type (SNV or CNV) and inheritance class 
as presented throughout this manuscript. In particular, we counted all de novo 
CNVs and LGD or missense SNV events, private inherited LGD SNVs in genes 
with an RVIS below the 50th percentile and rare, inherited CNVs in which at 
least one gene had an RVIS below the 50th percentile. From these values, we 
calculated P values for de novo SNVs6 and inherited SNVs and CNVs (bino-
mial test). Genes were ranked on the basis of a Fisher’s combined P-value test 

(Supplementary Table 6; family-based aggregation shown in Supplementary 
Table 14). We also applied RV-TDT21 using trio data (parents and either the 
affected proband or the unaffected sibling) to test for an association between 
rare, inherited LGD events in conserved genes (at two different RVIS percen-
tile cutoffs, <50 and <20) and ASD.

Combined gene-level ranking. For each gene (Supplementary Table 6), we 
calculated a ‘delta score’, defined as the difference in counts between proband 
and sibling in terms of the number of de novo LGD and missense SNVs. 
The delta score was adjusted for gene size and gene-specific mutation rate 
as described previously6. Because of the rarity of de novo CNVs and the dif-
ficulty in assigning gene-specific P values to large CNVs, we did not include 
de novo CNVs in this calculation. For inherited SNVs, we also calculated the 
proband-sibling delta score on the basis of private LGD SNVs and used a  
simple binomial test to rank genes. The P values specific to de novo or inherited 
variants were integrated using Fisher’s combined P-value test.

Conditional logistic regression. We estimated the contribution of genetic 
risk to ASD for both inherited and de novo CNVs and SNVs using an addi-
tive conditional logistic regression model and adding strata for families (or 
proband-sibling pairs). This model took the form

logit ASD CNVs SNVs
inherited CNVs inherite

[ ( )]~P de novo de novo+
+ + dd SNVs strata family+ ( )

Each term is composed of the total number of events in each individual. We 
included all de novo CNVs, all de novo LGD SNVs, the set of private, inherited 
LGD SNV mutations in genes with RVIS values below the 50th percentile and 
the set of rare, inherited CNVs with a minimum RVIS at or below the 50th 
percentile. We counted only autosomal events for all domains. The model was 
run with the survival.clogit function in the R language.

To test for nonlinear—or exponential—effects, we contrasted two simplified 
logistic regression models. In the first, we predicted proband (ASD) or sibling 
(unaffected) status simply on the basis of the summed number of mutations 
defined above (and again including family-level strata). The OR for each muta-
tion (regardless of type) in this model was 1.17 (P < 1 × 10−8). In the second 
model, we added a term consisting of the total number of mutations squared. 
In this model, the simple sum was again significant (OR = 1.20, P = 0.002), 
but the squared sum term was not (OR = 1.00, P = 0.59).

Overlap between genes enriched for de novo and inherited events. We exam-
ined whether genes enriched for de novo mutations were also enriched for the 
class of inherited, private LGD mutations. Using data from Supplementary 
Table 6, we ranked all genes by their enrichment for de novo mutations (via 
the “de.novo.SNV.p.value” column). We took the top 100 genes in this sorted 
list and compared the summed gene counts for all inherited CNVs and SNVs 
in this group against 10,000 iterations of 100 randomly selected genes (with-
out replacement) from the list. Observation of the resulting histogram and 
observed values suggests that genes enriched for de novo mutations do not 
overlap with genes enriched for inherited LGD mutations or rare disruptive 
CNVs (Supplementary Fig. 9).

Population attributable risk. We assessed the contribution of different variant 
types to risk in the population. Included in the variant types were SNVs of the  
following classes: inheritance (de novo, private inherited), RVIS (no cutoff, 50, 20)  
and transmission (all, maternal, paternal). CNV classes tested included inher-
itance (de novo, rare (<0.8%) inherited), type (deletion, duplication) and size 
(no cutoff, <100 kb). To assess the attributable fraction (estimated) in exposed 
(ASD probands) and attributable fraction (estimated) in the population, we 
used the epi.2by2 function in epiR. We calculated population attributable risk 
using the method detailed in Taylor et al.26. For a given variant type, the 
attributable fraction in the exposed gives the fraction of cases with the variant 
type that have autism because of that variant type; the attributable fraction  
in the population is the number of cases with the variant type that have  
autism because of the variant type, and the population attributable risk is the 
proportion of autism relevant to the variant type26. Complete results for all 
categories are listed in Supplementary Table 8.
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