
Journal Pre-proofs

Method

Mako: A Graph-based Pattern Growth Approach to Detect Complex Structur‐
al Variants

Jiadong Lin, Xiaofei Yang, Walter Kosters, Tun Xu, Yanyan Jia, Songbo
Wang, Qihui Zhu, Mallory Ryan, Li Guo, Chengsheng Zhang, The Human
Genome Structural Variation Consortium, Charles Lee, Scott E. Devinel,
Evan E. Eichler, Kai Ye

PII: S1672-0229(21)00143-1
DOI: https://doi.org/10.1016/j.gpb.2021.03.007
Reference: GPB 542

To appear in: Genomics, Proteomics & Bioinformatics

Received Date: 17 January 2021
Revised Date: 5 March 2021
Accepted Date: 5 March 2021

Please cite this article as: J. Lin, X. Yang, W. Kosters, T. Xu, Y. Jia, S. Wang, Q. Zhu, M. Ryan, L. Guo, C.
Zhang, The Human Genome Structural Variation Consortium, C. Lee, S.E. Devinel, E.E. Eichler, K. Ye, Mako:
A Graph-based Pattern Growth Approach to Detect Complex Structural Variants, Genomics, Proteomics &
Bioinformatics (2021), doi: https://doi.org/10.1016/j.gpb.2021.03.007

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The Authors

https://doi.org/10.1016/j.gpb.2021.03.007
https://doi.org/10.1016/j.gpb.2021.03.007


Mako: A Graph-based Pattern Growth Approach to Detect 

Complex Structural Variants 

 

Jiadong Lin1,2,3,4,#, Xiaofei Yang2,5,#, Walter Kosters4, Tun Xu1, Yanyan Jia1, Songbo 

Wang1, Qihui Zhu6, Mallory Ryan6, Li Guo2, ‡, Chengsheng Zhang6,7, The Human 

Genome Structural Variation Consortium
‡
, Charles Lee6,7, Scott E. Devinel,8, Evan E. 

Eichler9,10,, Kai Ye1,2,3,11,* 

 

1School of Automation Science and Engineering, Faculty of Electronic and Information 

Engineering, Xi’an Jiaotong University, Xi’an 710049, China 

2MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and 

Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China 

3Genome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 

710061, China 

4Leiden Institute of Advanced Computer Science, Faculty of Science, Leiden University, 

Leiden 2311EZ, Netherland 

5School of Computer Science and Technology, Faculty of Electronic and Information 

Engineering, Xi’an Jiaotong University, Xi’an 710049, China 

6The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA 

7Precision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, 

Xi’an 710061, China 

8Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 

MD 21201, USA 

9Department of Genome Sciences, University of Washington School of Medicine, 

Seattle, WA 98119-5065, USA 

10Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, 

USA 

11The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, 

China 

 

#Equal contribution. 

‡
Consortium authors are enumerated at the end of this article.. 



*Corresponding author. 

E-mail: kaiye@xjtu.edu.cn (Ye K). 

 

 

Running title: Lin J et al / Graph Based Complex Structural Variants Detection 

 

 

Total word counts (from “Introduction” to “Discussion”): 3859 

Total figures: 6 

Total tables: 3 

Total supplementary figures: 23 

Total supplementary tables: 10 

Total supplementary files: 4 

Total references: 53 

  

mailto:kaiye@xjtu.edu.cn


Abstract 

Complex structural variants (CSVs) are genomic alterations that have more than two 

breakpoints and are considered as the simultaneous occurrence of simple structural 

variants. However, detecting the compounded mutational signals of CSVs is 

challenging through a commonly used model-match strategy. As a result, there has been 

limited progress for CSV discovery compared with simple structural variants. We 

systematically analyzed the multi-breakpoint connection feature of CSVs, and proposed 

Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs from paired-

end short-read sequencing. Specifically, we implemented a graph-based pattern growth 

approach, where the graph depicts potential breakpoint connections, and pattern growth 

enables CSV detection without pre-defined models. Comprehensive evaluations on 

both simulated and real datasets revealed that Mako outperformed other algorithms. 

Notably, validation rates of CSV on real data based on experimental and computationa l 

validations as well as manual inspections are around 70%, where the medians of 

experimental and computational breakpoint shift are 13bp and 26bp, respectively. 

Moreover, the Mako CSV subgraph effectively characterized the breakpoint 

connections of a CSV event and uncovered a total of 15 CSV types, including two novel 

types of adjacent segments swap and tandem dispersed duplication. Further analysis of 

these CSVs also revealed the impact of sequence homology in the formation of CSVs. 

Mako is publicly available at https://github.com/xjtu-omics/Mako.  

 

KEYWORDS: Next-generation sequencing; Complex structural variants; Pattern 

growth; Graph mining; Formation mechanism 

 

  



Introduction 

Computational methods based on next-generation sequencing (NGS) have provided an 

increasingly comprehensive discovery and catalog of simple structure variants (SVs) 

that usually have two breakpoints, such as deletions and inversions [1–7]. In general, 

these approaches follow a model-match strategy, where a specific SV model and its 

corresponding mutational signal model are proposed. Afterward, the mutational signal 

model is used to match observed signals for the detection (Figure 1A). This model-

match strategy has been proved effective for detecting simple SVs, providing us with 

prominent opportunities to study and understand genome evaluation and disease 

progression [8–11]. However, recent research has revealed that some rearrangements 

have multiple, compounded mutational signals and usually cannot fit into the simple 

SV models [8,12–16] (Figure 1B). For example, in 2015, Sudmant et al. systematica lly 

categorized 5 types of complex structural variants (CSVs) and found that a remarkable 

80% of 229 inversion sites were complex events [8]. Collins et al. used long-insert size 

whole genome sequencing (liWGS) on autism spectrum disease (ASD) and 

successfully resolved 16 classes of 9666 CSVs from 686 patients [17]. In 2019, Lee et 

al. revealed that 74% of known fusion oncogenes of lung adenocarcinomas were caused 

by complex genomic rearrangements, including EML4-ALK and CD74-ROS1 [16]. 

Though less frequently reported compared with simple SVs, these multiple breakpoint 

rearrangements were considered as punctuated events, leading to severe genome 

alterations at once [10,18–21]. This dramatic change of genome provided distinct ive 

evidence to study formation mechanisms of rearrangement and to understand cancer 

genome evolution [13,14,17,19,21–25]. 

However, due to the lack of effective CSV detection algorithms, most CSV-related 

studies screen these events from the “sea” of simple SVs through computationa l 

expensive contig assembly and realignment, incomplete breakpoints clustering, or even 

targeted manual inspection [8,12,16]. In fact, many CSVs have already been neglected 

or misclassified in this “sea” because of the incompatibility between complicated 

mutational signals and existing SV models. Although the importance and challenge for 

CSV detection have been recognized, only a few dedicated algorithms were proposed 

for CSVs discovery, and they followed two major approaches guided by the model-

match strategy. TARDIS and SVelter utilize the top-down approach, where they 

attempt to model all the mutational signals of a CSV event instead of modeling specific 



parts of signals. In particular, TARDIS [26] proposed sophisticated abnormal alignment 

models to depict the mutational signals reflected by dispersed duplication and inverted 

duplication. The pre-defined models were then used to fit observed signals from 

alignments for the detection of the two specific CSV types. Indeed, this was 

complicated and greatly limited by the diverse types of CSV. To solve this, SVelter [27] 

replaced the modeling process for specific CSVs with a randomly created virtual 

rearrangement. And CSVs were detected by minimizing the difference between the 

virtual rearrangement and the observed signals. Whereas GRIDSS [28] represents the 

assembly-based approach, which detected CSVs through extra breakpoints discovered 

from contig-assembly and realignment. Though the assembly-based approach is 

sensitive for breakpoint detection, it lacks certain regulations to constrain or classify 

these breakpoints and leave them as independent events. As a result, these model-

match-guided approaches would substantially break up or misinterpret the CSVs 

because of partially matched signals (Figure 1B). Moreover, the graph is another 

approach that has been widely used for simple [2,29] and complex [19,30] SV detection. 

Notably, ARC-SV [30] uses clustered discordant read-pairs to construct an adjacency 

graph and adopts a maximum likelihood model to detect complex SVs, showing the 

great potential of using the graph to detect complex SVs. Accordingly, there is an urgent 

demand for a new strategy, enabling CSV detection without pre-defined models as well 

as maintaining the completeness of a CSV event. 

In this study, we proposed a bottom-up guided model-free strategy, implemented as 

Mako, to effectively discover CSVs all at once based on short-read sequencing. 

Specifically, Mako uses a graph to build connections of mutational signals derived from 

abnormal alignment, providing the potential breakpoint connections of CSVs. 

Meanwhile, Mako replaces model fitting with the detection of maximal subgraphs 

through a pattern growth approach. Pattern growth is a bottom-up approach, which 

captures the natural features of data without sophisticated model generation, allowing 

CSV detection without pre-defined models. We benchmarked Mako against five widely 

used tools on a series of simulated and real data. The results show that Mako is an 

effective and efficient algorithm for CSV discovery, which will provide more 

opportunities to study genome evolution and disease progression from large cohorts. 

Remarkably, the analysis of subgraphs detected by Mako highlights the unique strength 

of Mako, where Mako was able to effectively characterize the CSV breakpoint 

connections, confirming the completeness of a CSV event. Moreover, we 



systematically analyzed the CSVs detected by Mako on three healthy samples, 

revealing a novel role of sequence homology in CSV formation. 

 

Method 

Overview of Mako 

Given that a CSV is a single event with multiple breakpoint connections, the 

breakpoints in the current CSV shall not connect with false-positive breakpoints or 

those from unrelated events. Thus, we formulate the discovery of CSVs as maximal 

subgraph pattern detection in a signal graph. Accordingly, Mako detects CSVs with 

NGS data in two major steps, e.g., signal graph creation and subgraph detection (Figure  

2). Firstly, Mako collects and clusters abnormally aligned reads as signal nodes and 

defines two types of edges to build the signal graph ( , )G V E , with 1 2
{ , ,..., }

n
V v v v  

and { , }
pe ae

E E E . Each signal node v V  is represented as ( , , )v type pos weight , 

where type, pos, and weight denote the abnormal alignment type, node position, and the 

number of supporting abnormal reads, respectively. For the edge set, each edge in pe
E  

and ae
E  is represented as ( , , )

pe i j
e v v rp  and ( , , )

ae i j
e v v dist , respectively, where 
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v v V . Specifically, pe
E  represents paired edges from a certain number of 

supporting paired-reads or split-reads (sr). ae
E  indicates the adjacent edges induced 

from the reference genome, connecting two adjacent signal nodes of distance (dist). 

Secondly, Mako applies a pattern growth approach to detect the maximal subgraphs as 

potential CSVs at the whole genome-scale. Meanwhile, the attributes of the subgraph 

are used to measure the complexity, and CSVs types are determined by the edge 

connection types of the corresponding subgraphs (Figure 2). 

 

Building signal graph 

To create the signal graph, Mako collects abnormally aligned reads that satisfy one of 

the following criteria from the alignment file: 1) clipped portion with minimum 10% 

size fraction of the overall read length; 2) split reads with high mapping quality; 3) 

discordant read-pairs. As a result, one group of signal nodes is created by clustering 

clipped-reads or split-reads at the same position on the genome, which is filtered by 

weight and the ratio between weight and the coverage at pos. Another group of signal 

nodes is derived from clusters of discordant read-pairs, where the clustering distance is 



the estimated average insert size minus two times read length. It should be noted that a 

discordant alignment produces two nodes, and Mako separately clusters discordant 

alignments with multiple abnormally aligned types, such as abnormal insert size and 

incorrect mapping orientation. We adopt the procedure introduced by Chen [4] to avoid 

using randomly occurred discordant alignment (File S1). Additionally, edges are 

created alone with the signal nodes, where multiple types of edges might co-exist 

between two nodes.  

 

Detecting CSVs with pattern growth 

Pattern growth has been widely used in many areas [31–36], such as Indel detection in 

DNA sequences [1,24]. For CSV detection, the subgraph pattern starts at a single node 

and grows by adding one node each time until it cannot find a proper one (Algor ithm 

I). Specifically, the subgraph is allowed to grow according to the increasing order of 

pos value for each node, and backtracking is only allowed for nodes involved in the 

current subgraph. Of note, pattern growth via adjacent edges is conditional to the 

distance constrain (minDist) because these edges are derived from the reference genome 

instead of alternatives. For example, Mako detects the maximal subgraph ACBD by 

visiting nodes A, C, B, and D, while the edge between D and E is constrained because 

of the larger distance (Figure 2).  

Given that the signal graph contains millions of nodes at the whole genome scale, 

we adopt the “seed-and-extension” [37,38] strategy to accelerate subgraph detection. 

Moreover, the discovered subgraphs not only differ in edge connections but also in node 

type of the subgraph. Therefore, we propose an algorithm that starts at multiple signal 

nodes of the same type at the whole genome scale, while extends locally for subgraph 

detection (Algorithm II). The parameter minFreq is used to measure the frequency of 

detected subgraphs, and Mako uses minFreq=1 to avoid missing subgraphs of rare 

CSVs or incomplete ones. The detected CSV subgraph provides the connections 

between multiple breakpoints of a CSV, and the attributes of the subgraph are used to 

measure the complexity of CSVs. Accordingly, Mako defines the boundary of CSVs 

using the leftmost and rightmost pos value of the nodes and utilizes the number of 

identical node types multiplied by the number of pe
E  edges as a complexity 

measurement score, CXS. For example, the discovered CSV subgraph ACBD has a CXS 

score of 8 due to four different node types, e.g., A, C, B, and D, and two paired edges 



(Figure 2, a toy example of excuting the algorithm is shown in Figure S1). 

 

 

 

Performance evaluation 



Since CSVs contain multiple breakpoints, we propose two tiers of stringency for their 

evaluation, e.g., unique-interval match and all-breakpoint match. For a unique-interva l 

match, the correct predicted breakpoints shall be within 500bp distance to the leftmost 

and rightmost breakpoints of a benchmark CSV. For the all-breakpoint match initia lly 

proposed by Sniffles, benchmark CSV is divided into separate subcomponents, and 

each of them should be correctly detected. For a CSV with inversion flanked by two 

deletions containing three components, the correct prediction of all breakpoints for the 

three components is considered as an all-breakpoint match. Meanwhile, if only one 

prediction is close to the leftmost and rightmost breakpoints of the CSV, this prediction 

is considered as a unique- interval match. For simulated CSVs, true positive (TP) is 

defined as predictions satisfying either match criteria, while predictions not in the 

benchmark are false positives (FP). False negatives (FN) are events in the benchmark 

set that are not matched by predictions. Whereas it is usually challenging to measure 

the false positives for real data due to the lack of a curated CSV set, we only consider 

the number of correct discoveries (File S1).  

 

Preparing CSV benchmarks for performance evaluation 

In this study, we use both simulated and real CSVs to benchmark the performance of 

different callers. We follow the workflow introduced by the Sniffles [39] to create 

simulated CSVs (Figure S2). Firstly, VISOR [40] is used to create deletion (Del), 

inversion (Inv), inverted tandem duplication (Invdup), tandem duplication (Tandup), 

and dispersed duplication (Disdup). These events, termed as basic operations, are 

implanted and marked on the reference genome GRCh38 to generate an alternative 

genome. Secondly, CSVs are created by randomly adding basic operations to those 

marked operations, leading to a new genome harboring CSVs (CSV genome). 

Meanwhile, the purity parameter of VISOR is used to produce homozygous and 

heterozygous CSVs. Afterward, VISOR generates simulated paired-end reads based on 

the CSV genome with wgsim (https://github.com/lh3/wgsim) and aligns them to the 

reference genome with BWA-MEM [38]. According to the above-generalized 

simulation procedures, we create reported CSV types published by previous studies 

[8,17] and randomized CSV types (File S1).  

In terms of the real data, we are not aware of any public CSV benchmarks due to 

the breakpoint complexity and underdeveloped methods [8,12,27,41,42]. Fortunately, 

PacBio reads could span multiple breakpoints of CSVs, providing direct evidence to 



validate CSVs through sequence Dotplot [43]. Thus, we curate the CSV benchmark 

from a simple SV callset by breakpoint clustering and manual inspection. For SV 

clustering, each of them is considered as an interval, and hierarchical clustering with 

the average method is used to find interval clusters (Figure S3 and S4). We then use the 

threshold that could produce the most clusters for merging clusters, which could 

potentially reduce the number of missed CSVs (Table S1, Figure S5 and S6). Given 

these simple SV clusters, we apply Gepard to create Dotplots based on PacBio HiFi 

reads and manually investigate each Dotplot. Since CSVs are rare and might appear at 

the minor allele, we create Dotplot for each long read that spans the corresponding 

region.  

 

Orthogonal validation of Mako detected CSVs 

To fully characterize Mako’s performance on real data, we use experimental and 

computational validation as well as manual inspections of CSVs from HG00733. The 

raw CSV calls from HG00733 are obtained by selecting events with more than one link 

type observed in the subgraph. For the experimental validation, Primer3 

(https://github.com/primer3-org/primer3) is used to design PCR primers, where primers 

are selected within the extended distance but 200bp outside of the boundaries of the 

breakpoints defined by Mako (Figure S7). BLAT (https://users.soe.ucsc.edu/~kent/) 

search is performed at the same time to ensure all primer candidates have only one hit 

in the human genome. Afterward, we select amplification products with the expected 

product size and bright electrophoretic bands for Sanger sequencing (Figure S8). The 

obtained Sanger sequences are aligned against the reference allele of the CSV site and 

visualized with Gepard for breakpoint inspection (File S1). 

As for the computational validation, two orthogonal data obtained from Human 

Genome Structural Variant Consortium (HGSVC) are used, e.g., Oxford Nanopore 

sequencing (ONT) and HiFi contigs. We first apply VaPoR [44] on the ONT reads to 

validate CSVs, referring as ONT validation. Additionally, we apply a K-mer based 

breakpoint examination based on haplotype-aware HiFi contigs, from which we 

calculate the difference between the K-mer breakpoints and predicted breakpoints 

(Figure S9, File S1). 

Furthermore, we manually curate detected CSVs via Dotplots created by Gepard  

(Figure S10), which is similar to the procedure of creating the benchmark CSV for real 

data (File S1). For CSVs at highly repetitive regions, we further validate them according 

https://users.soe.ucsc.edu/~kent/)


to specific patterns (Figures S11–S13).   

 

Results 

Mako effectively characterizes multiple breakpoints of CSV 

The most important feature for a CSV is the presence of multiple breakpoints in a single 

event. Thus, we first examined the performance of multiple breakpoints detection for 

Mako, Lumpy, Manta, SVelter, TARDIS, and GRIDSS. The results were evaluated 

according to the all-breakpoint match criteria on both reported and randomized CSV-

type simulations. Overall, for the heterozygous (HET) (Figure 3A) and homozygous 

(HOM) (Figure 3B) simulation, Mako was comparable to GRIDSS, and those two 

methods outperformed other algorithms. For example, GRIDSS, Mako, and Lumpy 

detected 50%, 51%, and 46% for reported HET CSV breakpoints, while they reported 

53%, 54%, and 44% for randomized ones. Because the graph encoded both mult ip le 

breakpoints and their substantial connections for each CSV, Mako achieved better 

performance on randomized events, which included more subcomponents than the 

reported ones. Indeed, by comparing reported and randomized simulation, the 

breakpoint detection sensitivity (Figure 3A and B) of Mako increased, while that of 

other algorithms dropped except for GRIDSS. Although the assembly-based method, 

GRIDSS, is as effective as Mako for breakpoint detection, it lacks a proper procedure 

to resolve the connections among breakpoints.  

 

Mako precisely discovers CSV unique-interval 

CSV is considered as a single event consisted of connected breakpoints, and we have 

demonstrated that Mako was able to detect CSV breakpoints effectively. However, the 

breakpoint detection evaluation only assesses the discovery of basic components for a 

CSV and lacks examination for CSV completeness. We then investigated whether 

Mako could precisely capture the entire CSV interval even with missing breakpoints. 

According to the unique- interval match criteria, Mako consistently outperformed other 

algorithms for both reported and randomly created CSVs, while SVelter and GRIDSS 

ranked second and third, respectively. For the reported CSVs at 30× coverage (Figure 

3C and D), the recall of Mako was 94% and 92%, which was significantly higher than 

SVelter (49% and 57%) for both reported HET and HOM CSVs, respectively. Due to 

the randomized top-down approach, SVelter was able to discover some complete CSV 



events, but it may not explore all possibilities. Remarkably, we noted that Mako’s 

sensitivity was even better for randomized simulation (Figure 3E F), which was 

consistent with our previous observation (Figure 3A and B). In particular, at 30x 

coverage, Mako detected 203% more HET CSVs than that of SVelter (Figure 3E), 

probably due to the complementary graph edges for accurate CSV site discovery. 

 

Performance on real data 

We further compared Mako with SVelter, GRIDSS, and TARDIS on whole-genome 

sequencing data of NA19240 and SKBR3. Firstly, we compared the callsets of different 

callers (Figures S14 and S15), and we found that Mako shared most calls with GRIDSS 

(Figure 4A and B), which was consistent with our observation in simulated data (Figure 

3). Furthermore, we examined the discovery completeness of 59 (NA19240) and 21 

(SKBR3) benchmark CSVs (Table 1, File S2, Table S2). Because Manta and Lumpy 

contributed to the CSV benchmark sets, they were excluded from the comparison. The 

results showed that Mako performed the best for the two benchmarks with different  

CXS thresholds, while TARDIS ranked second (Figure 4C). Given that inverted 

duplication and dispersed duplication dominated the benchmark set and that TARDIS 

has designed specific models for these two types, TARDIS detected more events of 

these two duplication types than SVelter and GRIDSS (Table 1). SVelter only detected 

three benchmark CSVs for SKBR3 because the randomized approach may not explore 

all combinations of CSVs. Based on the above observation, we concluded that the 

graph-based model-free strategy of Mako was better performed than that of either 

randomized model (SVelter) or specific model (TARDIS) with few computationa l 

resources (Figure S16). 

 

CSV subgraph illustrates breakpoints connections 

Having demonstrated the performance of Mako on simulated and real data, we surveyed 

the landscape of CSVs from three individual genomes. Specifically, CSVs from 

autosomes were selected from Mako’s callset with more than one edge connection type 

observed in the subgraph, leading to 403, 609, and 556 events for HG00514, HG00733, 

and NA19240, respectively (Figure 5A, Figure S17, Table S3). We systemica lly 

evaluated all CSV events in HG00733 via experimental and computational validat ion 

as well as manual inspection (File S3). For experimental validation, we successfully 

designed primers for 107 CSVs (Table S4), where 15 out of 21 (71%, Table 2) were 



successfully amplified and validated by Sanger sequencing (File S4, Table S5, 

breakpoint details in Table S6). The computational validation (Figure S4, Table S5, 

breakpoint details of HiFi contigs in Table S7, details of VaPoR validation in Table S8) 

showed up to 87% accuracy, indicating a combination of methods and external data is 

necessary for comprehensive CSV validation (Table 3). Further analysis showed that 

the medians of breakpoint shift were 13bp and 26bp comparing to breakpoints given by 

experimental and computational evaluation (Figure S18). We observed that 

approximately 54% of CSVs were found in either STR or VNTR regions, contributing 

to 75% of all events inside the repetitive regions (Figure 5A). For the connection types, 

more than half of the events contain Dup and Ins edges in the graph, indicat ing 

duplication involved sequence insertion. Moreover, around 40% of the events contain 

Del edges (Figure 5B), showing two distant segment connections derived from either 

duplication or inversion events. We further examined whether the CSV subgraph 

depicts the connections for each CSV via discordant read-pairs. Interestingly, we 

observed two representative events with four breakpoints at chr6:128,961,308–

128,962,212 (Figure 5C) and chr5:151,511,018–151,516,780 (Figure 5D) from 

NA19240 and SKBR3, respectively. Both events were correctly detected by Mako, but 

missed by SVelter and reported more than once by GRIDSS and TARDIS (Table S9). 

In particular, the CSV at chr6:128,961,308-128,962,212 that consists of two deletions 

and an inverted spacer was reported twice and five times by GRIDSS and TARDIS. 

The event at chromosome 5 that consists of deletion and dispersed duplication was 

reported four and three times by GRDISS and TARDIS. These redundant predictions 

complicate and mislead downstream functional annotations. On the contrary, Mako was 

able to completely detect the above two CSV events and also capable of revealing the 

breakpoint connections of CSVs encoded in the subgraphs. The above observations 

suggested that Mako’s subgraph representation is interpretable, from which we can 

characterize the breakpoint connections for a given CSV event.  

 

Contribution of homology sequence in CSV formation 

Given 1568 detected CSVs from three genomes, we further investigated the formation 

mechanisms of these CSVs. Ongoing studies have revealed that inaccurate DNA repair 

and the 2-33 bp long microhomology sequence at breakpoint junctions play an 

important role in CSV formation [18, 45-48]. To further characterize CSVs’ internal 

structure and examine the impact of homology sequence on CSV formation, we 



manually reconstructed 1052 high-confident CSV calls given by Mako (252/403 from 

HG00514, 440/609 from HG00733, and 360/556 from NA19240) via Dotplots created 

by PacBio HiFi reads (Figure 6A, Figure S19, Table S10, File S3). The percentage of 

successfully reconstructed events was similar to the orthogonal validation rate, showing 

CSVs detected by Mako were accurate, and the validation method was effective. The 

high-confident CSV callset contains 816 InsDup events with both insertion and 

duplication edge connections. Further investigation revealed that these events contain 

irregular repeat sequence expansion, making them different from simple insertion or 

duplications (Figure S20). Besides, we found two novel types, which were named 

adjacent segments swap and tandem dispersed duplication (Figure 6B, Figures S21 and 

S22). We inferred that homology sequence mediated inaccuracy replication was the 

major cause for these two types. Furthermore, we observed that 134 CSVs contain 

either inverted or dispersed duplications (Table S10). These duplications involved 

CSVs were mainly caused by microhomology mediated break-induced replication 

(MMBIR) according to previous studies[18,46,49]. It was known that different 

homology patterns cause distinct CSV types (Figure 6C and 6D). Surprisingly, one 

particular pattern of homology sequence yielded multiple CSV types (Figure 6E). In 

particular situations of the three different homology patterns, DNA double strand break 

(DSB) occurred after replication of fragment C. According to the MMBIR mechanism 

and template switch [23,46–48], the pattern I (Figure 6C) and pattern II (Figure 6D) 

yield one output, but pattern III (Figure 6E) produces three different outcomes. The 

results provided additional evidence for understanding the impact of sequence contents 

on DNA DSB repair, leading to a better understanding of diversity variants produced 

by CRISPR [50,51].  

 

Discussion 

Currently, short-read sequencing is significantly reduced in cost and has been applied 

to clinical diagnostics and large cohort studies [16,52,53]. However, CSVs from short-

read data are not fully explored due to the methodology limitations. Though long-read 

sequencing technologies bring us promising opportunities to characterize CSVs 

[13,14,39], their application is currently limited to small-scale projects, and the methods 

for CSV discovery are also underdeveloped. As far as we know, NGMLR combined 

with Sniffles is the only pipeline that utilizes the model-match strategy to discover two 



specific forms of CSVs, namely deletion-inversion and inverted duplication. Therefore, 

there is a strong demand in the genomic community to develop effective and effic ient 

algorithms to detect CSV using short-read data. It should be noted that CSV breakpoints 

might come from either single haplotype or different haplotypes, where two simple SVs 

from different haplotypes lead to false positives (Figure S23). This may increase the 

false discovery rate due to a lack of haplotype information. Therefore, the combination 

of short-read and long-read sequencing might improve CSV discovery and 

characterization.  

To sum up, we developed Mako, utilizing the graph-based pattern growth approach, 

for CSV discovery with 70% accuracy and 20 bp median breakpoint shift. To the best 

of our knowledge, Mako is the first algorithm that utilizes the bottom-up guided model-

free strategy for SV discovery, avoiding the complicated model and match procedures. 

Given the fact that CSVs are largely unexplored, Mako presents opportunities to 

broaden our knowledge of genome evolution and disease progression.  

 

Code availability 

Mako is implemented in Java 1.8, and it is available at https://github.com/xjtu-

omics/Mako. It is free for non-commercial use by academic, government, and non-

profit/not- for-profit institutions. A commercial version of the software is available and 

licensed through Xi’an Jiao-tong University. All scripts used in this study are also 

included in the Github repository, and a detailed description of using these scripts and 

other tools is provided in File S1.  

 

Data availability 

All materials or datasets used in this study are publicly available, and their links are 

listed in File S1. 

 

Credit author statement  

Jiadong Lin: Algorithm design, Software development, Sample analysis, Manual 

validation, Writing. Xiaofei Yang: Algorithm design, Writing. Walter Kosters: 

Algorithm design, Writing. Tun Xu: Sample analysis. Yanyan Jia: Experimenta l 

validation. Songbo Wang: Manual and computational validation. Qihui Zhu: 

Experimental validation. Mallory Ryan: Experimental validation. Li Guo: Writing. 



Chengsheng Zhang: Experimental validation, Writing. HGSVC: Resources. Charlse  

Lee: Producing data, Writing. Scott Devine: Producing data. Evan Eichler: Producing 

data. Kai Ye: Conceptualization, Resources, Supervision, Project administra t ion, 

Funding acquisition. All authors read and approved the final manuscript. 

 

Competing interests 

The authors have declared no competing interests. 

 

Acknowledgments 

This study was supported by the National Key R&D Program of China (Grand Nos. 

2018YFC0910400 and 2017YFC0907500), the National Science and Technology 

Major Project of China (Grand No. 2018ZX10302205), the National Science 

Foundation of China (Grand NO. 31671372, 61702406, and 31701739) and the 

“World-Class Universities and the Characteristic Development Guidance Funds for the 

Central Universities”. Supported by Shanghai Municipal Science and Technology 

Major Project (Grant No. 2017SHZDZX01). 

 

Authors from HGSVC 

Mark B. Gerstein1, Ashley D. Sanders2, Micheal C. Zody3, Michael E. Talkowski4 , 

Ryan E. Mills5, Jan O. Korbel2, Tobias Marschall6, Peter Ebert6, Peter A. Audano7 , 

Bernardo Rodriguez-Martin8, David Porubsky7, Marc Jan Bonder8,9, Arvis Sulovari7 , 

Jana Ebler6, Weichen Zhou5, Rebecca Serra Mari6, Feyza Yilmaz10, Xuefang Zhao4, 

PingHsun Hsieh7, Joyce Lee11, Sushant Kumar1, Tobias Rausch8, Yu Chen12, Zechen 

Chong12, Katherine M. Munson7, Mark J.P. Chaisson13, Junjie Chen14, Xinghua Shi14, 

Aaron M. Wenger15, William T. Harvey7, Patrick Hansenfeld8, Allison Regier16, Ira M. 

Hall16, Paul Flicek17, Alex R. Hastie11, Susan Fairely17 

1Program in Computational Biology and Bioinformatics, Yale University, BASS 

432&437, 266 Whitney Avenue, New Haven, CT 06520, USA 

2European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 

1, 69117 Heidelberg, Germany 

3New York Genome Center, New York, NY 10013, USA 

4Center for Genomic Medicine, Massachusetts General Hospital, Department of 

Neurology, Harvard Medical School, Boston, MA 02114, USA 



5Department of Computational Medicine & Bioinformatics, University of Michigan, 

500 S. State Street, Ann Arbor, MI 48109, USA 

6Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and 

Bioinformatics, Moorenstr. 20, 40225 Düsseldorf, Germany 

7Department of Genome Sciences, University of Washington School of Medicine, 3720 

15th Ave NE, Seattle, WA 98195-5065, USA 

8European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstr. 

1, 69117 Heidelberg, Germany 

9Division of Computational Genomics and Systems Genetics, German Cancer Research 

Center (DKFZ), 69120 Heidelberg, Germany 

10The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 

06030, USA 

11Bionano Genomics, San Diego, CA 92121, USA 

12Department of Genetics and Informatics Institute, School of Medicine, University of 

Alabama at Birmingham, Birmingham, AL 35294, USA 

13Molecular and Computational Biology, University of Southern California, Los 

Angeles, CA 90089, USA 

14Department of Computer & Information Sciences, Temple University, Philadelphia, 

PA 19122, USA 

15Pacific Biosystems of California, Inc., Menlo Park, CA 94025, USA 

16Washington University, St. Louis, MO 63108, USA 

17European Molecular Biology Laboratory, European Bioinformatics Institute, 

Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom  

 

ORCID 

0000-0002-8116-5901 (Jiadong Lin) 

0000-0002-5118-7755 (Xiaofei Yang) 

0000-0001-8860-0390 (Walter Kosters) 

0000-0003-3194-1834 (Tun Xu) 

0000-0002-4966-0574 (Yanyan Jia) 

0000-0003-4482-8128 (Songbo Wang) 

0000-0003-2401-8443 (Qihui Zhu) 

0000-0001-5428-0018 (Mallory Ryan) 



0000-0001-6100-3481 (Li Guo) 

0000-0002-5238-083X (Chengsheng Zhang) 

0000-0001-7317-6662 (Charles Lee) 

0000-0001-7629-8331 (Scott E. Devine) 

0000-0002-8246-4014 (Evan E. Eichler) 

0000-0002-2851-6741 (Kai Ye) 

0000-0002-9746-3719 (Mark B. Gerstein) 

0000-0003-3945-0677 (Ashley D. Sanders) 

0000-0001-6594-7199 (Michael C. Zody) 

0000-0003-2889-0992 (Michael E. Talkowski) 

0000-0003-3425-6998 (Ryan E. Mills) 

0000-0002-2798-3794 (Jan O. Korbel) 

0000-0002-9376-1030 (Tobias Marschall) 

0000-0001-7441-532X (Peter Ebert) 

0000-0002-5187-0415 (Peter A. Audano) 

0000-0003-4693-3140 (Bernardo Rodriguez-Martin) 

0000-0001-8414-8966 (David Porubsky) 

0000-0002-8431-3180 (Marc Jan Bonder) 

0000-0003-4354-9020 (Arvis Sulovari) 

0000-0002-0382-3702 (Jana Ebler) 

0000-0003-4755-1072 (Weichen Zhou) 

0000-0002-2812-9653 (Rebecca Serra Mari) 

0000-0001-8795-5800 (Feyza Yilmaz) 

0000-0003-4036-9577 (Xuefang Zhao) 

0000-0001-8294-6227 (PingHsun Hsieh) 

0000-0002-3492-1102 (Joyce Lee) 

0000-0002-2294-3988 (Sushant Kumar) 

0000-0001-5773-5620 (Tobias Rausch) 

0000-0002-2037-7337 (Yu Chen) 

0000-0001-5750-1808 (Zechen Chong) 

0000-0001-8413-6498 (Katherine M. Munson) 

0000-0001-5395-1457 (Mark J.P. Chaisson) 

0000-0002-0483-303X (Junjie Chen) 

0000-0003-4662-3177 (Xinghua Shi) 



0000-0003-1183-0432 (Aaron M. Wenger) 

0000-0003-0646-7528 (William T. Harvey) 

0000-0003-2319-2482 (Patrick Hasenfeld) 

0000-0002-1932-8714 (Allison A. Regier) 

0000-0003-4442-6655 (Ira M. Hall) 

0000-0002-3897-7955 (Paul Flicek) 

0000-0001-5829-2649 (Alex R. Hastie) 

0000-0001-9425-0788 (Susan Fairley) 

 

References 

[1] Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach 

to detect break points of large deletions and medium sized insertions from paired-end 

short reads. Bioinformatics 2009;25:2865–71. 

[2] Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural 

variant discovery by integrated paired-end and split-read analysis. Bioinformatics 

2012;28:i333–9. 

[3] Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework 

for structural variant discovery. Genome Biol 2014;15:R84. 

[4] Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. 

BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. 

Nat Methods 2009;6:677–81. 

[5] Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive evaluation and 

characterisation of short read general-purpose structural variant calling software. Nat 

Commun 2019;10:3240. 

[6] Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive 

evaluation of structural variation detection algorithms for whole genome sequencing. 

Genome Biol 2019;20:117. 

[7] Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al. 

Manta: rapid detection of structural variants and indels for germline and cancer 

sequencing applications. Bioinformatics 2016;32:1220–2. 



[8] Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. 

An integrated map of structural variation in 2,504 human genomes. Nature 

2015;526:75–81. 

[9] Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. 

Multi-platform discovery of haplotype-resolved structural variation in human genomes. 

Nat Commun 2019;10:1784. 

[10] Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy 

number evolution and clonal stasis in triple-negative breast cancer. Nat Genet 

2016;48:1119–30. 

[11] Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et 

al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 

2017;32:169–84 e7. 

[12] Quinlan AR, Hall IM. Characterizing complex structural variation in germline and 

somatic genomes. Trends Genet 2012;28:43–53. 

[13] Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, et al. 

Complex rearrangements and oncogene amplifications revealed by long-read DNA and 

RNA sequencing of a breast cancer cell line. Genome Res 2018;28:1126–35. 

[14] Sanchis-Juan A, Stephens J, French CE, Gleadall N, Megy K, Penkett C, et al. 

Complex structural variants in Mendelian disorders: identification and breakpoint 

resolution using short- and long-read genome sequencing. Genome Med 2018;10:95. 

[15] Greer SU, Nadauld LD, Lau BT, Chen J, Wood-Bouwens C, Ford JM, et al. Linked 

read sequencing resolves complex genomic rearrangements in gastric cancer metastases. 

Genome Med 2017;9:57. 

[16] Lee JJ, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing oncogene rearrangements 

in the mutational history of lung adenocarcinoma. Cell 2019;177:1842–57 e21. 

[17] Collins RL, Brand H, Redin CE, Hanscom C, Antolik C, Stone MR, et al. Defining 

the diverse spectrum of inversions, complex structural variation, and chromothripsis in 

the morbid human genome. Genome Biol 2017;18:36. 

[18] Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in 

genomic disorders. Nat Rev Genet 2016;17:224–38. 



[19] Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. 

Punctuated evolution of prostate cancer genomes. Cell 2013;153:666–77. 

[20] Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer 

genomes. Cell 2013;152:1226–36. 

[21] Sanders AD, Meiers S, Ghareghani M, Porubsky D, Jeong H, van Vliet M, et al. 

Single-cell analysis of structural variations and complex rearrangements with tri-

channel processing. Nat Biotechnol 2020;38:343–54. 

[22] Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation 

in genomic disorders. Nature Reviews Genetics 2016;17:224–38. 

[23] Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, et al. 

Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements 

spawned by homology- independent mechanisms. Genome Res 2013;23:762–76. 

[24] Ye K, Wang J, Jayasinghe R, Lameijer EW, McMichael JF, Ning J, et al. 

Systematic discovery of complex insertions and deletions in human cancers. Nat Med 

2016;22:97–104. 

[25] Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome 

evolution from complex chromosomal rearrangements. Genes Dev 2013;27:2513–30. 

[26] Soylev A, Le TM, Amini H, Alkan C, Hormozdiari F. Discovery of tandem and 

interspersed segmental duplications using high-throughput sequencing. Bioinformatics 

2019;35:3923–30. 

[27] Zhao X, Emery SB, Myers B, Kidd JM, Mills RE. Resolving complex structural 

genomic rearrangements using a randomized approach. Genome Biol 2016;17:126. 

[28] Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, et al. 

GRIDSS: sensitive and specific genomic rearrangement detection using positional de 

Bruijn graph assembly. Genome Res 2017;27:2050–60. 

[29] Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, et al. CLEVER: 

clique-enumerating variant finder. Bioinformatics 2012;28:2875–82. 

[30] Arthur JG, Chen X, Zhou B, Urban AE, Wong WH. Detection of complex 

structural variation from paired-end sequencing data. bioRxiv 2017:200170. 



[31] Liao VCC, Chen MS. DFSP: a Depth-First SPelling algorithm for sequentia l 

pattern mining of biological sequences. Knowl Inf Syst 2014;38:623–39. 

[32] Tsai HP, Yang DN, Chen MS. Mining group movement patterns for tracking 

moving objects efficiently. IEEE T Knowl Data En 2011;23:266–81. 

[33] Huang Y, Zhang LQ, Zhang PS. A framework for mining sequential patterns from 

spatio-temporal event data sets. IEEE T Knowl Data En 2008;20:433–48. 

[34] Ye K, Kosters WA, Ijzerman AP. An efficient, versatile and scalable pattern 

growth approach to mine frequent patterns in unaligned protein sequences. 

Bioinformatics 2007;23:687–93. 

[35] Pei J, Han J, Wang W. Constraint-based sequential pattern mining: the pattern-

growth methods. J Intell Inf Syst 2007;28:133–60. 

[36] Pei J, Han JW, Mortazavi-Asl B, Wang JY, Pinto H, Chen QM, et al. Mining 

sequential patterns by pattern-growth: the PrefixSpan approach. IEEE T Knowl Data 

En 2004;16:1424–40. 

[37] Li H, Homer N. A survey of sequence alignment algorithms for next-generat ion 

sequencing. Brief Bioinform 2010;11:473–83. 

[38] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Whee ler 

transform. Bioinformatics 2009;25:1754–60. 

[39] Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, 

et al. Accurate detection of complex structural variations using single-molecule 

sequencing. Nat Methods 2018;15:461–8. 

[40] Bolognini D, Sanders A, Korbel JO, Magi A, Benes V, Rausch T. VISOR: a 

versatile haplotype-aware structural variant simulator for short and long read 

sequencing. Bioinformatics 2020;36:1267–9. 

[41] McPherson A, Wu C, Wyatt AW, Shah S, Collins C, Sahinalp SC. nFuse: 

discovery of complex genomic rearrangements in cancer using high-throughput 

sequencing. Genome Res 2012;22:2250–61. 

[42] Dzamba M, Ramani AK, Buczkowicz P, Jiang Y, Yu M, Hawkins C, et al. 

Identification of complex genomic rearrangements in cancers using CouGaR. Genome 

Res 2017;27:107–17. 



[43] Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale 

genome alignment and comparison. Nucleic Acids Res 2002;30:2478–83. 

[44] Zhao X, Weber AM, Mills RE. A recurrence-based approach for validat ing 

structural variation using long-read sequencing technology. Gigascience 2017;6:1–9. 

[45] Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural 

variation. Trends Genet 2014;30:85–94. 

[46] Kramara J, Osia B, Malkova A. Break-induced replication: the where, the why, 

and the how. Trends Genet 2018;34:518–31. 

[47] Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex breakpoints 

and template switching associated with non-canonical termination of homologous 

recombination in mammalian cells. PLoS Genet 2016;12:e1006410. 

[48] Zhou W, Zhang F, Chen X, Shen Y, Lupski JR, Jin L. Increased genome instability 

in human DNA segments with self-chains: homology- induced structural variations via 

replicative mechanisms. Hum Mol Genet 2013;22:2642–51. 

[49] Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, et al. Diverse 

mechanisms of somatic structural variations in human cancer genomes. Cell 

2013;153:919–29. 

[50] Chen W, McKenna A, Schreiber J, Haeussler M, Yin Y, Agarwal V, et al. 

Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-

mediated double-strand break repair. Nucleic Acids Res 2019;47:7989–8003. 

[51] Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, et al. 

Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat 

Biotechnol 2019;37:64–72. 

[52] Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. 

Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 

2018;175:889. 

[53] Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V, 

et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 

2017;541:359–64. 

 



Figure legends 

Figure 1  Explanation of simple and complex structure variants alignment 

models derived from abnormal read-pairs  

A. Three common simple SV and their corresponding abnormal read pair alignment on 

the reference genome, representing by red, blue, and green arrows. B. The alignment 

signature of two CSVs, each of them, involves two types of signature that can be 

matched by a simple SV alignment model. 

 

Figure 2  Overview of Mako 

Mako first builds a signal graph by collecting abnormally aligned reads as nodes, and 

their edge connections are provided by paired-end alignment and split alignment. 

Afterward, Mako utilizes the pattern growth approach to find a maximal subgraph as a 

potential CSV site. In the example output, the maximal subgraph G contains nodes A, 

B, C, and D, whereas F is not able to be appended because of no existing edge (dashed 

line). The CSV is derived from this subgraph with estimate breakpoints and complexity 

score, where the discovered CSV subgraph contains four different nodes, one 𝐸𝑎𝑒 edge 

and two 𝐸𝑝𝑒 edges of type Del and Inv. 

 

Figure 3  Performance comparison on simulated CSVs with different match 

criteria 

All-breakpoint match (A and B) and unique- interval match (C–F) evaluation of selected 

tools for detecting simulated CSVs. A. The sensitivity of detecting heterozygous CSVs 

breakpoints. B. The sensitivity of detecting homozygous CSVs breakpoints. The red 

and purple bar indicates randomized and reported CSV types, respectively. C. 

Evaluation of reported heterozygous CSV simulation. D. Evaluation of reported 

homozygous CSV simulation. E. Evaluation of randomized heterozygous CSV 

simulation. F. Evaluation of randomized homozygous CSV simulation. From C to F, 

the performance is evaluated by recall (y-axis), precision (x-axis) and F1-score (dotted 

lines). The right top corner of the plot indicates better performance. The c5–c30 

indicates coverage, e.g., c5 indicates 5× coverage. 

 

Figure 4  Overview of performance on NA19240 and SKBR3 for Mako, GRIDSS, 

SVelter, and TARDIS 



A. Venn diagram of NA19240 callsets. B. Venn diagram of SKBR3 callsets. The Venn 

diagrams are created by 50% reciprocal overlap via a publicly available tool Intervene 

with –bedtools-options enabled. The MergedSet is obtained from the origina l 

publication. C. The percentage of completely and uniquely discovered CSVs from the 

NA19240 and SKBR3, respectively. The results of Mako are shown according to 

different CXS thresholds. 

 

Figure 5  Two representative CSV subgraphs identified by Mako 

The top panel of (A) and (B) are IGV views of the two events, and the alignments are 

grouped by read-pair orientation. The dark blue shows reverse-reverse alignments, light 

blue is the forward-forward alignments, green is the reverse-forward alignments, and 

red indicates the alignment of large insert size. The bottom panel of (A) and (B) are 

subgraph structures discovered by Mako. The colored circles and solid lines are nodes 

and edges in the subgraph. C. The alignment model of deletions with inverted spacer. 

D. The alignment model of deletion associated with dispersed duplication. In (C) and 

(D), short arrows are paired-end reads that span breakpoint junctions, and their 

alignment are shown on the reference genome with the corresponding ID in the circle. 

Noted that a single ID may have more than one corresponding abnormal alignment 

types on the reference. 

 

Figure 6  Overview of Mako’s CSV discoveries from three healthy samples and 

proposed CSV formation mechanisms  

A. Summary of discovered CSV types, these types are reconstructed by HiFi PacBio 

reads, where a type with less than 10 events was summarized as RareType. B. Diagrams 

of two novel and rare CSV types discovered by Mako. In particular, Mako finds three 

events of adjacent segments swap and only one tandem dispersed duplication. C.–E. 

Different replication diagram explains the impact of homology pattern for MMBIR 

produced CSVs. In these diagrams, sequence abc has been replicated before the 

replication fork collapse (flash symbol). The single-strand DNA at the DNA double-

strand break (DSB) starts searching for homology sequence (purple and green triangle) 

to repair. The above procedure is explicitly explained as a replication graph, from which 

nodes are homology sequences and edges keep track of the template switch (dotted  

arrow lines) as well as the normal replication at different strands (red lines). If there are 

two red lines between two nodes, the sequence between these two nodes will be 



replicate twice, as shown in (D). 
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Table 1  Summary of benchmark CSVs 

 

Table 2  Summary of experimentally validated CSVs 

 

Table 3  Summary of experimental and computational validation as well as  

 

 

Supplementary material 

File S1  Supplementary note for Mako 

 

File S2  IGV view and PacBio reads Dotplot of each benchmark CSVs 

 

File S3  Dotplot used for manually inspection of CSVs from HG00733 

 

File S4  PCR results and visualization of CSV breakpoint validated through 

Sanger sequencing 

 

 

Figure S1  A toy example to explain the pattern growth process 

 

Figure S2  Workflow of CSV simulation 

 

Figure S3  Hierarchical clustering tree view of SVs from NA19240 chromosome  

1 

 

Figure S4  Hierarchical clustering tree view of SVs from SKBR3 chromosome 1 

 

Figure S5  The curve plot between cluster distance cutoff and number of clusters 

for SVs from NA19240 autosomes 

 



Figure S6  The curve plot between cluster distance cutoff and number of clusters 

for SVs from SKBR3 autosomes 

 

Figure S7  Diagram of selecting primers for each CSV 

 

Figure S8  Examples of PCR electrophoretic bands visualized under the UV light  

 

Figure S9  Workflow of HiFi assembly K-mer validation  

 

Figure S10  A screenshot using Gepard to investigate a deletion associated with 

inversion event 

 

Figure S11  Dotplot patterns used to identify CSVs at highly repetitive regions  

 

Figure S12  Dotplot patterns used to identify SVs at highly repetitive regions  

 

Figure S13  Example call at high repetitive regions that labeled as NA by VaPoR 

at chr6:165,749,273-165,749,500 

 

Figure S14  Size distribution of SV in the range [50bp, 10Kbp] from NA19240 

 

Figure S15  Size distribution of SV in the range [50bp, 10Kbp] from SKBR3 

breast cancer cell line 

 

Figure S16  Running time comparison between different methods 

A. Runtime comparison on simulated data at 30× coverage. B. Runtime of Mako on 

real data at different coverage. The time baseline is decided by copying the origina l 

BAM to another location. C. Memory usage of Mako on real data at different coverage.  

 

Figure S17  Repeat annotation and connection types of Mako detected CSVs 

from three samples 

A. Repeat annotation of CSVs detected from three genomes. B. Mako predicted CSV 

types of three genomes. 

 



Figure S18  Mako detected CSV breakpoint resolution compared to HiFi contig 

(K-mer) and experiment 

 

Figure S19  Mako detected CSV and PacBio HiFi read refined CSV size 

distribution 

 

Figure S20  Example of an insertion associated with duplication event (InsDup) 

at chr6:165,749,273-165,749,500 

 

Figure S21  The IGV view and sequence dot-plot of the adjacent segment swap 

from NA19240 at Chr7:83,316,809-83,317,466 

 

Figure S22  The IGV view and sequence dot-plot of the tandem dispersed 

duplication from NA19240 at Chr17:43,359,104-43,365,253 

 

Figure S23  Examples to show the difference of CSV breakpoints from single 

haplotype or two haplotypes 

A. Diagram of two simple SVs at different haplotypes. B. Diagram of complex SV at 

the same haplotype 

 

 

Table S1  Parameters used for creating the CSV benchmarks for NA19240 and 

SKBR3 

 

Table S2  CSV benchmarks for NA19240 and SKBR3 

 

Table S3  Mako detected CSVs for HG00733, HG00514, and NA19240 

 

Table S4  CSVs of successfully designed primers 

 

Table S5  Summary of experimental and computational validation as well as 

manual inspections of HG00733 

 

Table S6  Comparing Mako detected breakpoints with PCR validated 



breakpoints 

 

Table S7  Comparing Mako breakpoints with K-mer realigned breakpoints 

 

Table S8  Details of VaPoR validation results 

 

Table S9  Details of breakpoints for the two examples in Figure 5 

 

Table S10  Summary of PacBio HiFi reads refined CSV types 
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Table 1  Summary of benchmark CSVs 

Type 
Benchmark summaries 

Description 
NA19240 SKBR3 

Disdup 15 12 Dispersed duplication 

Invdup 18 - Inverted duplication 

DelInv 7 5 Deletion associated with inversion 

DelDisdup 5 1 Deletion associated with dispersed duplication 

DelInvdup 1 - Deletion associated with inverted duplication 

DisdupInvdup 2 2 Dispersed duplication with inverted duplication 

InsInv 1 - Insertion associated with inversion 

Tantrans 1 - Adjacent segments swap 



DelSpaDel 8 1 Two deletions with inverted or non-inverted spacer 

TanDisdup 1 - Tandem dispersed duplications 

 
 

Table 2  Summary of experimentally validated CSVs 

Chromosome Start End Mako Type 

Chr1 81,194,398 81,195,874 DEL, INV 

Chr2 119,659,504 119,661,322 DUP, INS 

Chr3 146,667,093 146,667,284 DEL, DUP 

Chr5 141,480,327 141,483,116 DEL, DUP 

Chr7 1,940,931 1,941,009 DUP, INS 

Chr9 29,591,409 29,593,057 DEL, INV 

Chr10 14,568,488 14,568,677 DUP, INS 

Chr12 71,315,482 71,316,928 DEL, INV 

Chr12 77,989,900 77,994,324 DEL, INV 

Chr13 74,340,759 74,342,810 DEL, DUP 

Chr16 78,004,459 78,007,456 DEL, DUP 

Chr17 34,854,438 34,855,851 DEL, INV 

Chr17 48,538,270 48,540,171 DEL, DUP 

Chr18 72,044,575 72,045,937 DEL, DUP 

Chr21 26,001,844 26,001,844 DEL, INV 

Note: DEL, deletion; INS, insertion; DUP, duplication; INV, inversion. 

 

Table 3  Summary of experimental and computational validation as well as 

manual inspection for CSVs 

Validation Strategy Total Valid Invalid Inconclusive 

Experimental (PCR succeeded) 21 15 (71%) 6 (29%) - 

Computational ONT reads 609 256 

(42%) 

- 353 (58%) 

HiFi contig 414 

(68%) 

191 (32%) - 



ONT reads or HiFi 

contig 

544 

(87%) 

76 (13%) - 

Manual  HiFi reads 609 440 

(72%) 

169 (28%) - 

Note: ONT, Oxford Nanopore; HiFi, PacBio HiFi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 









 

 

 


