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Duplication hotspots, rare genomic disorders, and common
disease
Heather C Mefford1 and Evan E Eichler2,3
The human genome is enriched in interspersed segmental

duplications that sensitize approximately 10% of our genome

to recurrent microdeletions and microduplications as a result of

unequal crossing over. We review the recent discovery of

recurrent rearrangements within these genomic hotspots and

their association with both syndromic and nonsyndromic

diseases. Studies of common complex genetic disease show

that a subset of these recurrent events plays an important role

in autism, schizophrenia, and epilepsy. The genomic hotspot

model may provide a powerful approach for understanding the

role of rare variants in common disease.
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Introduction
The development of cytogenetic techniques, including

high resolution karyotyping and fluorescence in situ
hybridization (FISH), in the early 1980s resulted in the

identification of microdeletions responsible for Prader–
Willi (15q11–q13 deletions) [1] and Smith–Magenis

(17p11.2 deletions) [2] syndromes. The term genomic

disorder was originally introduced to describe conditions

resulting from nonallelic homologous recombination

(NAHR) or unequal crossing over between segmental

duplications (a.k.a. low copy repeats) [3��]. Over the next

decade, continued efforts to fine-map recurrent deletions

implicated NAHR for recurrent rearrangements in Char-

cot–Marie–Tooth disease [4�], hereditary neuropathy

with liability to pressure palsies [5�], and Prader–Willi

[6], Angelman [7], Smith–Magenis [8�], velocardiofacial

[9], Williams–Beurens [10], and Sotos [11] syndromes as

well as spinal muscular atrophy [12] and juvenile nephro-
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nophthisis type I [13] (Figure 1) to name a few. Molecular

diagnosis became possible but relied on first, suspecting a

specific disorder based on clinical features and second,

using a targeted FISH assay for the chromosomal region

to confirm the suspected diagnosis — a ‘phenotype first’

approach.

Advances in technology — most notably the introduction

of array comparative genomic hybridization (CGH) and

single nucleotide polymorphism (SNP) microarrays —

now allow rapid evaluation of many targeted loci or the

entire genome for submicroscopic deletions and dupli-

cations. A significant advantage of these approaches is

that a suspected diagnosis is not necessary before per-

forming the diagnostic test. The application of both

targeted and whole-genome technologies to large series

of patients with mental retardation (MR) or developmen-

tal delay [14�,15–17,18�,19], autism [20–22,23�,24,25],

congenital anomalies [26,27�,28,29], and schizophrenia

[30,31,32�] has had several important consequences. First,

the rate of discovery of novel disorders has increased

dramatically. Since 2005, 18 new genomic disorders invol-

ving 12 regions of the genome have been described, more

than doubling the number of disorders described in the

previous 20 years (Table 1). Perhaps more importantly,

whole-genome approaches have led to a remarkable shift

from a ‘phenotype first’ to a ‘genotype first’ definition of

genomic disorders. Whereas previously, disorders were

described using clinical features, new disorders are

described by their genomic rearrangement and clinical

features are compared among patients after a common

rearrangement is identified. As the diversity of pheno-

types evaluated for pathogenic copy number changes

expands, so does the phenotypic diversity associated with

at least a subset of recurrent rearrangements — in fact, for

some of the rearrangements described below, the ‘phe-

notype first’ approach would have been nearly impossible.

The underlying genomic architecture in each of the

genomic disorders identified to date is similar: a stretch

of unique sequence (50 kb–10 Mb) flanked by large

(>10 kb), highly homologous (>95%) segmental dupli-

cations that provide the substrate for NAHR. In 2002, we

used these criteria to identify rearrangement ‘hot-

spots’ — regions predicted to be susceptible to recurrent

rearrangement based on the flanking genomic architec-

ture [33��] — and developed a targeted array CGH assay

to evaluate copy number variation in both affected and

unaffected individuals. An updated map of predicted

hotspots and associated disorders is shown in Figure 1;

there are now 21 discrete regions of the genome that
www.sciencedirect.com
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Figure 1

Rearrangement hotspots and their associated disease phenotypes. Each chromosome is depicted as a horizontal line with intrachromosomal segmental

duplications connected by blue lines. Gold bars represent ‘rearrangement hotspots’ defined as unique regions (50 kb–10 Mb) flanked by intrachromosomal

segmental duplications >10 kb with >95% sequence identity. Disease-associated deletions and duplications are represented by red and green bars,

respectively. Numbers represent rearrangements within hotspot regions as defined above: (1) TAR syndrome, (2) 1q21.1 deletion and (3) reciprocal

duplication, (4) juvenile nephronophthisis, (5) 3q29 deletion and (6) reciprocal duplication, (7) spinal muscular atrophy, (8) Sotos syndrome, (9) Williams

syndrome and (10) reciprocal duplication, (11) 10q22–q23 microdeletion, (12) Prader–Willi syndrome, (13) Angelman syndrome, (14) duplication 15q11, (15)

15q13.3 microdeletion and (16) reciprocal duplication, (17) 15q24 microdeletion, (18) 16p13.11 deletion and (19) reciprocal duplication, (20) 16p11.2–p12.2

deletion and (21) 16p11.2 deletion and (22) reciprocal duplication, (23) HNPP, (24) CMT1A, (25) Smith–Magenis syndrome, (26) Potocki–Lupski syndrome,

(27) renal cysts and diabetes (RCAD) syndrome, (28) 17q21.31 microdeletion syndrome, (29) velocardiofacial/DiGeorge/deletion 22q11 syndrome and (30)

reciprocal duplication, (31) distal 22q11.2 deletion and (32) reciprocal duplication, and (33) azoospermia. Letters represent NAHR-mediated deletions that

occur outside of hotspots (as defined above): (A) Gaucher disease, (B) fascioscapulohumeral dystrophy, (C) congenital adrenal hyperplasia, (D)

glucocorticoid-remediable aldosteronism, (E) neurfibromatosis type I microdeletion syndrome, (F) pituitary dwarfism, (G) X-linked ichthyosis, (H) Hunter

syndrome, (I) red–green color-blindness, (J) Emery–Dreifuss muscular dystrophy, (K) incontinentia pigmenti, and (L) hemophilia A.
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Table 1

Genomic hotspot rearrangements and their associated phenotypes

Locus Del or

dup

Coordinates

(Build 36) and size

of critical region

Associated phenotypes Possible

candidate

genes

Size and %

sequence identity

of flanking repeats

Reference

1q21.1 del Chr1:

144.10–144.60 Mb,

500 kb

TAR syndrome: hypomegakaryocytic

thrombocytopenia, upper extremity

abnormalities ranging from bilateral

absent radii to phocomelia;

normal intellect

PIAS3, Lix1L 19 kb, >95.0% [27�]

1q21.1 del Chr1:

145.0–146.35,

1.35 Mb

Deletion: variable phenotypes:

two groups report mild to severe MR,

microcephaly, occasional congenital

heart disease; two studies find

enrichment of the deletion in

schizophrenia

GJA5, GJA8,

HYDIN2

281 kb, >99.9% [30,31,

51,52�,53]

dup Duplication: macrocephaly,

mild to moderate delays, autistic

features; unlike the deletion, has

not been seen in schizophrenia

3q29 del Chr3:

197.4–198.9,

1.5 Mb

Deletion: mild to moderate MR,

microcephaly, mild dysmorphic

features

PAK2, DLG3 21 kb, >97.1% [46–48]

dup Duplication: mild to moderate MR

10q22–q23 del Chr10:

81.12–89.07 Mb,

7.95 Mb

Two families reported: deletion

carriers have cognitive and

behavioral abnormalities of

varying severity including:

learning disabilities, speech,

and language delay, mild

developmental delays

NRG3, GRID1,

BMPR1,

ASNCG, GLUD1

107 kb, >98% [41]

15q13.3 del Chr15:

28.7–30.2 Mb,

1.5 Mb

Deletion: variable phenotypes —

mild to severe MR, mild

dysmorphism, digital abnormalities,

autism; schizophrenia; IGE

CHRNA7 218 kb, >99.4% [18�,30,

31,54–57]

dup Duplication: few patients

reported, mild to moderate

delays; unlike deletion of

the same region, has not

been reported in

schizophrenia or IGE

15q24 del Chr15:

72.2–73.8 Mb,

1.8 Mb

Mild to moderate MR, high anterior

hairline, downslanting PF, long

philtrum, digital abnormalities,

genital abnormalities, loose

connective tissue

MAN2C1,

CYP11A1,

STRA6

51 kb, >94.0% [38,39]

16p13.11 del Chr16:

15.4–16.4 Mb

Deletion: MR, autism, brain

abnormalities

NDE1, NTAN 138 kb, >99.0% [49,50]

dup 1 Mb Duplication: autism, MR;

decreased penetrance

16p11.2 del Chr16:

29.50–30.10 Mb,

600 kb

Deletion: detected in 0.5–1%

of individuals with autism; also

seen in 0.1% of individuals

with psychiatric or language

disorders, 0.01% of controls

MAPK3, MAZ,

DOC2A, SEZ6L2,

HIRIP3

146 kb, >99.4% [21,25]

dup Duplication: autism, psychiatric

or language disorders (0.04%);

also seen in 0.03% of

population controls

16p11.2–p12.2 del Chr16:

22.0–28.0 Mb,

6 Mb

Severe developmental delay;

hypotonia; flat facies,

downslanting palpebral

fissures, posteriorly rotated ears

Many genes 146 kb, >99.4% [40]
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Table 1 (Continued )

Locus Del or

dup

Coordinates

(Build 36) and size

of critical region

Associated phenotypes Possible

candidate

genes

Size and %

sequence identity

of flanking repeats

Reference

17q12 del Chr17:

31.8–33.3 Mb,

1.5 Mb

Deletion: renal abnormalities

ranging from severe multicystic

dysplastic kidneys to occasional

renal cysts; renal cysts and

diabetes (RCAD) syndrome

HNF1B 76 kb, >99% [28]

17q21.31 del Chr17:

41.0–41.7 Mb,

700 kb

Mild to severe global developmental

delay, childhood hypotonia, long face,

tubular, or pear-shaped nose, bulbous

nasal tip, friendly/amiable behavior

MAPT, CRHR1 38 kb, >98% [15,18�,

19,34]

Distal 22q11.2 del Chr22:

19.8–22.0 Mb,

2.2 Mb

Deletion: prematurity, growth delay,

learning problems, and/or

developmental delay, various

skeletal abnormalities

MAPK1 10 kb, >95.9% [44,45]

dup Duplication: mild to moderate MR,

mild dysmorphic features
undergo recurrent rearrangement, resulting in 33 dis-

eases, and at least 10 additional diseases are the result

of NAHR in regions of the genome that are flanked by

duplications but do not meet our strict definition of a

hotspot.

Mental retardation syndromes
The majority of the genomic disorders identified before

2006 were characterized by developmental delay, learn-

ing disability, and/or MR. Interestingly, the genetic basis

for MR is still unknown in well over 50% of clinical cases.

Therefore, many studies have been aimed at identifying

submicroscopic copy number changes in this population

[14�,15–17,18�,19], and it is now estimated that large

microdeletions and microduplications underlie >15% of

MR. We note that many potential pathogenic copy num-

ber changes are nonrecurrent (i.e. private mutations seen

only once) and likely occur by a mechanism other than

NAHR since segmental duplications have not been found

at the junctions. Although significant in the aggregate, the

pathogenicity for any one specific event can be difficult to

prove. Here, we focus on those genomic disorders

mediated by segmental duplications where the patho-

genic significance is unambiguous. Sixteen of the 18 new

genomic disorders identified since 2005 are associated

with MR (Table 1). Several of these appear to be highly

penetrant with recognizable syndromic features.

In 2006, three groups simultaneously reported recurrent

microdeletions of chromosome 17q21.31 detected by

array CGH [15,18�,19], kicking off a flurry of discovery

of novel genomic disorders. The 17q21.31 microdeletion,

with an estimated prevalence of 1 in 16 000, fits the

definition of a classic genomic disorder: the microdeletion

has breakpoints in flanking segmental duplications, is

always de novo in affected individuals and has never been

seen in controls, and patients harboring 17q21.31 micro-

deletions have very similar phenotypes (Table 1)
www.sciencedirect.com
[15,18�,19,34]. Notably, within the same genomic region

is an inversion of�900 kb observed in approximately 20%

of individuals of European ancestry [35]. Further empha-

sizing the importance of regional genomic architecture,

the inversion has been found in every parent who trans-

mits a de novo deletion to an affected child and appears to

be a prerequisite to facilitate microdeletion [34,36]. The

reciprocal duplication has also been reported in one

patient with severe psychomotor delay and craniofacial

dysmorphism [37]; whether individuals with the recipro-

cal duplication have syndromic features will require the

identification of additional patients.

Reports of recurrent microdeletions in individuals with

developmental delay or MR continued steadily throughout

2007 and 2008. Microdeletions of 15q24, although rare, are

also highly penetrant. To date, five individuals with over-

lapping deletions [38,39] and one patient with autism and a

larger but overlapping deletion [22] have been reported. As

with 17q21.31, all deletions appear to be de novo, and

affected individuals have similar facial features in addition

to developmental delays (Table 1). Another rare but

recognizable syndrome involves deletions of chromosome

16p11.2–p12.2. Ballif et al. [40] reported four individuals

(from 8789 analyzed) with severe developmental delays

and similar facial features; each had a large deletion sharing

the same distal breakpoint at 16p12.2, ranging from 7.1 to

8.7 Mb in size. Deletions of a large hotspot region on

chromosome 10q22–q23 are also rare but recurrent. Two

families with inherited deletions and one individual with

an overlapping deletion have been reported; deletion

carriers have varying degrees of cognitive and behavioral

abnormalities [41].

The long arm of chromosome 22 is rich with segmental

duplications, some of which are responsible for recurrent

rearrangements seen in velocardiofacial syndrome, reci-

procal 22q11 duplications, and cat-eye syndrome
Current Opinion in Genetics & Development 2009, 19:196–204
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[9,42,43]. More recently, recurrent deletions distal to the

velocardiofacial syndrome region were reported [44];

most affected individuals had developmental and growth

delays and were born prematurely (Table 1). Reciprocal

duplications have also been reported and tend to result in

milder, more variable phenotypes [45]. Because of the

number and density of segmental duplications on 22q,

there are several possible rearrangements because of

NAHR; many appear to be associated with disease, but

collecting information on individuals with the same events

is critical to determine features associated with each. Two

additional regions for which reciprocal deletions and dupli-

cations have been recently reported include 3q29 [46–48]

and 16p13.11 [49,50]. Deletions of 3q29 are associated with

mild to moderate MR, microcephaly, mild dysmorphic

features, and possibly autism; duplications may also be

associated with MR but with decreased penetrance.

Deletions of 16p13.11 are highly (though not fully) pene-

trant and have been seen in individuals with autism, MR,

dysmorphic features, and brain abnormalities. Individuals

harboring duplications tended to have MR, autism, and/or

behavioral problems, but the duplication is also seen rarely

in controls suggesting decreased penetrance and/or vari-

able expressivity (Table 1).

Non-MR genomic disorders
Although neurocognitive and neurobehavioral diseases

appear to be enriched for genomic disorders, this may

simply be a result of ascertainment bias. Recent investi-

gations of other diseases suggest that recurrent genomic

rearrangements also underlie some disorders that do not

include cognitive deficits as a primary phenotype. Array

CGH studies of individuals with thrombocytopenia-

absent radius (TAR) syndrome found that 30/30 affected

probands shared a �500-kb deletion on chromosome

1q21.1 [27�]. The deletion is not sufficient to cause

disease, as it is inherited from an unaffected parent in

at least half of cases. It is thought that one or more as-of-

yet unidentified genetic modifiers must play a role. A

second disorder described in 2007 is associated primarily

with pediatric renal abnormalities and renal cysts and

diabetes (RCAD) syndrome [28]. We identified a 1.5-Mb

microdeletion of 17q12 encompassing the HNF1B gene

in a fetus with severe multicystic dysplastic kidneys. This

led us to screen individuals with pediatric renal abnorm-

alities or RCAD syndrome, and we found the identical

microdeletion in a subset of patients. The microdeletion

appears to be highly penetrant and a frequent cause of

early cystic renal disease.

Genomic disorders defying syndromic
classification
One of the most intriguing developments over the past

two years has been the discovery of at least three new

recurrent microdeletions that are enriched in multiple

neuropsychiatric diseases but elude syndromic classifi-

cation. Although each microdeletion was first identified in
Current Opinion in Genetics & Development 2009, 19:196–204
a series of individuals with similar phenotypes, the appli-

cation of whole-genome copy number variation analysis to

a wider range of neurocognitive disorders has revealed

unprecedented phenotypic diversity.

16p11.2 rearrangements

An exciting development in the autism field was the

discovery by multiple groups of a recurrent microdeletion

of 16p11.2 found in 0.5–1% of affected individuals

[21,22,23�,25]. This is one of the most common cytoge-

netic findings, second only to the 15q11.2 microduplica-

tion, for a disorder that has been difficult to tackle from a

genetics perspective. However, although significantly

enriched in patients with autism, both deletions and

duplications are also found in individuals with a psychia-

tric or language disorder (0.1% and 0.04%, respectively)

and in the general population (0.01% and 0.03%, respect-

ively) [25], suggesting extensive variability in expressiv-

ity. It is now clear that the deletion is not specific for

autism as it is enriched in individuals diagnosed with MR,

autism as well as schizophrenia.

Rearrangements of chromosome 1q21.1

Rearrangements of a 1.35-Mb region on 1q21.1, just distal

to the deletion found in TAR syndrome, have also been

associated with a wide range of phenotypes, including

MR and developmental delay [14�,18�,51,52�], schizo-

phrenia [30,31], and congenital heart disease [52�,53].

On the basis of our targeted array of hotspot regions,

we identified a de novo deletion in a single patient with

developmental delay and MR [18�]. Later, we reported a

significant enrichment of both deletions and duplications

of the same region in a larger series of patients with

developmental delay, MR, and/or congenital anomalies

[52�], a finding replicated by Brunetti-Pierri and col-

leagues [51]. In two large studies of patients with schizo-

phrenia, deletions of 1q21.1 were found in 0.26% of

affected individuals compared to 0.02% of population

controls [30,31]. At least three of the deletion carriers

also had mild cognitive impairment and one had epilepsy.

Detailed analysis of deletion breakpoints revealed that

individuals with very different phenotypes appear to carry

the exact same deletion (Figure 2).

Rearrangements of chromosome 15q13.3

Another microdeletion, first described by Sharp et al. in a

series of patients with MR, mild dysmorphic features, and

seizures [18�,54], may have even greater phenotype diver-

sity than rearrangements of 1q21.1. Three additional

studies have confirmed that the deletion is relatively

common in individuals with mild to moderate MR and

is also found in a subset of individuals with autism [55–
57]. In contrast to the first series of patients reported, very

few of the patients in these subsequent studies suffered

from seizures. As with 1q21.1 deletions, 15q13.3 deletions

are also enriched in individuals with schizophrenia: com-

bined, two studies found 15q13.3 deletions in 0.2% of
www.sciencedirect.com
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Figure 2

Identical deletions are associated with diverse phenotypic outcomes. Oligonucleotide array CGH results are depicted for (a) chromosome 1q21.1

(hg18, chr1: 143 000 000–145 500 000) and (b) chromosome 15q13.3 (hg18, chr15: 28 000 000–31 000 000). x-axis, genomic location; y-axis, log2 ratio

of fluorescence intensity; red and green bars represent log2 ratio less than or greater than 1.5 standard deviations from the mean, respectively. Clinical

features for the individuals shown are listed to the left of the array CGH results for that individual. Segmental duplication blocks are depicted by

orange/yellow/gray bars at the top (90–94.9%, 95–99%, and >99% sequence identity, respectively); genes are shown below each figure.
affected individuals compared to 0.01% of unaffected

individuals [30,31]. Five of nine deletion carriers in

one of the studies [31] also had mild cognitive impairment

and one had epilepsy. Finally, yet another large study

found enrichment of the same deletion in patients with

idiopathic generalized epilepsy (IGE), the most common

form of epilepsy [58]. In fact, 15q13.3 microdeletions are

more common in IGE (1% of affected individuals) than in

MR, autism, or schizophrenia. Again, detailed analysis of

breakpoints reveals identical deletions despite highly

variable phenotypes (Figure 2). The reciprocal dupli-

cation has also been reported in individuals with devel-

opmental delays and autistic features [55,57] and rarely in

controls, but not in schizophrenia or epilepsy.

Genomic hotspot model of common and rare
disease
A slight majority of the rearrangements that have been

shown to be disease-causing are mediated by segmental

duplications. This is simply a consequence of the fact that

duplicated sequences promote recurrent rearrangements

(Figure 3) requiring far fewer patients and controls to be

tested in order to prove pathogenicity when compared to
www.sciencedirect.com
large copy number variants (CNVs) not flanked by seg-

mental duplications. The wide range of phenotypes

associated with rearrangements of 16p11.2, 1q21.1, and

15q13.3 points to a common disease mechanism for a wide

range of neurocognitive deficits, including autism, MR,

epilepsy, schizophrenia, and other psychiatric disorders.

While individually, each of these lesions may contribute

only 0.1–1% of the total genetic basis of a specific disease,

the fact that they influence so many diverse diseases

(autism, epilepsy, MR, and schizophrenia) means the

overall disease burden is significant, warranting intense

scrutiny of these genomic intervals. We propose that

these large microdeletions and microduplications are

primarily responsible for disease, but the actual specificity

of disease is determined by other perhaps more common

modifiers — genetic, epigenetic, and environmental.

Depending on the severity of the outcome, mildly

affected individuals may transmit these alleles to the

next generation (explaining both the inherited and de
novo aspects), but owing to their high penetrance there is

a strong purifying selection operating against the persist-

ence of these alleles in the population. As a result, a high

frequency of new mutations or evolutionarily young
Current Opinion in Genetics & Development 2009, 19:196–204
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Figure 3

Model for recurrent rearrangements in common disease. Orange blocks represent segmental duplications flanking a unique stretch of sequence. Mis-

alignment at meiosis results in nonallelic homologous recombination (NAHR) resulting in deletion (shown) or duplication (not shown). See text for

additional details.
mutations, as opposed to ancient inherited mutations, is

the primary basis for both common and rare diseases

associated with neurodevelopmental (and perhaps other)

human diseases.

Future directions and conclusions
As we forge ahead in this ‘genotype first’ era of rapid CNV

discovery, we should anticipate the need to screen large

disease cohorts (10 000–50 000 affected individuals) in

order to assess the pathogenicity of other rare CNVs,

especially those not flanked by segmental duplications.

Some of these numbers may be achieved by leveraging

CNV datasets from seemingly disparate disease cohorts

(i.e. autism, MR, schizophrenia, and epilepsy). Until such

large supracollaborations are established, targeting even

smaller hotspots systematically for high-throughput CNV

detection may provide a cost-effective way of identifying

other pathogenic CNVs. In our work, for example, we

identified 107 rearrangement hotspot regions in the

human genome, 31% of which (33/107) are now associated

with a variety of diseases. Advances in oligonucleotide

microarray technology now allow a much larger number of

smaller hotspot regions to be assessed for disease associ-

ation. While genotyping first by array CGH is important,

the ability to access extensive phenotypic information for

individuals carrying an individual lesion is critical. Simply

lumping individuals into categories of disease or controls

with no ability to go back to patients (a design common to
Current Opinion in Genetics & Development 2009, 19:196–204
some genome-wide association studies) is inadequate. As

demonstrated by the 15q13.3 microdeletion and its role in

epilepsy, detailed clinical information from families pro-

vides important clues into other related diseases. High-

quality phenotype–genotype correlation is a reiterative

process requiring the three-way participation of patient

(family), clinician, and researcher. This is something that

has been recognized by human geneticists for decades but

is worth reiterating as we contemplate the role of dupli-

cation hotspots and genomic disorders in common disease.
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