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Haploinsufficiency of SOX5 at 12p12.1 is Associated with
Developmental Delays with Prominent Language Delay,
Behavior Problems, and Mild Dysmorphic Features
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ABSTRACT: SOX5 encodes a transcription factor involved
in the regulation of chondrogenesis and the development
of the nervous system. Despite its important developmen-
tal roles, SOX5 disruption has yet to be associated with
human disease. We report one individual with a recipro-
cal translocation breakpoint within SOX5, eight individ-
uals with intragenic SOX5 deletions (four are apparently
de novo and one inherited from an affected parent), and
seven individuals with larger 12p12 deletions encompass-
ing SOX5. Common features in these subjects include
prominent speech delay, intellectual disability, behavior
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abnormalities, and dysmorphic features. The phenotypic
impact of the deletions may depend on the location of
the deletion and, consequently, which of the three major
SOX5 protein isoforms are affected. One intragenic dele-
tion, involving only untranslated exons, was present in a
more mildly affected subject, was inherited from a healthy
parent and grandparent, and is similar to a deletion found
in a control cohort. Therefore, some intragenic SOX5
deletions may have minimal phenotypic effect. Based on
the location of the deletions in the subjects compared to
the controls, the de novo nature of most of these dele-
tions, and the phenotypic similarities among cases, SOX5
appears to be a dosage-sensitive, developmentally impor-
tant gene.
Hum Mutat 33:728–740, 2012. C© 2012 Wiley Periodicals, Inc.
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Figure 1. SOX5 transcripts, genomic environment, protein structure, and partial SOX5 deletions in this cohort. (A) SOX5 has two long transcripts
(NM_006940.4 and NM_152989.2) and one short transcript (NM_178010.1). Gray boxes represent exons, and coding exons are numbered 1–15.
MicroRNA gene MIR920 within SOX5 is also shown. The green box represents the CpG island at the SOX5 promoter; yellow boxes represent
consensus trimethylated histone H3K4 sites, a mark of transcriptional regulation (Birney et al., 2007); and purple boxes represent TSSs as identified
by ARTS (accurate recognition of transcription starts; Sonnenburg et al., 2006) (B) Dark blue boxes represent locations of deletions found in a
control cohort (Cooper et al., 2011). Numbers represent number of deletions within the indicated interval; deletions were not necessarily identical
or encompassing the entire block. Four deletions included exons: three overlapped the first exon of the short isoform, one of which also deleted
exon 9 of the long form, and the other removed untranslated exon 4. Light blue boxes represent the minimum size of the partial SOX5 deletions
reported in this paper; horizontal lines extend through gaps between probes on the arrays to show the maximum possible deletion size. Subject
5 (DGAP189) had a reciprocal translocation with a breakpoint at the location indicated. (C) Protein domains in NP_008871.3 relative to its spliced
transcript (NM_006940.4). Red regions are nuclear localization (NL) domains.

Introduction

Molecular cytogenetic techniques, such as array comparative ge-
nomic hybridization (aCGH), have precipitated a change in diag-
nostic emphasis from phenotype to genotype. Traditionally, iden-
tification of genetic causes of a syndrome first required ascertain-
ment of multiple patients with similar phenotypes followed by a
search for the underlying genetic cause. In contrast, techniques
such as aCGH allow for identification of patients with similar geno-
types followed by characterization of the associated phenotype. This
genotype-first approach [Shaffer et al., 2007] is the only way to
appreciate how similar genetic changes can lead to a phenotypic
spectrum that may include nonspecific features, be variably ex-
pressed, and have overlapping features that may be found in other
syndromes.

To increase the likelihood of identifying previously uncharac-
terized copy-number imbalances that may be causing a pheno-
typic spectrum of nonspecific neurodevelopmental features, we
constructed whole-genome microarrays with enhanced coverage of
over 500 functionally significant genes including transcription fac-
tors and other developmentally important genes. This has facilitated
identification of intragenic, disease-causing deletions [Rosenfeld

et al., 2009a, b; Talkowski et al., 2011b]. In our laboratory, another
of the targeted genes, located on 12p12.1, SRY-box 5 (SOX5; MIM#
604975), has had multiple, small, apparently de novo deletions iden-
tified in patients referred for clinical aCGH testing.

SOX5, along with SOX6 and SOX13, encode members of the
SOXD family of transcription factors. SOXD proteins play a role
in multiple developmental pathways, including cartilage forma-
tion [Aza-Carmona et al., 2011; Lefebvre et al., 1998] and nervous
system development [Kwan et al., 2008; Lai et al., 2008; Lefeb-
vre, 2010]. There are three major SOX5 transcription products,
two long forms (NM_006940.4 and NM_152989.2) that code for
proteins similar in size to those coded for by SOX6 and SOX13
(NP_008871.3 and NP_694534.1, respectively) and a unique short
form (NM_178010.1, encoding NP_821078.1; Fig. 1) [Kiselak et al.,
2010]. In humans, the long forms are highly expressed in chondro-
cytes and striated muscles [Ikeda et al., 2002] and have been seen
in the fetal brain [Wunderle et al., 1996], while the short form is
expressed mainly in the testes [Wunderle et al., 1996]. Mouse studies
have shown the long and short forms to be expressed in the brain
[Kiselak et al., 2010]. Mouse models support a role for long Sox5
and Sox6 in chondrogenesis [Smits et al., 2001] and in the devel-
opment of neocortical projection neurons [Kwan et al., 2008; Lai
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et al., 2008]. Homozygous loss of long Sox5 (through deletion of
a coding exon specific to the long transcripts) leads to respiratory
distress causing death at birth, apparently due to cleft palate and a
small thoracic cage. Complete knockout of Sox6 is frequently lethal
at birth; a short sternum is the only apparent skeletal defect ob-
served, although severe dwarfism develops postnatally. Inactivation
of both genes is lethal three days before birth, with restricted skele-
tal growth and ossification [Dy et al., 2008; Smits et al., 2001]. The
short Sox5 protein also functions as a transcription factor that drives
testis-specific gene expression [Blaise et al., 1999; Budde et al., 2002;
Kiselak et al., 2010; Xu et al., 2009] and likely plays a major role in
the formation and function of motile cilia in brain, lung, testis, and
sperm [Kiselak et al., 2010].

Each of the long transcripts is associated with a separate promoter
region and transcription start site (TSS), supported by the presence
of H3K4Me3 histone modifications, a mark commonly associated
with the promoter regions of actively transcribed genes [Bernstein,
2002; Ng et al., 2003; Pokholok et al., 2005; Santos-Rosa et al., 2002;
Schneider et al., 2004; Schubeler et al., 2004] (Fig. 1). The two long
isoforms have slightly different translation start sites, resulting in
the inclusion of 13 additional amino acids at the N-terminus of
NP_008871.3 (the protein product encoded by NM_006940.4; Fig.
1C). The short transcript includes only 7 exons from the 3′ end of
the gene, encoding a smaller protein containing the high mobility
group (HMG) domain, which is involved in DNA binding and some
interaction with other proteins [Aza-Carmona et al., 2011], and only
one of the two coiled-coil domains found in the larger protein, which
allow for homo- and heterodimerization necessary for the dimer to
bind to some paired DNA binding sites (Fig. 1). The TSS for the
short transcript does not have a consensus H3KMe3 mark [Birney
et al., 2007], which may be due to its more restricted expression
[Kiselak et al., 2010].

The role of SoxD genes in many developmental pathways is well
established in mouse and suggests that alterations of SOXD genes
in humans could impact human disease [Lefebvre, 2010]; however,
no genetic studies to date have established such a link. Therefore,
to understand how SOX5 alterations may contribute to disease,
we analyzed the chromosomal abnormalities and phenotypes in
a series of 16 subjects with structural variations disrupting SOX5,
including an individual with autism that we previously reported with
a small, apparently de novo, intragenic SOX5 deletion [Rosenfeld
et al., 2010].

Materials and Methods

Subject Ascertainment

Subjects were identified after referral for clinical molecular cy-
togenetic testing, either to Signature Genomic Laboratories, Seattle
Children’s Hospital, Pittsburgh Cytogenetic Laboratories, Nantes
University Hospital, or Hôpital Jean Verdier, or through enrollment
in the Developmental Genome Anatomy Project (DGAP). Informed
consent was obtained to publish the subject photographs shown
here, according to protocols approved by IRB-Spokane.

Molecular Cytogenetics

Oligonucleotide-based aCGH was performed on subjects 2, 3,
6, 11, 14, and subject 6’s mother using a 105K-feature whole-
genome microarray (SignatureChip Oligo Solution [OS] version
1, custom-designed by Signature Genomics; manufactured by Agi-
lent Technologies, Santa Clara, CA) as previously described [Ballif

et al., 2008]. Oligonucleotide-based aCGH was performed on sub-
jects 1, 8, 9, 10, 12, 13, and subject 9’s father using a 135K-feature
whole-genome microarray (SignatureChipOS version 2, custom-
designed by Signature Genomics; manufactured by Roche Nimble-
Gen, Madison, WI) as previously described [Duker et al., 2010].
DNA from subject 4 was analyzed using Illumina HumanHap 300
single nucleotide polymorphism (SNP) microarray (Illumina, San
Diego, CA); DNA from subject 7 was analyzed using an Agilent
oligonucleotide-based 105K whole-genome microarray (Signature-
Select OS version 1.0); DNA from subject 15 was analyzed us-
ing an Agilent oligonucleotide-based 180K-feature whole-genome
microarray; DNA from subject 16 was analyzed using a RocheN-
imbleGen oligonucleotide-based 135K-feature whole-genome CGX
microarray, all according to manufacturers’ instructions.

Fluorescence In Situ Hybridization

Metaphase fluorescence in situ hybridization (FISH) analysis was
performed using a bacterial artificial chromosome (BAC) clone from
the abnormal region as determined by aCGH to visualize the ab-
normalities as previously described [Traylor et al., 2009]. When
available, parental samples were also assayed for the abnormal re-
gion detected by aCGH in the proband, using FISH.

Characterization of Translocation Breakpoint through Next
Generation Sequencing of Customized Large-Insert
Libraries

Subject 5 (DGAP189) was sequenced using a custom large-insert
jumping library for Illumina sequencing as previously described
[Talkowski et al., 2011a]. In brief, 20 μg of genomic DNA from
subject 5 was sheared to ∼3.5-kb fragments that were size selected,
end repaired, and ligated to cap adaptors containing an EcoP15I
restriction site and a GT overhang. Fragments were circularized
with an oligonucleotide containing an AC overhang, a subject-
specific bar code, and a single biotinylated thymine at the circular-
ization junction. Circularized fragments were restriction digested,
and fragments containing the biotinylated base were captured onto
streptaviden beads, purified, and Illumina paired-end adaptors were
ligated. The sample was run on a single lane of a HiSeq 2000 (Illu-
mina), using paired-end 25-bp sequencing. Reads were aligned with
Burrows–Wheeler Alignment Tool [Li and Durbin, 2009] then pro-
cessed with SAMtools [Li et al., 2009] and BamStat, a customized
program designed to isolate anomalous read pairs indicating a chro-
mosomal rearrangement [Talkowski et al., 2011a].

Analysis of Recurrent 12p12.3p11.23 Deletions

The proximal and distal breakpoint interval sequences were com-
pared using Basic Local Alignment Search Tool (BLAST) sequence
similarity [Altschul et al., 1990], and all sequence alignments were
manually visualized for stretches of high sequence identity. Analysis
for repeats within these breakpoint intervals were then performed
using RepeatMasker (http://www.repeatmasker.org).

Results

Molecular Information

We identified eight subjects with heterozygous deletions that only
involved SOX5 and ranged in size from 72 kb to 466 kb. Most dele-
tions involved at least some of the coding exons and/or a region likely
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Table 1. Partial SOX5 Deletions in This Cohort

Predicted normal expression of isoform

Subject Deletion size (kb) Coding exons deleted 5′ UTR Long forma promoter region Longestb Longa Shortc

1 80 11–15 or 10–15 + + – – –

2 137 9–15 + + – – –

3 156 8-15 + + – – –

4 466 1–15 + – – – –

5 Trans None + + – – –

6 133 4–6 or 3–6 + + – – +

7 255 1 + – ? – +

8 255 None or 1 + – ? ? +

9 72 None – + – + +

15 1406 1–3 – – – – ?
16 4196 None – + – ? ?

aNM_006940.4
bNM_152989.2
cNM_178010.1
Abbreviations: +, present; –, absent; ?, uncertain; kb, kilobase pairs; trans, translocation; UTR, untranslated region.

to be involved in transcription initiation, while subject 9’s deletion
only involved two of the 5′ untranslated exons. In addition, in sub-
ject 5 (DGAP189), with an apparently balanced de novo transloca-
tion [46,XX,t(11;12)(p13;p12.1)dn], we identified a translocation
breakpoint within SOX5; sequencing revealed a 9-bp deletion at the
breakpoint in intron 11 (chr12:23,602,450–23,602,458) and a 16-bp
deletion at the breakpoint in 11p13 (chr11:35,033,903–35,033,918).
No genes were present within 50 kb on either side of the 11p13
breakpoint. Depending on the abnormality size and location, the
translocation or deletions are predicted to impact different protein
isoforms to varying degrees (Fig. 1, Tables 1 and 2). However, it
is not always known which protein isoforms will be altered by the
deletions. The deletions in subjects 7 and 8 remove the transcrip-
tion initiation site of NM_006940.4, so while this likely prevents
expression of that isoform, it is not known whether the other long
transcript is affected. The deletion of two untranslated exons in
subject 9 would alter the 5′ untranslated region of NM_152989.2,
though it is uncertain if this ultimately affects gene expression or
protein translation.

We identified seven additional subjects with 12p deletions en-
compassing multiple genes including SOX5, ranging from 1.4 Mb
to 12.1 Mb and including 8 to 63 genes (Fig. 2, Table 3). Two of
these deletions have breakpoints within SOX5, one (in subject 15)
between coding exons 3 and 4 of NM_006940.4 and extending 5′

and the other (in subject 16) between untranslated exons 3 and 4
of NM_152989.2 and extending 5′ (Fig. 1). Therefore, while subject
15’s deletion is predicted to impact both long isoforms of the gene,
subject 16’s deletion may only impact NM_152989.2. However, it
should be noted for both of these deletions that it is not known what
effect, if any, deletion of the promoter region 5′ of the untranslated
exons has on expression of the shorter transcripts (Table 1).

No other clinically significant gains or losses of DNA were iden-
tified in any of the 16 subjects.

Two subjects (12 and 13) had apparently identical 12p12.3p11.23
deletions. Query of Signature’s database of abnormalities revealed
two additional cases carrying this apparently identical deletion, one
referred for developmental delay (DD) and microcephaly and the
other referred for pituitary dwarfism, lack of coordination, per-
vasive developmental delay (PDD), attention deficit-hyperactivity
disorder (ADHD), and optic nerve abnormality. No additional
follow-up clinical information was available. The similarity in the
breakpoints of these alterations suggests that underlying genomic
architecture may play a role in mediating these recurrent deletions.
The aCGH results refined the intervals containing the distal and

proximal breakpoints to approximately 49 kb (chr12:17,755,660–
17,785,732) and 30 kb (chr12:26,583,349–26,632,432), respectively.
A search for repeats within these breakpoint intervals using Repeat-
Masker in the reference sequence (Build 36, hg18) showed enrich-
ment for long and short interspersed repeats (Supp. Fig. S1). Specif-
ically, L1MA4 repetitive elements with high sequence identity are
present within the breakpoint intervals (Supp. Fig. S2), which may be
mediating recurrent deletions via nonallelic homologous recombi-
nation (NAHR), as has been proposed for long stretches of highly
homologous sequences such as long interspersed elements (LINEs)
and Alus [Deininger and Batzer, 1999; Han et al., 2008; Shaw and
Lupski, 2004].

FISH, using BAC probes to the deleted region, confirmed the
deletion in all subjects, including diminished signals for the smallest
deletions in which the BAC probes used in FISH are larger than the
deletion intervals. Parental FISH testing indicated the deletions in
subjects 1–4 and 15 were apparently de novo in origin; additionally,
subject 12’s mother did not have the deletion, while her father
was unavailable for testing. Three deletions were inherited. Two
of these segregated with a developmental phenotype in the family,
one from a more severely affected mother and was also present
in an affected sister (subject 6) and one from an affected father
(subject 16). The third was inherited from an apparently normal
father (subject 9) (Tables 2 and 3). For the parents of subjects 6
and 9, aCGH confirmed that the deletions were identical in parents
and children. In addition, FISH revealed that the healthy paternal
grandmother of subject 9 also carried the deletion. All other parents
were unavailable for testing.

Clinical Information

Clinical information is presented for subjects 1–9 in Table 2
and for subjects 10–16 in Table 3. Major features for the nine
subjects with abnormalities limited to SOX5 include developmen-
tal delay/intellectual disability (DD/ID) (9/9), speech delay (8/9),
behavior problems (5/9), strabismus (6/9), mild dysmorphic ap-
pearance (6/9), brain anomalies (2/5), seizures (2/9), and genital
anomalies (2/9) (Table 4). Behavioral aspects include aggressive be-
havior in subjects 2–4, self-injurious behavior in subject 1, and
ADHD in subject 7. Subjects 2 and 4 demonstrated stereotypies but
were not formally assessed for autism, while subject 1 received a
diagnosis of PDD from his therapists and primary care physician,
and subject 3 had a diagnosis of PDD and atypical autism through
the Treatment and Education of Autistic and Communication
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Handicapped Children (TEACCH) program [Mesibov and Shea,
2010], which uses assessment batteries including the Childhood
Autism Rating Scale (CARS-2) and Psychoeducational Profile—
Third Edition (PEP-3). Some minor dysmorphic features were noted
in all but subject 2, with the only common feature of frontal bossing
seen in 4/9 subjects (Fig. 3). Skeletal system involvement was noted
as butterfly vertebrae in one and scoliosis in two subjects.

Major features for the seven subjects with larger, SOX5-
encompassing deletions include: DD/ID (7/7), speech delay (5/5),
behavior problems (5/5), dysmorphic features (6/7; Fig. 3), clin-
odactyly/deviated fingers or toes (4/7), skeletal anomalies (4/7),
and brain malformations (4/5). No aggressive behavior was noted
in this group (Tables 3 and 4).

Case-Control Comparison

Among 24,081 probands tested with oligonucleotide-based mi-
croarrays at Signature Genomics between February 2008 and April
2011, seven deletions within SOX5 were identified; excluding the
deletions in subject 8, which may or may not involve a coding exon,
due to gaps in probe coverage, and subject 9, which only includes
untranslated exons, five of these are known to include coding exons.
In addition, one deletion immediately 5′ of exon 1 was identified
in a parental sample (chr12:24,001,784–24,041,797); this healthy
parent’s affected child did not carry this deletion. Ten additional
larger deletions, involving all or part of SOX5 and additional genes,
were identified during this time period. In comparison, in one se-
ries of 8,329 control subjects studied on high-resolution Illumina
genome-wide SNP arrays (mostly with >550,000 probes) with denser
coverage of SOX5 than our arrays [Cooper et al., 2011], 62 deletions
were identified in SOX5. Most were intronic, one involved an un-
translated exon, and three involved coding exons (Fig. 1). Unlike
the coding exon deletions in cases, these control deletions may still
allow the production of functional long SOX5 isoforms. No whole-
gene deletions were detected. Unfortunately, comparison of deletion
frequency in cases to controls is complicated by incomplete knowl-
edge of how the deletions affect expression of the various SOX5
isoforms.

Discussion
SOXD genes—SOX5, SOX6, and SOX13—encode transcription

factors that play important roles in the development of many sys-
tems and processes such as cell proliferation, differentiation, ter-
minal maturation, and survival. Although no known association of
these genes with human disease has been previously noted, it has
been hypothesized that such associations will be observed due to the
critical role of these genes in a large number of pathways [Lefebvre,
2010]. Furthermore, predictive modeling shows SOX5 and SOX6
as being likely haploinsufficient [Huang et al., 2010]. A survey of
aCGH results among patients referred for clinical testing in our
laboratories shows multiple cases with deletions affecting SOX5,
including apparently de novo intragenic deletions. Interestingly, al-
most no cases of deletions or small duplications involving the coding
regions of SOX6 or SOX13 have been observed in our patient pop-
ulations, with only one exception of an intragenic, apparently de
novo duplication in SOX6 in a male referred for DD, autism spec-
trum disorder, and morbid obesity. This difference in the number
of copy number variants affecting these genes may be due to critical
developmental functions performed by SOX6 and/or SOX13 that
cannot be compensated for by SOX5, or it may reflect a greater
susceptibility of the SOX5 locus to rearrangement. Our analysis of
SOX5 abnormalities suggests that haploinsufficiency of this gene
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Figure 2. Schematic of deletions in this cohort and molecularly defined deletions in the literature. Deletions in this cohort are shown in purple,
and deletions from the literature are shown in blue. The boxes represent the minimum size of the abnormalities, and the horizontal dashed lines
extend through gaps in coverage to show the maximum possible sizes. Genes within the region are represented by orange boxes.

results in speech delays, behavioral problems, and minor dysmor-
phic features.

Abnormalities Involving Only SOX5

SOX5 encodes three major transcription products, and the phe-
notypic consequences of intragenic deletions may depend upon the
protein isoforms affected. Subjects 1–4 have de novo deletions that
are predicted to result in loss of the primary DNA-binding domain
and lead to haploinsufficiency of all three protein isoforms. The de
novo translocation in subject 5 would lead to expression of trun-
cated versions of all three protein isoforms that lack the primary
DNA-binding domain. The deletions in subject 6 and his affected
mother and sister may prevent expression of functional long forms
of SOX5 through two mechanisms: either by inducing a transla-
tional frameshift by removing exons 4–6 or by losing a putative
coiled-coil domain partially encoded by these same exons and pre-
sumably critical to homo- and heterodimerization potential. This
frameshift would not be predicted if exon 3 is also included in
the deletion; however, loss of the coiled-coil domain would still be
expected. Deletions in subjects 7 and 8 may eliminate proximal regu-
latory elements of NM_006940.4, thereby preventing effective tran-
scription initiation. Potential effects, if any, of this deletion on the
expression of the other isoforms cannot be predicted without fur-

ther characterization of the regulation of SOX5 transcription (Fig. 1,
Table 1). Subjects 1–8 demonstrate DD, with greatest delay in speech.
In addition, subjects 1–4 and 8 also demonstrate behavior problems,
including a diagnosis of PDD in subjects 1 and 3; behavior problems
were not noted in subjects 5 or 6. This may be due to variable expres-
sivity, as subjects 5 and 6 are predicted to have altered expression of
different isoforms (Table 1).

To help interpret the clinical significance of copy number vari-
ations in our patient population, comparisons need to be made
to rearrangements in the gene observed in a control population
[Cooper et al., 2011; Girirajan and Eichler, 2010; Sharp, 2009]. A
deletion similar to those observed in subjects 7 and 8 was detected
in one control sample (Fig. 1) and in a healthy parent in our clinical
aCGH testing population. The deletion in the control sample re-
tained approximately 3 kb of sequence upstream of exon 1, whereas
the deletion in subject 7 removed this 3-kb region as well as the first
exon, and due to gaps between probes, it is unknown if this region is
deleted in subject 8 and the parent. The presence of the sequence up-
stream of exon 1 may allow for normal gene expression to continue,
although SOX5 expression levels were not assayed in these subjects.
Interestingly, a deletion affecting both exon 9 of NM_006940.4 and
the TSS of the short form was observed in one control individual,
and two additional control individuals had deletion of the TSS of
the short form. While deletion of exon 9 would not be predicted to
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Table 3. Clinical Information for Subjects 10–16 with Larger Deletions Including SOX5

Subject 10 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15a Subject 16

Gender Female Female Female Male Female Male Female

Age 6y 4.25y 4.5m 7y 9y 3y 10m
Deletion coordinatesb 14,427,395–

26,520,296
14,696,149–
25,145,536

17,785,732–
26,583,409

17,785,732–
26,583,409

23,087,676–
28,745,337

23,815,999–
25,222,173

24,346,835–
28,542,656

Deletion size 12.09 Mb 10.45 Mb 8.80 Mb 8.80 Mb 5.66 Mb 1.41 Mb 4.20 Mb
Number of genes

involved
63 52 41 41 31 8 30

Inheritance Unknown Unknown Not maternal Unknown Unknown De novo Paternal
Growth

Weight percentile 10th 34th (22m) 3rd–5th 49th 25th 25th-50th <3rd (6.72 kg)
Height percentile 10th 4th (22m) 10th–25th 53rd 10th–25th 75th <3rd (65 cm)
OFC percentile 3rd 29th (22m) <3rd (38.1 cm) –1 SD 75th 10th 3rd–5th

Neurological
DD/ID Moderate ID Global and

severe:
walked at
4y

Moderate-
severe
DD

Mild ID; PPVT
receptive score
65 (–2.3 SD)

+ Moderate DD +

Speech delay Greatest delays in
expressive
speech; no
words and 5
signs at 6y

No words yet NA Nonverbal;
expressive
speech
disorder

+ First words at
3y

NA

Behavior problems Hyperactivity;
anxiety

Hand twirling
but social

NA ADHD Compulsive;
ritualistic;
distractible

Autistic; hy-
peractivity

NA

Hypotonia – + – + Severe + –

Seizures – – + – – – –

Brain
malformations

Mild ventricu-
lomegaly with
prominent
cortical sulci,
suggesting
volume loss

Hypoplastic
CC; mild
cerebral
volume
loss; mild
promi-
nence of
lateral
ventricles

NS Chiari I
malformation

– Short and
thick CC

NS

Other neurologic
features

Brisk DTRs Intermittent
adducted
thumbs;
constant
tongue
thrust

Speech dyspraxia;
moderate-
severe bilateral
SNHL

Ophthalmologic
features

– – Blue sclerae – Strabismus;
optic nerve
hypoplasia

Myopia;
strabismus

-

Dysmorphic features + + + + Mild – +

Head Metopic ridge;
bitemporal
grooves

Mild frontal
bossing;
positional
plagio-
cephaly

Sparse hair Mild hair upsweep Low facial tone – –

Auricular region – – Low-set ears;
familial
Darwinian
tubercles;
small ear
lobules;
soft
cartilage

Protruding and
large ears

– – –

Periocular region Short, upslanted
palpebral
fissures

Epicanthal
folds; small
glabellar
heman-
gioma

Minimal
synophrys;
upslanting
palpebral
fissures

– – – –

Midface Prominent, boxy
nasal tip; alar
hypoplasia

Midface
hypoplasia

High and wide
nasal
bridge;
square/tubular

Small nares and
alae

Prominent
nasal
bridge;
small alae;

– Midface
hypoplasia

(Continued)
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Table 3. (Continued)

Subject 10 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15a Subject 16

Gender Female Female Female Male Female Male Female

nose; long
columella;
broad nasal
tip

broad nasal
tip; midline
nasal
dimple

Perioral region – Short philtrum Short philtrum;
broad and
short uvula

Downturned
upper lip;
straight lower
lip;
malpositioned
teeth

Narrow palate – –

Musculoskeletal
anomalies
Hands and feet Mild ulnar drift

of hands;
bilateral
thenar
hypoplasia;
adducted
thumbs; 2
parallel thenar
creases;
progressive
toe
contractures;
progressive
valgus great
toe deformity

1–2 syndactyly
on right
hand;
medially
deviated and
broad right
index finger;
narrow left
palm;
hypoplastic
right thenar
eminence;
limited
motion of
fingers; right
clubfoot

Arachnodactyly;
hyperconvex
nails; deep
plantar
creases;
minimal
clinodactyly
of second and
third toes

Single right
palmar crease;
prominent
fingertip pads;
short second
toes

Short fingers
and
metacarpals;
short toes;
deviated
second
fingers;
short
thumbs;
broad great
toes; cone-
shaped
epiphyses
on
phalanges

– –

Back and spine – Congenital
fusion
C5–C7
causing
torticollis

– Scoliosis/kyphosis – – –

Other Early metopic
fusion

Hypermobile;
lack of
muscle
control of
right face at
birth

Hip laxity Prominent
sternum

Congenital
torticolis

Rhizomelia

Additional features
Heart defects – VSD – – Slight

arrhythmia

– –

Genital
abnormalities

– – Anteriorly placed
anus

– – – –

Other Alternating con-
stipation/
diarrhea;
eczema

Deep sacral cleft
with sacral
dimple;
hypoplastic
and inverted
nipples

Chronic diarrhea;
low-set
nipples

Feeding
difficulties

GERD; laryngo-
malacia;
eczema

Family history Father is
borderline mi-
crocephalic;
otherwise
noncontribu-
tory

Mother had
hiatal hernia
and was
congenitally
“pigeon-
toed”;
paternal
family
history of
clubfoot and
VSD

Maternal half sib
with DD;
maternal
family history
of LD/ID and
psychiatric
disease; father
has ADHD
and
aggression;
paternal
cousin autistic

NS NS NS Father has low
weight (111
lb, 5′6′ ′),
reportedly
has short
digits, poor
dentition,
Asperger-
like features,
recurrent
fevers

aID 256754 in the DECIPHER Database (http://decipher.sanger.ac.uk/).
bChromosomal coordinates based on UCSC Genome Browser 2006 hg18 build.
Abbreviations: +, feature present; –, feature absent; ADHD, attention deficit-hyperactivity disorder; CC, corpus callosum; DD, developmental delay; DTRs, deep tendon reflexes;
GERD, gastroesophogeal reflux disease; ID, intellectual disability; LD, learning disability; m, month(s); Mb, megabase pairs; NA, not applicable; NS, not specified; OFC,
occipitofrontal circumference; PPVT: Peabody Picture Vocabulary Test; SD, standard deviation; SNHL, sensorineural hearing loss; VSD, ventricular septal defect; y, year(s).
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Figure 3. Physical features of subjects with SOX5 deletions. (A) Subject 1 at 2.5 years of age. Note broad and low nasal bridge, upturned
and bulbous nose, prominent and full lips, and accentuated, prominent philtral ridges. (B–C) Subject 2 at 3 years of age. Note microcephaly
and nondysmorphic appearance. (D–E) Subject 10 at 4.5 years of age. Note upslanting palpebral fissures and boxy nasal tip. Feet are shown
post-surgical correction of valgus deformity of the great toes and progressive toe contractures.

cause a frameshift in the larger protein products, deletion of the TSS
of the short form would be expected to cause reduced expression
of this transcript. This may suggest that haploinsufficiency for the
short form alone is not generally detrimental to normal phenotypic
development. Because the short and long proteins each have distinct
tissue-specific expression patterns and contain different functional
domains [Kiselak et al., 2010], it is unlikely that short and long
forms can completely compensate for each other’s functions, and it
remains possible that adding haploinsufficiency of the short form to
haploinsufficiency of the long forms can further impact phenotypic
expression.

Unlike the deletions in subjects 1–4 and 6, subject 9’s deletion was
inherited from a phenotypically normal father and grandmother.
The deletion removes two untranslated exons, and a very similar
deletion affecting the fourth untranslated exon was observed in one
control individual. Deletions within the 5′ untranslated region may
not affect expression of the gene or may only affect one of the long
forms, leaving the other long form intact. Subject 9’s phenotype is
milder than seen in our other subjects; the child does not have delays
in language. Therefore, it is possible that her phenotype may not
be caused by the deletion in SOX5, or that it may be attributed to
reduced penetrance or variable expression.

Larger Deletions Containing SOX5

We attempted to determine if the phenotypic observations in sub-
jects 1–9 were also seen in subjects with larger deletions containing
SOX5. Subjects 10–14 had whole-gene deletions (Fig. 2). Subjects

15–16 had deletions of the 5′ end of the gene that remove a TSS
and the control region and, therefore, should result in haploinsuf-
ficiency of at least one of the long forms (Fig. 1, Table 1). It is not
known if this would affect expression of all products. All of the sub-
jects older than one year with large deletions including SOX5 have
speech delay, consistent with the effects of SOX5 haploinsufficiency
observed in subjects 1–8. In addition, all subjects older than one year
demonstrate some type of abnormal behaviors, including subject 15
and subject 16’s father, who was described to be Asperger-like. This
is similar to what was observed in subjects 1–5, where behavioral
problems were seen in most subjects with haploinsufficiency for the
long and short isoforms of SOX5 (4/5).

Additional genes within these large deletions may be contributing
to these subjects’ phenotypes. Consistent with this hypothesis, we
observed that the subjects with larger deletions that include 30–63
genes tend to show more dysmorphic features and have more mus-
culoskeletal anomalies (Tables 3 and 4). In the literature, common
features reported among individuals with 12p12 deletions include
DD/ID, short stature, microcephaly, brachydactyly, clinodactyly,
and dysmorphic features including low-set ears, broad nasal bridge,
and microretrognathia [Bahring et al., 1997; Boilly-Dartigalongue
et al., 1985; Fryns et al., 1990; Glaser et al., 2003; Lu et al., 2009;
Magenis et al., 1981; Magnelli and Therman, 1975; Malpuech et al.,
1975; Mayeda et al., 1974; Nagai et al., 1995; Orye and Craen, 1975;
Stumm et al., 2007; Tenconi et al., 1975] (Table 4). Behavior prob-
lems have only been described in one 13-month-old male with poor
psychosocial contact [Orye and Craen, 1975], although a major-
ity of these cases were identified through traditional cytogenetic
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Table 4. Summary of Features in Individuals with 12p12.1
Abnormalities in Current Cohort and in the Literature

SOX5-only
abnormalitiesa

Large
deletions

in this
reportb

Moleculary
characterized
deletions in

the literaturec

Cytogenetically
defined 12p12.1

deletionsd

Short stature 1/8 1/7 3/3 5/8
Failure to thrive/low

weight
3/9 1/7 1/3 9/9

Microcephaly 2/8 2/7 1/1 6/8
Developmental delay/

intellectual disability
9/9 7/7 3/3 9/9

Speech delay 8/9 5/5 3/3 5/6
Behavior problems 5/9 5/5 0/2 1/7
Brain abnormalities 2/5 4/5 1/2 1/2
Hypotonia 4/8 4/7 0/3 3/9
Seizures 2/9 1/7 0/4 1/9
Optic nerve atrophy 0/9 1/7 0/3 2/9
Strabismus 6/9 2/7 0/3 3/9
Abnormal hearing/

auditory canals
0/9 1/7 1/3 2/9

Dysmorphic features 6/9 6/7 3/4 9/9
Frontal bossing 4/9 1/7 0/4 1/9
Blue sclerae 1/9 1/7 0/4 1/9
Abnormal nasal bridge 2/9 2/7 3/4 4/9
Low-set ears 0/9 1/7 3/4 6/9
Micro/retrognathia 1/9 0/7 1/4 9/9
Cleft lip and/or palate 0/9 0/7 2/4 0/9
Short/broad neck 0/9 0/7 1/4 3/9
Sparse or abnormal hair 0/9 1/7 1/4 2/9
Irregular teeth/

oligodontia
0/9 1/7 1/3 4/9

Brachydactyly 0/9 2/7 2/4 5/9
Clinodactyly/deviated

fingers or toes
1/9 4/7 2/4 5/9

Craniosynostosis 0/9 1/7 0/4 2/9
Spinal abnormalities 1/9 1/7 0/4 0/9
Scoliosis 2/9 1/7 0/4 2/9
Other skeletal anomalies 2/9 4/7 3/4 4/9
Congenital heart defects 1/9 1/7 2/4 3/9
Genital abnormalities 2/9 0/7 0/4 3/9
Renal abnormalities 0/9 0/7 2/4 1/9

aSubjects 1–9 in this study.
bSubjects 10–16 in this study.
cProbands with SOX5-containing deletions reported in (Bahring et al., 1997; Glaser
et al., 2003; Lu et al., 2009; Nagai et al., 1995; Stumm et al., 2007).
dProbands with 12p12.1-containing deletions reported in (Boilly-Dartigalongue et al.,
1985; Fryns et al., 1990; Magenis et al., 1981; Magnelli and Therman, 1975; Malpuech
et al., 1975; Mayeda et al., 1974; Orye and Craen, 1975; Tenconi et al., 1975).

techniques, and the inclusion of SOX5 in the deleted intervals is un-
certain. The brachydactyly observed in these individuals is type E,
with shortening of the metacarpals and metatarsals, and, along with
the short stature and oligodontia seen in some of these individuals,
may be due to the deletion of PTHLH within 12p11.22 [Klopocki
et al., 2010]. In our series, subjects 14 and 16 are deleted for this
gene; subject 14 demonstrates brachydactyly, and subject 16 has
short stature. There is also an autosomal-dominant hypertension
with brachydactyly syndrome (MIM# 112410) due to an inversion
of a minimum ∼450-kb segment immediately distal to SOX5 and
containing no known protein-coding genes but containing putative
microRNA-coding gene(s) that show altered splicing in inversion
carriers [Bahring et al., 2008]. Expression of SOX5 is not altered
in these individuals [Bahring et al., 2004]. This suggests a gain-of-
function mechanism for this disease, and consistent with that, the
individuals in our cohort with deletions of SOX5 and not PTHLH
do not demonstrate brachydactyly. However, in our cohort we do
not have information on hypertension, which has been described in
an individual with a deletion of 12p11.22 [Bahring et al., 1997].

In summary, deletions within SOX5 result in prominent speech
delay and frequently in behavior problems. Larger deletions that in-
clude all of SOX5 or that remove the 5′ regulatory region, which may
or may not alter expression of all protein isoforms, also show lan-
guage delay, behavioral problems, and more dysmorphic features.
These findings support the role of SOX5 in human neurodevelop-
ment. Complete haploinsufficiency of SOX5, with roles in chon-
drogenesis, may only occasionally result in skeletal abnormalities,
such as the butterfly vertebrae and scoliosis in some of our subjects
with deletions. Haploinsufficiency of SOX5 may be compensated
for by SOX6 so that the resulting phenotype is milder than may
have been hypothesized for the developmentally important SOXD
family of genes [Lefebvre, 2010]. Further research into how various
SOX5 deletions impact the function of the SOX5 protein isoforms
and identification of additional individuals with SOX5 abnormal-
ities will be helpful in understanding further how loss of this de-
velopmentally important gene contributes to neurodevelopmental
disease.
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