Comparison of PacBio HiFi and ONT costs for genome assembly

Data	types and cove	rage	Reagent cost		Computational cost for data generation					Computational cost for assembly and polishing			
Technology	Coverage required for a "good" diploid human genome assembly ^a	Platform	Reagent cost per fold- coverage		CPU hours required for CCS per genome ^b	Cost per hour per CPU node ^c	GPU hours required for basecalling per genome ^d	nour ner	Total computational cost for data generation per genome	CPU hours required for assembly	CPU hours required for polishing	Total computational cost for assembly/ polishing per genome	Overall cost
PacBio HiFi	30X (96 Gb) [QV 50+]	Sequel II	\$138-275	\$3450-8250	6000-8000	\$1.008			\$372-496	~5,000 (HiCanu) ^f	0	\$313	\$4135-9059
Non-UL ONT	60X (192 Gb) [QV 30-50]	GridION	\$160-1600	\$9600-96000			90-100	\$3.006	\$271-301	~700 (Shasta) ^g	MarginPolish/HELEN; Racon/Medaka	\$70 for assembly ⁹ ; \$107 for MarginPolish/HELEN ⁹ ; \$621 for Racon/Medaka ⁹	\$10669-97099
		PromethION	\$67-134	\$4020-8040									\$5089-9139

Non-UL ONT: Non-ultra-long ONT data; typically refers to data generated with standard ONT kits and protocols, resulting in a read length N50 20-50 kbp long

CCS: Circular consensus sequencing

^a We define a "good" diploid human genome assembly as having a QV score ≥30 (or a base accuracy >99.9%) and a contig N50 ≥ 10 Mbp ^b Assumes 2000 CPU hours per SMRT Cell 8M

^a AWS estimate: r5.4xlarge; 16 vCPUs; reported in Nurk et al., bioRxiv, 2020 ^d ONT basecalling is usually done live, where it would have \$0 additional cost. However, if not done live, high-accuracy basecalling would require the indicated GPU hours

^e AWS estimate: p3.2xlarge; 1 Tesla V100; reported in Shafin et al., Nat Biotechnol, 2020

^fReported in Nurk et al., bioRxiv, 2020

^gReported in Shafin et al., Nat Biotechnol, 2020