Supplemental material

Materials and methods

Preparation of BAC library CHORI-507

The CHORI-507 BAC library was prepared as described [Osoegawa et al. 1998]. Briefly, high-molecular-weight DNA from WAV 17 cells was prepared in agarose using DNA Plug Kits (BioRad). The DNA was partially digested with MboI (New England Biolabs) to generate fragments between 100 kb and 400 kb, which were size-fractionated by pulsed-field electrophoresis [Osoegawa et al. 1998]. DNA fractions in the 150 to 250 kb range were sliced from the gel and DNA was electro-eluted from the gel matrix. Vector DNA (pTARBAC1.3) was prepared by treatment with a combination of restrictions enzymes (ApaLI and BamHI) and alkaline phosphatase and then purified by gel-electrophoresis. E. coli DH10B T1 phageresistant cells (Invitrogen) were transformed by electroporation with ligation products from vector and genomic DNA. Prior to full-scale library production, 379 random clones were picked for DNA size analysis. BAC DNA, prepared using an Autogen960 robot, was digested with NotI (New England Biolabs), and analyzed by pulsed-field electrophoresis in a 1% agarose gel. The library clone size distribution is given in Supplemental Fig. 2, and the average insert size was estimated to be 141 kb. There is a small fraction (1 out of 379) of non-recombinant clones. Following this quality assessment, 221 184 BAC clones (approximately 10-fold coverage) were arrayed into 576 384-well microtiter plates. Duplicate sets of twelve high-density colony filters were created for hybridization screening of the library with various human-specific repeat probes.

BAC end sequencing

Positive clones from CHORI-507 were end sequenced using the following protocol. BAC clones were inoculated into 1.5ml of 2xTY containing 12.5μ g/ml chloramphenicol in 2ml 96 well growth boxes (Costar) and incubated for 22 hours at 37°C with shaking at 320rpm. Plates were centrifuged at 4000rpm for 3 min to obtain pellets, the supernatant was discarded and the cells were re-suspended in 100μ l of GTE+RNaseA, 100μ l of NaOH/SDS was added and mixed before adding 100μ l of 3M KOAc and further mixing. After filtration through two Millipore plates (MADVN6550/MANUBA50) on a vacuum manifold, the resultant material was dried and re-suspended in 35μ l of 10mM Tris pH8.0. The resulting DNA was sequenced with BigDye Terminator Ready Mix v3.0 and BigDye Bufferx5 (Applied Biosystems) using T7 and SP6 primers. The sequenced products were cleaned up by washing with 5μ l 3M NaOAc and 125μ l 96% ethanol. The DNA was precipitated by centrifugation at 4000rpm for

15 mins, then washed with a further 100μ l 70% ethanol and the centrifugation repeated. The products were re-suspended in 10μ l of 0.1M EDTA, pH 7.4 and loaded on to ABI3700 capillary sequencers.

BAC clones were fingerprinted using HindIII restriction enzyme fingerprinting [Humphray et al. 2001; Schein et al. 2004]. BAC clones were directly cultured in 170μ l 2xTY in 96 well plates. After overnight growth the BAC DNA was extracted by alkaline lysis, and digested with HindIII. Following electrophoresis on 121 lane 1% agarose gels the data are collected using a Typhoon 8600 fluorimager, raw images were entered into the fingerprint database using IMAGE software (http://www.sanger.ac.uk/Software/Image). The output of normalized band values, sizes and gel traces were analyzed in FPC [Soderlund et al. 2000], which bins and orders clones on the basis of shared bands. Sequence tilepaths were identified following inspection of assembled contigs. End sequences were aligned to the human and mouse genomes using BLAST and ssaha2 (www.ensembl.org).

BAC sequencing

For the shotgun phase [Bankier et al. 1987], pUC plasmids with inserts of mostly 1.4-2 kb were sequenced from both ends using the dideoxy chain termination method [Sanger et al. 1977] with different versions of big dye terminator chemistry [Rosenblum et al. 1997]. The resulting sequencing reactions were analyzed on ABI 3730 sequencing machines and the generated data were processed (http://www.sanger.ac.uk/Software/sequencing/) and assembly with PHRED [Ewing and Green 1998; Ewing et al. 1998] and PHRAP (http://www.phrap.org/) algorithms. For the finishing phase, we used GAP4 [Bonfield et al. 1995] to help assess, edit and select reactions to eliminate ambiguities and close sequence gaps. Sequence gaps were closed by a combination of primer walking, PCR, short/long insert sublibraries [McMurray et al. 1998], oligo screens of such sublibraries and transposon sublibraries.

Gene model copy number

We also performed absolute quantification [Hijri and Sanders 2005] using one assay for gene models 25.1, 28.1, 6.2 and two assays for gene model 15.1. For each gene model, a known amount of plasmid DNA containing a 50mer insert was used as a standard. Two-fold serial dilutions (ranging between 1863 and 3.63 pg) of the purified plasmid DNA were included in the experiment to generate the standard curve. Real-time PCR on the plasmid DNA was performed in six technical replicates (10 dilutions per replicate). The Ct values were then plotted against the log of the initial vector concentration containing the amplicon insert. All replicates offered very similar results producing a standard curve with regression coefficients

 $(R^2) > 0.99$. This regression was then used for predictions of all gene models copy number for a given Ct value. In the same experiments, two-fold serial dilutions of genomic DNA (ranging between 3200 and 6.25 pg) were included in each experiment to generate the Ct values for nuclear DNA copy number estimation. The number of copies of each gene model could then be calculated for each sample of target DNA, based on the regressions using the plasmid DNA as standards. From this we calculated the copy number of the each gene model per 3.3pg of gDNA (the amount of DNA per each copy of the entire human genome). As a control, we used herring sperm DNA as a carrier to yield 10 ng of total DNA per sample in a total volume of 40 µl, irrespective of the dilution of the target DNA to show that the estimation of copy number is not biased by the amount of non-target DNA added to the reaction.

WAV17

The somatic cell hybrid WAV 17 [Slate et al. 1978] was obtained from Coriell (ccr.coriell.org/nigms; GM08854) and cultured according to the recommended protocols. The monoallelic composition of HSA21 in WAV17 was assessed by genotyping with markers D21S11, D21S1270, D21S1435, D21S1411, D21S226 and *IFNAR*.

Screening BAC library CHORI-507

To identify human clones, CHORI-507 was screened with ³²P labeled α -satellite and Alu probes, and total human genomic DNA. This resulted in 2400 (1.09%) positive clones after screening using α -satellite and Alu probes, and 2752 (1.24%) positives with total human genomic DNA. This is consistent with the fact that the HSA21 content of WAV 17 is approximately 1-3% in an aneuploid mouse background. The non-redundant positive clones (3208) were re-arrayed into 384-well plates and gridded on nylon membrane for screening with 21p-specific probes. To identify specific 21p BACs, overgo probes were designed to STSs corresponding to the YAC ends 2E4R, 2E4L, 4E9L, 4E9R, 1B8L, 2C2R, 2C9R from Wang *et al.* [Wang et al. 1999]. A summary of the library screens is given in Supplemental Table 1 and Supplemental Table 2.

FISH

Cell lines were grown in RPMI 1640 with Glutamax I medium (Invitrogen) supplemented with 10% fetal calf serum and a 1% penicillin/streptomycin mix. Cultures were exposed to colcemid (0.1 μ g/mL; Invitrogen) for 1.5 h at 37°C and harvested according to routine cytogenetic protocols. G-banding was performed following standard cytogenetic methods.

The following probes were used in FISH to check the integrity of HAS21 in the WAV 17 cell line: HSA21 paint (Vysis), cosmid c55A10 [Chen et al. 1999], D21Z1 [Maratou et al. 1999], human and mouse Cot-1 DNA (Invitrogen). Interphase nuclei and metaphase spreads were counterstained with DAPI (Vysis) diluted in Vectashield antifade (Vector Labs). BAC and cosmid DNA was labeled with either a Biotin or Digoxigenin-Nick Translation kit (Roche) and detected with anti-dig fluorescein (green) or avidin (red). Cells were viewed under a Nikon fluorescence microscope equipped with appropriate filter combinations. Monochromatic images were captured and superimposed using the Applied Imaging automated imaging system.

Gene predictions

EST sequences from dbEST [Boguski et al. 1993] were aligned to the HSA21p sequence using the program EXONERATE [Slater and Birney 2005]. We considered only spliced alignments with sequence identity of 90% or higher and at least 88% coverage, and discarded those for which there existed a better spliced alignment elsewhere in the genome. Selected EST alignments were divided into four groups according to the properties of the alignment: best, the best alignment for this EST is in HSA21p sequence; pseudo, the best alignment for this EST is in euchromatin, but this is not spliced, indicating a possible processed pseudogene in the euchromatin; paralogue, the coverage of the EST alignment is 100% but the percentage identity is not as high as the best match in euchromatin, hence a potential paralogue; random, there is a better alignment for this EST in an unassembled euchromatin contig. From these alignments we calculated the set of unique exon-exon pairs (75 in total).

Using RepeatMasker (www.repeatmasker.org) without the low complexity filter (option - nolow) we masked the HSA21p sequences and performed in silico gene prediction using the two *ab initio* gene prediction programs, GeneID [Parra et al. 2000] and GENSCAN [Burge and Karlin 1997], and the comparative gene predictor SGP [Parra et al. 2003], in this case using mouse genome sequence (version mm5) as reference. We thus obtained 3 sets of predictions which we merged together into a single set of predicted exon-exon pairs removing duplicates. We further removed those exon-exon pairs that overlap with any of the EST exon-exon pairs calculated before. We obtained a set of 182 unique exon-exon pairs obtained by *ab initio* and comparative gene prediction and not occurring in the EST-predicted set. We classified the 182 exon-exon pairs into those being predicted by all three gene predictors, by two of them and those that are specific to one gene predictor. This classification, the coordinates and the sequences of these predictions are available through the on-line Supplemental material website at http://genome.imim.es/datasets/hsa21p.

Exon-exon pairs were assembled into 26 gene models (21pGMs) by aligning them with the genomic sequence and combining exon pairs conforming to the splice-site consensus sequence.

Sequence analysis

For general sequence analysis programs within the EMBOSS package were used [Rice et al. 2000]. BLAST searches were carried out at Ensembl (www.ensembl.org). Segmental duplications were detected using a BLAST-based detection scheme (WGAC) 45 to identify all pairwise similarities representing duplicated regions (≥1 kb and ≥90% identity) within the finished BAC sequence of chromosome 21 p arm. The 21p BAC sequences were manually joined in their natural order and compared to all other chromosomes in the NCBI genome assembly (hg17 and 18). Satellite repeats were detected using RepeatMasker (version: 2002/05/15) on sensitive settings (www.repeatmasker.org) [Smit et al. 1996]. The program PARASIGHT (Bailey, unpublished) was used to generate images of pairwise alignments.

RT-PCR

Gene models were tested in 24 human cDNAs (brain, heart, kidney, spleen, liver, colon, small intestine, muscle, lung, stomach, testis, placenta, skin, PBLs, bone marrow, fetal brain, fetal liver, fetal kidney, fetal heart, fetal lung, thymus, pancreas, mammary glands, prostate). All amplicons spanned introns. Each cDNA was mixed with JumpStart REDTaq ReadyMix (Sigma) and 4 ng/ul primers (Sigma-Genosys) using a BioMek 2000 robot (Beckman) as described and modified [Reymond et al. 2002]. The first 10 cycles of PCR amplification were performed with a touchdown annealing temperature decreasing from 60 to 50°C; annealing temperature of the next 30 cycles was carried out at 50°C. Amplimers were separated on Ready-to-Run precast gels (Pharmacia) and sequenced.

Gene copy number

Relative DNA copy number was determined as described [Lyle et al. 2006] with some modifications. Genomic DNA was isolated from lymphoblastoid cell lines using DNeasy Tissue kits (Qiagen) according to the manufacturer's protocol. DNAs from a total of 13 individuals were used: 8 unrelated individuals, and mother and son from CEPH families (Coriell), and 3 unrelated caucasian individuals from the University of Geneva DNA bank. Oligonucleotides were designed using PrimerExpress (Applied Biosystems) with default parameters. For each gene prediction a minimum of two assays were designed. Seven assays were used for normalization of input DNA. Control assays were designed in regions that are present in one (*AKAP1*) and two copies (*HBG2*) per haploid genome. Assay sequences are

available in Supplemental Table 10.

Quantitative PCR reactions were performed using PowerSYBR Green PCR master Mix (Applied Biosystems) and each DNA sample were amplified in three replicates. Fluorescence data were collected using the ABI Prism 7900 Sequence Detection System (Applied Biosystems) and data analysis was performed with Qbase (Hellemans et al., unpublished).

Polymorphisms

RNA was obtained from from human brain, testis, heart, spleen, thymus and lung (Ambion). RNA from somatic cell hybrids carrying human chromosome 13, 14, 15, 21, and 22 (GM10898, GM10479, GM11418, GM08854, GM10888; Coriell) was extracted with RNeasy mini kit (Qiagen). cDNA was synthesized using SuperScript II (Invitrogen) and each predicted gene model was tested with the appropriate primer set (Supplemental Table 10) designed to span the gene model. Platinum *Pfx* DNA Polymerase (Invitrogen) was used to perform the PCR. After purification with QIAquick PCR Purification Kit (Qiagen), PCR products were cloned into pCR4Blunt-TOPO vector (Invitrogen). Purification of clones was performed using Plasmid Miniprep⁹⁶ kits (Millipore) and sequencing reaction was carried out with ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems). Lasergene v6.0 (DNAStar) was used to quality check and align sequences. Alignments were edited and clustered using BioEdit (http://www.mbio.ncsu.edu/BioEdit/ bioedit.html) and GeneDoc (http://www.psc.edu/biomed/genedoc).

References

- Bankier, A.T., Weston, K.M., Barrell, B.G. 1987. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. *Methods Enzymol* **155:** 51-93.
- Boguski, M.S., Lowe, T.M.J., Tolstoshev, C.M. 1993. dbEST database for "expressed sequence tags". *Nature Genetics* **4:** 332-333.
- Bonfield, J.K., Smith, K., Staden, R. 1995. A new DNA sequence assembly program. *Nucleic Acids Res* 23: 4992-4999.
- Burge, C., Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J Mol Biol 268: 78-94.
- Chen, H., Rossier, C., Morris, M.A., Scott, H.S., Gos, A., Bairoch, A., Antonarakis, S.E. 1999. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. *Hum Genet* **105**: 399-409.
- Ewing, B., Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res* 8: 186-194.
- Ewing, B., Hillier, L., Wendl, M.C., Green, P. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res* 8: 175-185.
- Hijri, M., Sanders, I.R. 2005. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. *Nature* **433**: 160-163.
- Humphray, S.J., Knaggs, S.J., Ragoussis, I. 2001. Contiguation of bacterial clones. Methods

Mol Biol 175: 69-108.

- Lyle, R., Radhakrishna, U., Blouin, J.L., *et al.* 2006. Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. *Am J Med Genet A* 140: 1384-1395.
- Maratou, K., Siddique, Y., Kessling, A.M., Davies, G.E. 1999. Novel methodology for the detection of chromosome 21-specific alpha-satellite DNA sequences. *Genomics* **57**: 429-432.
- McMurray, A.A., Sulston, J.E., Quail, M.A. 1998. Short-insert libraries as a method of problem solving in genome sequencing. *Genome Res* 8: 562-566.
- Osoegawa, K., Woon, P.Y., Zhao, B., Frengen, E., Tateno, M., Catanese, J.J., de Jong, P.J. 1998. An improved approach for construction of bacterial artificial chromosome libraries. *Genomics* **52**: 1-8.
- Parra, G., Agarwal, P., Abril, J.F., Wiehe, T., Fickett, J.W., Guigo, R. 2003. Comparative gene prediction in human and mouse. *Genome Res* 13: 108-117.
- Parra, G., Blanco, E., Guigo, R. 2000. GeneID in Drosophila. Genome Res 10: 511-515.
- Reymond, A., Marigo, V., Yayiaoglu, M.B., *et al.* 2002. Human chromosome 21 gene expression atlas in the mouse. *Nature* **420**: 582-586.
- Rice, P., Longden, I., Bleasby, A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. *Trends Genet* 16: 276-277.
- Rosenblum, B.B., Lee, L.G., Spurgeon, S.L., Khan, S.H., Menchen, S.M., Heiner, C.R., Chen, S.M. 1997. New dye-labeled terminators for improved DNA sequencing patterns. *Nucleic Acids Res* 25: 4500-4504.
- Sanger, F., Nicklen, S., Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Science USA* **74:** 5463-5467.
- Schein, J., Kucaba, T., Sekhon, M., Smailus, D., Waterston, R., Marra, M. 2004. High-throughput BAC fingerprinting. *Methods Mol Biol* **255**: 143-156.
- Slate, D.L., Shulman, L., Lawrence, J.B., Revel, M., Ruddle, F.H. 1978. Presence of human chromosome 21 alone is sufficient for hybrid cell sensitivity to human interferon. *Journal of Virology* 25: 319-325.
- Slater, G.S., Birney, E. 2005. Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics* 6: 31.
- Smit, A.F.A., Hubley, R., Green, P. 1996. RepeatMasker Open-3.0.
- Soderlund, C., Humphray, S., Dunham, A., French, L. 2000. Contigs Built with Fingerprints, Markers, and FPC V4.7. *Genome Research* **10**: 1772-11787.
- Wang, S.Y., Cruts, M., Del Favero, J., *et al.* 1999. A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. *Genome Research* **9**: 1059-1073.

Supplemental figures and tables

Supplemental Fig. 1. Confirmation of HSA21 content of WAV 17 cell line. (**a**) G-banding of a single nucleus identifies that this cell contains four chromosomes 21 (red arrowheads). (**b**) FISH paint with HSA21 probe confirms the identity of the human chromosome in the mouse background. Counting of 100 nuclei showed that each cell contains 3-5 chromosomes 21. (**c**) Hybridization with the cosmid c55A10 confirms the presence of the short arm on HSA21 in the cell line. D21Z1 is a chromosome 21 centromere probe [Maratou et al. 1999]. (**d**) Hybridization with human Cot-1 DNA shows that HSA21 is the only human component of WAV 17 and that no mouse sequences could be detected on this chromosome.

Supplemental Fig. 2. Insert size distribution of CHORI-507 clones.

Supplemental Fig. 3. FISH of a 21p BAC clone to a metaphase spread from normal human diploid lymphocytes. Clone 68N6 hybridizes to 21p and 13p, as well as to the pericentromeric regions of 2 and 9. All clones hybridize to 21p, and to various extents to the other acrocentrics. +, positive hybridization signal; ?, chromosome not identified but in this group.

Supplemental Fig. 4. Dotplots of HSA21p BAC sequences.

Supplemental Fig. 5. Major alternative spliced isoforms of 21pGM6. Spliced exons are represented for spleen, thymus and HSA13 somatic cell hybrid. For each RNA source, the number of different alternatively spliced transcripts detected is given, and the group representing the highest percentage (determined as a fraction of the total number of clones sequenced) is shown. For HSA13 all variants show 2 nt substitutions (compared to the original gene model) represented by two white asterisks.

Supplemental Table 1. Results of CHORI-507 screen for HSA clones.

Supplemental Table 2. Results of CHORI-507 screen for 21p clones. Probes are STS probes derived from 21p YAC end sequences [Wang et al. 1999]. BACs were binned according to probe. BACs selected for sequencing are marked in bold.

Supplemental Table 3. Sequenced 21p BAC clones. Non-redundant length refers to contigs constructed from overlap of clones 71C21/54M18 and 201H5/216K13. *This clone is a human/mouse chimera, sequence length is for the human portion only.

Supplemental Table 4. BAC repeat content. Data for 21p BACs was obtained using RepeatMasker; data for the euchromatic proportion of the genome is from Lander et al.

(2001).

Supplemental Table 5. 21p bases involved in segmental duplication and pairwise alignment. The table summarizes the sequence properties of 21p segmental duplications (>90% identity >1kb) compared to the human genome (hg18), including the fraction of duplicated sequence (non-redundant duplication), the number of pairwise alignments, the average length of the pairwise alignments (kb) and their sequence identity. *21p duplication with random chromosomes.

Supplemental Table 6. Expression of 21p gene models. Method: e, based on 100% EST matches; p, *ab initio* prediction only. ^a, data from two alternatively spliced transcripts. ^b, number of PCR fragments sequenced: gene models with a sequenced fragment, but not marked as positive, indicates that RT-PCR expression was positive in at least one tissue but the fragment did not match 21p exactly.

Supplemental Table 7. Homology and conservation of 21p gene models. ORFs of gene models were translated and searched against the databases CCDS Peptides and Peptides using ENSEMBL BLAST. In the case of gene models with no obvious single ORF (i.e. multiple short ORFs), all three forward frames were searched. For human homology, the best match gene is given. For conservation, results are presented as: name of gene with best match, length of match, % ID, e-value. PTR, Pan troglodytes; MMU, Mus musculus; GGA, Gallus gallus; DRE, Danio rerio; DME, Drosophila melanogaster; CEL, Caenorhabditis elegans. §, bp.

Supplemental Table 8. Copy Number results obtained by qRT-PCR. The numbers shown are the copy number of a particular assay for a gene model in each of 13 individuals. The IDs for the 13 individuals used in the analysis are given. ¹Different assays for the same gene model (see text).

Supplemental Table 9. Polymorphism results. (**a**) The total number of sequence performed per gene model. (**b**) Number of sequence relative to different cDNAs derived from different from somatic cell hybrid (HSA) carrying acrocentric chromosomes and tissues. (**c**) Percentage of sequences that are identical to the original gene model predicted on the HAS21p. (**d**) The total number of groups obtained after the alignment and clustering of identical sequences. (**e**) Number of groups containing sequences with nucleotide and splicing variants. In parenthesis the number of sequences related to this group. (**f**) Number of groups containing splicing isoforms. (**g**) Percentage of groups containing protein truncation codon (PTC).

Supplemental Table 10. Oligonucleotides for expression, copy number and variation analyses.

Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3

Chr	Group	68N6	8909	71C21	BAC clone 54M18	264C1	120F14	201H5
$\frac{1}{2}$	A	+	+			+		
4 5	В		+		+	·		+
6 7 8								
9 10 11	С	+			?	?		+
12 13	n	+	+	+	+	+	+	+
14 15 16	D		+	+	+	+ +		+
17 18 19	E							
20 21	F G	+	+	+	+	+	+	+
22 X Y				+		+		

Fig. 2

Supplemental Figure 5

Source	No. groups with alternative splicing	% of the total splicing variants	Transcripts
21pGM6	-	-	<u> </u>
Spleen	4	37 39	- 1 - 4 -5 6 - 8 - - 1 - 5 6 - 8 -
Thymus	5	63	<u> </u>
HSA13 somatic cell hybrid	5	80°	- 1

	Positi	ves	Percen	tage
Filter	HSA genomic	Alu/alpha	HSA genomic	Alu/alpha
1	316	194	1.71%	1.05%
2	215	232	1.17%	1.26%
3	241	190	1.31%	1.03%
4	254	128	1.38%	0.69%
5	179	155	0.97%	0.84%
6	278	215	1.51%	1.17%
7	212	219	1.15%	1.19%
8	247	201	1.34%	1.09%
9	189	207	1.03%	1.12%
10	219	262	1.19%	1.42%
11	210	200	1.14%	1.09%
12	192	197	1.04%	1.07%
Total	2752	2400		
Combined unique	320	8		
Average	229	200	1.24%	1.09%

	2E4R	4E9L	2E4L	2C2L	4E9R	1B8L	2C9R
	26P1	45H15	1M11	45H15	47022	120F14	115J4
	30804	20F14	47022	31O20	54M18	190J10	106P6
	68N6	9I18	54M18	20F14	120F14	264C1	129N2
	123D1	207C5	120F14	9I18	190J10		173P2
	153A9	309H6	92J24	97E12	264C1		193E19
	144M20	281N23	153M15	83C3	504L7		193E20
	266I21	378N19	264C1	71C21			201H5
	222M23	382G21	269D3	94F10			280D19
	470N15	426P9	285C4	175P13			303M9
	512F17	465D15	382F17	228024			546C3
Positive	563P24	468A5	462H17	309H6			55507
BACs	513E4	441J5		281N23			216K13
		517M20		378N19			30804
		503E24		382G21			26P21
		505K17		426P9			123D1
		546A15		465D15			
		218116		468A5			
		468G13		441J5			
		8909		4/1M5			
				4/3/04			
				497J20 516A14			
				517M20			
				503E24			
				505K17			
				546A15			
				546B17			
				218116			
				468G13			
				8909			
	69NI6						
	00110	8000		8000			
		0,07		71C21			
BACs			54M18	/1021	54M18		
selected for			264C1		264C1	264C1	
sequencing			120F14		120F14	120F14	
			<u>.</u>				201H5
							216K13

Supplemental Table 3

BAC	Acc number	Length	Status	Non-redundant length	% g/c
CHORI507-68N6	CR381572	184355	finished	184355	37.3
CHORI507-8909	CR381670	129889	finished	129889	41.3
CHORI507-71C21	CR392039	158069	finished	200482	12.2
CHORI507-54M18	CR381535	152296	finished	209465	43.3
CHORI507-264C1	CR381653	131056	finished	131056	39.3
CHORI507-120F14	CR382332	166871	2 unordered pieces	166871	40.8
CHORI507-201H5	CR382285	178865	finished	281020	26.1
CHORI507-216K13*	CR382287	150002	finished	281920	30.1
	Total	1251403		1103574	39.7

		21p BACs		Eu	Euchromatic genome					
	Number of	length	% sequence	Number of	length	% sequence	χ2 p value			
	elements	occupied	-	elements	occupied	-				
SINEs	371	93798	8.5	1558000	359600000	13.1	0.00000			
LINEs	309	252694	22.9	868000	558800000	20.4	0.10040			
LTR elements	253	156953	14.2	443000	227000000	8.3	0.00000			
DNA elements	80	29906	2.7	294000	77600000	2.8	0.83780			
total length		1103312			2736681887					
bases masked		608555	55.2		1532256900	56.0				

	Non-redundant duplication (Mb)*			Number	of pairwise a	lignment	Average leng	th of pairwise a	alignment (kb)	Total al	igned base pa	irs (Mb)	Average percent identity of pairwise alignment (%)			
21p	Inter 1.042	Intra 0.703	Both 1.05	Inter 249	Intra 29	Both 278	Inter 26.8	Intra 56.77	Both 29.93	Inter 6.673	Intra 1.646	Both 8.32	Inter 96.41	Intra 98.05	Both 96.73	
Random*	0.581	0.703	0.892	24	25	49	41.01	64.26	52.87	0.984	1.607	2.591	97.38	98.16	97.86	

C clones	dels	thod	exons	gth, bp	F, aa	in	irt	ney	en	er	on	Intestine	scle	50	mach	lis	centa	u	S	le Marrow	al Brain	al Liver	al Kidney	al Heart	al Lung	sum'	creas	mmary Gl.	state	+ve tissues	uenced ^b
BA	Mo	Met	No.	Len	OR	Bra	Hea	Kid	Sple	Liv	Col	Sm.	Mus	Lun	Stol	Test	Plac	Skii	PBI	Bon	Feta	Feta	Fet	Fet	Feta	Thy	Pan	Mai	Pro	No.	Seq
68N6	21pGM1	р	6	615	204																										1
	21pGM2	р	4	2532	843																										
	21pGM3	р	2	120	28																										1
	21pGM4	e	2	461	54																										1
	21pGM5	e	2	374	46																										
8909	21pGM6	e	8	343	303		+	+	+	+		+	+	+	+	+	+				+	+	+		+	+	+		+	17	2
	21pGM7	р	5	778	164											+														1	1
	21pGM8	р	7	1209	402																										
71C21/54M18	21pGM9	e	5	782	129		+						+		+	+		+	+				+	+			+			9 ª	3
	21pGM10	e	2	196	35																										
	21pGM11	e	3	515	70				+																					1	1
	21pGM12	р	3	266	88																										1
	21pGM28	e	2	237	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	24	1
264C1	21pGM13	e	2	242	35			+	+	+					+	+														5	1
	21pGM14	р	5	686	214																										1
	21pGM15	e	2	214	60	+	+				+		+		+	+	+		+											8	1
	21pGM16	р	9	1923	640				+				+			+	+				+						+		+	7	1
201H5/216K13	21pGM17	e	3	317	44																										
	21pGM18	e	2	535	29																										1
	21pGM19	e	2	329	71																										
	21pGM20	e	2	301	22																										1
	21pGM21	р	8	682	221																										6
120F14	21pGM24	e	3	473	43	+	+		+				+			+		+				+	+					+		9	2
	21pGM25	e	2	710	60	+								+						+	+		+	+			+			7	1
	21pGM26	e	2	382	34																										
	21pGM27	р	6	888	295																										

	HSA home	ology					Conservation			
Models	Homology	% ID	e-value	PTR	MMU	GGA	DRE	DME	CEL	Note
21pGM1 21pGM2 21pGM3 21pGM4 21pGM5										
21pGM6	ankyrin-containing protein (ANKRD20A)	71	8.00E-60	ANKRD26, 135, 27, 5e-09	-	-	-	-	-	
21pGM7 21pGM8	sorting nexin associated	44	5.40E-16	SNAG1, 140, 35, 2.2e-10	SNAG1, 112, 44, 3.3e-16	SNAG1, 111, 43, 8.7e-16	XP_684661 (similar to SNAG1) 175_30_2 3e-13	CG40368, 246, 23, 5.5e-06	-	SNAG1 related
21pGM9	tektins (TEKT4)	96	1.40E-63	TEKT1, 110,44, 3.3e-20	Tekt4, 111, 68, 8.1e-42	TEKT4, 117, 58, 2.2e-39	ENSDARG00000028899 (similar to TEKT4), 129, 40, 6.4e-23	CG32819 (Tekt3-related), 108, 32, 7.2e-14	-	Tektin family
21pGM10 21pGM11	asparagine synthetase (ASNS)	87	2.70E-36	ASNS, 70, 87, 2.2e-36	Asns, 70, 81, 1.5e-34	ASNS, 70, 73, 5.0e-30	asns, 71, 70, 3.3e-30	asparagine-synthetase, 70, 36, 4.0e-07	MO2D8.4 (asparagine- synthetase), 55, 44, 3.6e-08	asparagine-synthetase
21pGM12 21pGM28 21pGM13 21pGM14 21pGM15	SSU_rRNA_5 - -	99	5.10E-46	SSU_rRNA_5, 107, 2.5e-42	SSU_rRNA_5, 110, 89, 1.9e-39	SSU_rRNA_5, 102, 84, 9.5e-36	SSU_rRNA_5, 92, 93, 4.3e-29		-	SSU_rRNA_5
21pGM16	sorting nexin associated golgi protein 1 (SNAG1)	40	3.00E-14	ENSPTRG0000005666, 101, 73, 5.3e-34	Snag1, 89, 54, 5.3e-20	SNAG1, 146, 39, 6.8e-19	SNAG1, 78, 47, 1.1e-15	-	-	
21pGM17	similar to TBC1 domain family member 3C isoform 23	68	1.40E-11	ENSPTRG0000009501 (USP6NL family, RabGAP TBC domain), 36, 64,	Usp6nl (RabGAP_TBC domain), 33, 45, 6.1e-5	ENSGALG0000006897 (RabGAP_TBC domain), 33, 52, 7.2e-07	TBC-domain (ENSDARP00000068022), 33, 48, 8,2e-07	RN-tre (RabGAP_TBC domain), 36, 39, 1.7e-06	TBC-domain (Y46G5A.1), 33, 48, 2.4e-06	Similarity to TBC domain Pfam PF00566
21pGM18 21pGM19 21pGM20										
21pGM21	60S ribosomal protein L7a (SNORD36A)	77	1.10E-24	ENSPTRG00000024092 (RPL7A family), 57, 77, 2.4e-24	Rpl7a, 57, 77, 2.2e-24	ENSGALG00000013415 (Rpl7a family), 57, 74, 3.0e-24	rpl7a, 57, 77, 1.5e-24	rpl7a, 84, 46, 1.4e-17	Y24D9A.4 (60S RIBOSOMAL L7A), 165, 35, 2.1e-22	60S RIBOSOMAL L7A
21pGM24	ENSG00000206169	90	2.10E-28	ENSPTRG00000020863, 58, 64, 2.2e-18	-	-	-	-	-	ANKYRIN REPEAT DOMAIN CONTAINING
21pGM25	sorting nexin associated golgi protein 1 (SNAG1)	31	6.10E-08	SNAG1, 147, 44, 6.4e-25	Snag1, 148, 51, 7.9e-35	SNAG1, 151, 46, 1.4e-3	ENSDARG00000052829 (Snag1-like), 43, 148, 6.9e-28	-	Y37A1B.2 (Lateral Signaling Target family member 1st-4), 95 26, 8 6e-07	SNAG1 related
21pGM26 21pGM27	-								20,00007	

				Individual											
		Assay ¹	0-154	0-397	GM07006	GM11993	GM12003	GM12045	GM12139	GM12156	GM12750	GM12872	GM6991	GM7002	GP1973
	21pGM15	b	16	16	15	17	16	17	18	17	19	16	15	15	18
	•	с	9	10	9	10	10	10	10	10	8	9	10	10	11
		f	6	5	5	7	6	5	6	7	6	7	4	7	5
	21pGM25	d	7	8	7	7	8	7	8	8	8	7	7	9	9
		с	9	10	9	10	11	11	11	10	12	8	11	14	12
		e	23	24	22	20	21	24	23	22	23	19	22	23	27
		h	8	8	7	8	8	10	10	8	8	8	8	8	10
21n gong model	21pGM28	f	7	15	20	17	14	29	14	30	28	14	29	37	18
21p gene model		а	6	14	19	16	13	26	14	27	25	13	26	30	15
		h	10	23	34	25	24	45	24	54	45	24	42	54	24
		n	2	3	3	2	2	3	2	4	3	3	3	5	2
	21pGM6	а	11	12	11	13	12	12	11	11	12	11	12	12	11
		b	6	7	6	6	8	7	5	6	8	7	6	7	6
	21pGM9	i	4	4	5	4	3	4	3	3	4	4	4	3	4
		e	0	1	2	0	0	1	2	0	1	0	2	0	2
		f	1	1	1	1	1	0	1	0	0	0	1	2	0
	TBL2		1	1	1	1	1	1	1	1	1	1	1	1	1
	WBSCR14		1	1	1	1	1	1	1	1	1	1	1	1	1
	RFC2		1	1	1	1	1	1	1	1	1	1	1	1	1
Control games	CYLN2		1	1	1	1	1	1	1	1	1	1	1	1	1
Control genes	WBSCR16		1	1	1	1	1	1	1	1	1	1	1	1	1
	AKAP1_1		1	1	1	1	1	1	1	1	1	1	1	1	1
	AKAP1_2		1	1	1	1	1	1	1	1	1	1	1	1	1
	HBG2_1		2	2	2	2	2	2	2	2	2	2	2	2	3
	SAMSN1		1	1	1	1	1	1	1	1	1	1	1	1	1
	NCAM2		1	1	1	1	1	1	1	1	1	1	1	1	0
	cgh4_A		1	1	1	1	1	1	1	1	1	1	1	1	1
Normalization genes	cgh6 A		1	1	1	1	1	1	1	1	1	1	1	1	1
8	C21orf1		1	1	1	1	1	1	1	1	1	1	1	1	1
	ELN		1	1	1	1	1	1	1	1	1	1	1	1	1
	POR		1	1	1	1	1	1	1	1	1	1	1	1	1

			Gene model		
	21pGM6	21pGM9	21pGM15	21pGM25	21pGM28
number of sequenced clones ^a	121	48	185	69	31
somatic cell hybrid/tissues	HSA13 (25)	heart (35)	HSA13 (32)	HSA21 (16)	brain (31)
(n of sequences)b	spleen (57)	testis (13)	HSA15 (24)	HSA22 (18)	
· • •	thymus (39)		HSA21 (23)	lung (35)	
	•		HSA22 (28)		
			heart (33)		
			brain (45)		
sequences identical to HSA21p ^e	0	0	38%	16%	84%
number of groups ^d	25	26	34	35	5
nucleotide variation groups ^e	19 (36%)	23 (85%)	29 (60%)	34 (84%)	4 (16%)
splicing isoform groups ^r	6 (64%)	3 (15%)	4 (2%)	0	0
groups with PTC ^g	25	3	15	1	-

	Gene/gene model	Assay	F	R
Expression	21pGM1	18481p4.1.a	TCCAAATGGCATCTCCTACC	CCTCCAGCTTTCAAAGTGCT
	21pGM2	18477n3 1 a	CACATGGGGACACAGTCAAG	GCCTCCTCGGGTTTATGC
	21pGM3	22703p7 5 a	GAAAGTGAGTAATGGCCCAGA	CATTTTATGCTA AGCTTCTTAGTTGC
	21pGM5	19462-6.16 -	TCCCTACACAACCCCTTCTC	ACCCCCTTCACCCATAACAC
	210014	10455 5 2	COCTOTOTOTOTOCACCETT	AGGCCCTTTTTCCCCA
	2106M5	1845565.5.8	GGGIGICAICAIGGACCITI	TETTOCCALATTCCTCACC
	2100000	30204e3.1.d	GGAAGAGCAAGAAAGGIGIGA	TICHIGGGAAAHIGCIGAGG
	21pGM7	22/05p7.14.c	GAICAIGGCACAAGIIGCAG	GTTAAICGCAAAACTGTACGAGAA
	21pGM8	18485p4.3.a	AAACCGGGGTTCACATCAA	CTCTCCCCTCCCAGAAACTC
	21pGM9	18409e2.1.a	CGGCTGTAGTTGCTCTCACA	GACTGTTGGTCATGGCAGTG
	21pGM9	18419e2.6.a	ACCTGGGACTCCAGTGTGAC	GCTCATGTGGATGTCCTTGA
	21pGM10	18459e6.14.a	TCAGGCCACAAGTGAACATC	CACTGGGGGGCTTGATTTTT
	21pGM11	30200e6.1.b	TGCTTTGGATTTCACCCATT	CAAATGCAAACACACCAACC
	21pGM12	18473p1.4.a	TTAATGCAGCTGGGCAACTTT	GCTGATCCAGTGCCCAGAA
	21pGM13	30202e6.12.a	TCAGACTTCAAATAACTGCCAGA	CAATTAAAATGTGTAAATAGCCCAGT
	21pGM14	22715p7.9.c	CAAGAACAGCCATGGAAACA	TTTTCTTTCCAGTCCCATGC
	21pGM15	18393e11a	CTTGGGGCTTGGTTCTATGT	TTCATTTCTTGTTGCTCTTGGA
	21pGM16	18483p4.2.a	TGATCTTATGGCGGAGAAGG	CTGCTGCAAAGGCTTCCTTA
	21pGM17	18457e6 11 b	ATCTGGAGATTTTCTCAAGCTTCT	TTTGTTA ATTGACATA ATTCTTCAGCA
	21pGM18	18305-1.2 -	CCTTA A ATTGGGTTGTGTGTCT	CAATGCCTTCCTAATGACCTT
	21pGM10	18447-22.2	TTCCTCCCTCCCATCTCTCTT	TGAATTTCAACCAGCAAAGAA
	21pGM19	18403a16a	GAGGCAATACACTGGCATCA	CCTTCCCCTTTTTCCTCTCT
	21pGM20	22717-7.17 -	CCAACCTCCCAAAAACAAAAC	CATTCACCACCTCTTTCCT
	21001121	22/17/07/17/2	CLAGGTCACCTCACACTCA	TCCCTTA CCCCTCC ATTCTA
	21pGM24	30917C21p-e6.4a	CAAGGIGAGGICGAGAGICA	IGGUTACCCGIGGATICIA
	21pGM25	18453e5.2.a	GCCAIGGACCIGIIAGIGCI	GCACCAGCCCTITGATACIG
	21pGM26	18439e2.19.a	GGCIIGGIICIAIGICCCIGI	ICGGCAICAGAAAGAICAGA
	21pGM27	22/25p6.15.a	TGCCCACCAGAAGAITTAGG	GCCITICCTICCCIGATITC
	21pGM28	18397e1.3.a	GCTCGCTCCTCTCCTACTTG	GGCGACTACCATCGAAAGTT
Copy number	21pGM6	Hs21pGM6.2-a	CCTTTACGTGGACCTTCTCATGA	TTTTCCATTGACTATTCTGTTTCCTTT
		Hs21pGM6.2-b	TGCTGCTGACAGATTAACCAAAG	CTGAGGATACGTTTTCCCAATCTT
	21pGM9	Hs21pGM9.1-i	CCTCCACCCCAGAGACCC	GCGTGGCACAGATTGTCCT
		Hs21pGM9.1-e	AGGAACCTCTGCACATAGCCC	GCCGGTGTGAGAGCAACTACA
		Hs21pGM9.1-f	CTGCGCAACCTCAAGGACAT	GGCAGTGACGTCCTTCTCCA
	21pGM15	Hs21pGM15.1-b	GGCTTGGTTCTATGTCCCTGC	TTCCTCTTCGCCCTTGCA
		Hs21pGM15.1-c	CGGACCAGTGTTCCCTAGTTG	CAATGTGCCCACGCGTC
		Hs21pGM15.1-f	TTCCCTAGTTGTGGGGAGCAGA	AACATAGCTGCACTTCAGGCC
	21pGM25	Hs21pGM25.1-e	TCACCACTTCCATCCAATTCC	TGCTGCATCTGTGAGTCCATG
		Hs21pGM25.1-h	CCCAGGAATTGATAGTGTTGAATG	GAAACCGTCCACGATCGAGT
		Hs21pGM25.1-d	CACCCCCAGTGTGACACTCA	CCGTCAATCTTGCTCTCCCA
		Hs21pGM25.1-c	GAAGGACCTGGACCTAGCCAT	TGGTGTCCCTGAGACAGCAC
	21pGM28	Hs21pGM28.1-a	GCGCTGACCCCCTTCG	TGGTTTTGATCTGATAAATGCACG
	-	Hs21pGM28.1-f	GGGCGCTGACCCCCT	TGGTTTTGATCTGATAAATGCACG
		Hs21pGM28.1-h	GCTGACCCCCTTCGCG	CGGGTTGGTTTTGATCTGATAAAT
		Hs21pGM28.1-n	TAGATAACCTCGGGCCGATCG	AAAGTTGATAGGGCAGACGTTCGAA
	TBL2	15 TBL2	CTGTCTGTCATCTAGCCTCTGCA	CCAGGCCCTTCGGCA
	MLXIPL	14 WBSCR14	CACGCATTTCTGATTCCCATT	GCAGGCGGTCTGCGC
	RFC2	6 REC2	TGACAACCCCCTTGCCAC	TGCCATATTTGGTAATGCGC
	CYLN2	5 CYLN2	CTGCTCTTCCTCCTGTGGCT	AGCTGTTTGCCCAGGTCCT
	WBSCR16	4 WBSCR16	CATGCTTTGTGGGAACTGCTT	AGAGGACAGCAGTGTGAATCCA
	AKAPI	HsAkan1 1	AAAGCACTTAGTCGGTCGGC	AAACTCACATAGCGCCCCTG
	AKAP1	HsAkap1 2	GATACGTGGACTACGGCGGA	GCCGGAGCACGTCTACTTTC
	HBG2	HsHBG2-1	CGGCTGGCTAGGGATGAAG	TGTGGAACTGCTGAAGGGTG
	SAMSNI	hsacgh_21_1A	TCTCGATTCCTTTAGCGTCAACT	GCTCAGCTCAGGATGCAGAAA
	NCAM2	heacgh-21-34	CCACCTCAAGTATACCGAAGTCCTA	GGAAGCGCTGCATGTGAA
		hsacgh-21-574	CAATTCAGGTCAGGTGATAACTCAGTA	GCCAGGTTTAGAATGTTTGTCTAAGTC
		hsacgh-21-64	CGTCACATCACATCTCACTCATTG	ACCACGTGAAAGGAGGTTTCC
		HeHLIGI	GCCAGGAGCCCCACTGTAA	AGATTTCTGCAGCCACCTCAC
	FIN	9 FI N	GGCATGAGACGCTCCACAT	TTCTGAGCCAGGGCAACAC
	DOD	0.1.400KhoutWReamtro	CACCAAAGACTGGCGTTTCC	GCGGACCCAGATTTCTTGAC
Variation	21pGM6	21pGM6 2aDNA	CAGAGCCTTTACCTCGACCT	TECETATTTCCTCTCCCACT
variation	21pGM0	21pGW0.2cDNA	COCCTCCTCTACCTCAC	CTCTTTATTCCCCCATTCC
	21pGM9 21=CM15	21pGM9.1CDNA	CONTROCCONTROLIGAG	CIGITIALI IGGGGGALIGG CCACACATTATTCATTCTCTC
	21pGM15	21pGW15.1cDNA	ACACCCCACTCACCTCAACT	TTCAACTCCAAACCCTCCAC
	21pGM25 21=CM28	21pGM25.1cDNA 21=CM28.1=DNA	TOTOGTA ATTOTA CACOTA ATA CATCO	CTCCCCACTACCATCCAAAC
	210010120	2 IPOWI20. ICDINA	I GI GGI AAI I CIAGAGCI AAIACAI GC	GIGGCGACIACCAICGAAAG