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Expansion of unstable trinucleotide repeats causes over 40 
neurodegenerative diseases, including HD, and 17 of these 
are caused by gene-specific CAG/CTG trinucleotide-repeat 

expansions1–5. Ongoing repeat expansions in affected tissues cor-
relate with disease age-of-onset, progression and severity6,7, and 
dramatic repeat length variations exist between tissues of the same 
individual1. For at least six CAG diseases (HD, spinocerebellar 
ataxia type 1 (SCA1), SCA2, SCA3, SCA7 and SCA17), DNA repair 
proteins are major modifiers of age-of-onset8–10 and disease pro-
gression11, suggesting that ongoing somatic expansions contribute 
to age-of-onset and progression2. Therefore, arresting or reversing 
somatic CAG/CTG-repeat expansions may arrest or reverse disease 
progression2. Inheritance of larger HD CAG expansions also leads 
to earlier age-of-onset and accelerated disease progression12,13. Thus, 
inducing contractions of the expanded repeat to lengths shorter 
than the inherited tract length should have beneficial effects.

While the exact mechanism(s) of repeat expansions are unclear, 
all models involve the formation and aberrant repair of unusual 
slipped-DNA structures formed by the repeats4,14–23. Slipped-
DNAs form by out-of-register annealing of complementary repeat 
strands during DNA repair, replication or transcription, and have 
slip-outs with intra-strand hairpins of CAG or CTG repeats17,22. 

Slipped-DNAs were detected at the mutant myotonic dystrophy 
(DM1) locus in patient tissues, including the central nervous sys-
tem, and were not present at the non-expanded allele14. The levels of 
slipped-DNAs were greatest in tissues showing the largest somatic 
expansions, supporting the involvement of slipped-DNAs in the 
expansion processes.

A compound with specificity for slipped-DNAs may alter their 
formation and/or processing—attributes that could modulate repeat 
instability. We previously designed a CAG-specific DNA-binding 
compound, NA24–26, which binds to a distorted intra-strand CAG 
hairpin, with the naphthyridine and azaquinolone moieties forming 
hydrogen bonds to guanine and adenine, respectively, causing two 
cytosines to flip out from the CAG hairpin (Fig. 1a,b)26. NA bound 
with high affinity and increased the melting temperature of (CAG)10 
hairpins by >30 °C (ref. 25), and preferentially bound to longer (>30) 
CAG hairpins26. The high selectivity of NA for longer CAG hair-
pins coupled with the presence of slipped-DNAs at a mutant repeat 
locus14 suggested that it may specifically target the expanded allele.

Results
NA binds long CAG slip-out structures. To determine whether 
NA can bind disease-relevant (CAG)•(CTG) duplexes with and 
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without slip-outs, we performed band-shifts using slipped-DNAs17 
that mimic those at the mutant DM1 locus in patient tissues14. NA 
did not bind to fully duplexed DNAs containing (CAG)50•(CTG)50 
repeats, and high concentrations of NA did not induce struc-
tural alterations of the DNA (Fig. 1c,d). NA bound molecules 
of (CAG)50•(CTG)50 with clustered short slip-outs23 to a limited 
degree, but their short slip-outs and electrophoretic heterogeneity 
prohibited detection of a single shifted species (Fig. 1c,d). Slipped 
heteroduplexes with a single long slip-out of 20 CAG excess repeats 
in (CAG)50•(CTG)30 were extensively bound by NA (Fig. 1c,d). 
NA binding caused electrophoretic band-broadening, previously 
observed for other DNA-binding ligands27. The progressively slower 
migration of the slipped-DNA with added NA is consistent with NA 
binding to additional (CAG)•(CAG) pairs in the hairpin26. In con-
trast, DNAs with long slip-outs of CTG repeats, (CAG)30•(CTG)50, 
were not bound by NA (Fig. 1c,d). Thus, NA specifically bound 
CAG but not CTG slip-outs. We confirmed this with footprinting 
experiments on (CAG)50•(CTG)30 by using the single-strand DNA-
specific mung bean nuclease (MBN), which cleaves only the slip-out 
regions between the AG of every CAG unit17 (Fig. 1e). Following 
NA binding to the CAG slip-out, MBN digestion is inhibited, 
with the exception of the hairpin tip (Fig. 1e), not bound by NA. 

Denaturation of purified slipped (CAG)50•(CTG)30 to individual 
(CAG)50 and (CTG)30 single strands showed NA binding specifi-
cally to the single-stranded (CAG)50 strand (Fig. 1f). Subsequent 
renaturation of the individual single strands revealed that NA did 
not block complementary strand hybridization, but bound specifi-
cally to the slipped-out CAG strand (Fig. 1f). The greater degree of  
electrophoretic shift of the isolated single-stranded (CAG)50 tract 
compared to (CAG)50•(CTG)30 is caused by it being forced into a 
long hairpin of all 50 repeats that can bind more NA molecules. 
Note that the amount of NA bound to (CAG)50•(CTG)30 or (CAG)50  
following re-hybridization (Fig. 1f, 7.5 μM NA) is considerably 
greater than in the absence of re-hybridization (Fig. 1c, 50 μM NA), 
even though the amount of NA is more than fivefold higher in the 
latter. These results suggest that, in biological situations where the 
CAG repeat is denatured from its complementary CTG strand, the 
full length of the isolated CAG tract would become fully bound 
by NA in a hairpin-like conformation. Furthermore, NA binding 
was significantly greater for longer CAG slip-outs (Supplementary 
Fig. 1). We previously estimated a ratio of two NA molecules to 
one CAG–CAG, wherein a slip-out of (CAG)20 would bind maxi-
mally 20 NA molecules26. The molar ratio of 2:1 NA to slipped-out 
repeats was evident for the longer slip-outs. The affinity of each 
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Fig. 1 | NA binds to long CAG slip-outs. a, The structure of NA comprising two heterocycles, a naphthyridine (red) and an 8-azaquinolone (blue) moiety26. 
b, A schematic of the NA–(CAG)•(CAG) triad complex revealed by NMR spectroscopy26. The (CAG)n DNA sequence (left) can fold into hairpins involving 
mismatched A–A pairs flanked by C–G and G–C pairs (middle). NA molecules intercalate into the DNA helix, with the 2-amino-1,8-naphthyridine moiety 
hydrogen-bonding to guanine (in red) and the 8-azaquinolone moiety hydrogen-bonding to adenine (in blue), forcing the flipped-out cytosine bases. 
c, Binding of NA to gel-purified DNA fragments with (CAG)•(CAG) repeats in both strands flanked by 59 base pairs (bp) and 54 bp of non-repetitive 
DNA labeled with 32P on both strands (green star). d, Quantification of NA binding. The relative migration was measured as the ratio of the migration 
distance of each NA–DNA complex to the migration distance of free DNA. Densitometric analysis was performed for the (CNG)1–3 DNA substrate. The 
graphs indicate the mean of three independent experiments ± the standard deviation (s.d.). e, Footprinting on (CAG)50•(CTG)30 uniquely 32P-labeled on 
the (CAG)50 strand, cleaved throughout the repeat using MBN17. In the presence of NA, all scissile sites (red arrows) with the exception of the hairpin tip 
are protected, revealing binding specificity for the slip-out stem. Two independent experiments were performed with similar results. f, Gel-purified DNAs 
with a long (CAG)20 slip-out from (CAG)50•(CTG)30, 32P-labeled on both strands, were treated as indicated and resolved on 4% polyacrylamide. NA–DNA 
complexes formed with both the (CAG)50 strand (both panels) and the heteroduplexed (CAG)50•(CTG)30 (right panel) are shown by brackets; free DNA 
is indicated by arrowheads. NA did not bind the (CTG)30 hairpin fragment in either experiment (white arrowheads), and did not inhibit re-hybridization of 
complementary strands. Two independent experiments were performed with similar results. Uncropped gels are available as source data.
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NA molecule/CAG–CAG was estimated as 1.8 × 106 M−1 (associa-
tion constant, Ka) or 0.56 × 10–6 M (dissociation constant, Kd)26. NA 
can be removed from the DNA using phenol/chloroform extraction 
(Extended Data Fig. 4c). Together, these findings support the struc-
ture-specificity of NA for long CAG-repeat slip-outs of disease-rel-
evant tract lengths, and indicate that NA does not induce slip-out 
extrusion from an expanded fully duplexed molecule, but induces 
formation of longer slip-outs from a single-stranded CAG tract.

NA inhibits repair of long CAG slip-outs. We tested whether NA 
could block processing of slipped-DNAs, which could forecast its 
ability to modify repeat instability. NA specifically inhibited repair 
of slipped-DNAs with long (CAG)20 slip-outs, but not (CTG)20 slip-
outs (Fig. 2a–c). This specificity is consistent with the inability of 
DNA polymerases to extend primers along NA-bound (CAG)20 tem-
plates24,25. We assessed the effects of NA on repair of a single extra 
CAG-repeat slip-out, too small to be bound by NA. Repair of this 
substrate was unaffected by NA (Fig. 2d and Supplementary Fig. 1), 
consistent with its binding specificity for long slip-outs. NA did not 
bind to slip-outs of 3 excess repeats, but binding could be detected 
for 5, 11, 15 or 20 excess CAG repeats, with increased binding for 
slip-outs >10 (Supplementary Fig. 1, upper panel). The repair of 
DNA substrates with a similar range of slip-out sizes from 6, 10, 
13 or 20 excess CAG repeats was inhibited by NA (Supplementary 
Fig. 1, lower panel), indicating that, once the DNA is bound by NA, 
repair is inhibited and not further altered by increased NA-bound 
lengths. These data suggest that there is a less-than-additive effect 
for both NA binding and NA’s effect on slip-out repair. NA had no 
effect on the repair of a G–T mismatch, the most frequent base–base 
mismatch, which depends on mismatch repair (MMR) proteins23,28 
(Fig. 2e). Thus, NA is unlikely to cause genome-wide mutations that 
occur in the absence of MMR.

NA modulates instability of expanded mutant repeats in HD 
cells, with limited off-target effects. At 50 μM, NA is cell-per-
meable and enters nuclei without causing acute or long-term 
cytotoxicity, slowing proliferation, or altering DNA replication or  
transcription across CTG tracts (Fig. 3a–c and Extended Data Fig. 1).  
Tract lengths of >200 repeats are frequent in brain cells that have  
experienced somatic expansions in HD individuals that inherited 
(CAG)40–50 (refs. 1,7,29). NA induced a significant shift in repeat popu-
lation towards contraction of a (CAG)180•(CTG)180 tract at the hun-
tingtin (HTT) locus in HD patient-derived primary fibroblasts5. NA 
enhanced the number of contractions of the expanded HD repeat 
(Fig. 3d; P = 7.25 × 10−6, Supplementary Table 1), causing signifi-
cant repeat loss (Fig. 3f; P = 0.0003). NA also induced a significant 
reduction in the number of expansions of the HD repeat (Fig. 3d; 
P = 4.34 × 10−5, Supplementary Table 1). We also treated HD patient 
fibroblasts with (CAG)43, a mutation length common in the major-
ity of patients with HD. A significant number of NA-treated cells 
showed contractions of the expanded repeat, with contractions to 
as low as 20 repeats, below the HD disease threshold of 35 units  
(Fig. 3e,g; P = 3.28 × 10−5, Supplementary Table 1). NA also reduced 
the number of expansions (Fig. 3e; P = 8.32 × 10−5, Supplementary 
Table 1). Thus, NA can induce contractions of expanded tract 
lengths common in inherited and somatically expanded HD alleles. 
In contrast, NA does not affect either the non-expanded HD repeat 
or other microsatellite repeats known to be prone to instability 
under stressed conditions (Fig. 3h and Extended Data Fig. 2a), sug-
gesting that NA is specific for structures formed by expanded CAG/
CTG repeats and will not deleteriously affect other repeats.

For additional controls, we first assessed the effect of NA at the 
very long but genetically stable (that is, not forming slipped-DNA 
structures) CAG tract of the TBP gene in HD patient cells. Stretches 
of >49 CAG repeats at the TBP locus cause fully penetrant SCA17 
disease30. Our HD cell lines have 43 unstable repeats at the HTT 

gene and a similar length of 38 and 34 stable repeats of the non-
mutant TBP gene. NA did not change the length distribution of TBP 
repeats31,32 (Extended Data Fig. 2d and Supplementary Table 1), fur-
ther supporting its specificity for actively unstable tracts that form 
slipped-DNAs.

To assess possible mutagenic activity of NA, we assessed its effect 
on a cancer diagnostic MSI panel of >20 slippage-prone mononu-
cleotide repeats, using a sequencing-based assay capable of detecting 
low-level microsatellite instability (MSI) in non-neoplastic tis-
sues33. There was no evidence of increased MSI from NA treatment 
in either HD cells with (CAG)43 or (CAG)180 (Extended Data Fig. 
2f). As a control for non-repetitive regions, we assessed the HPRT1 
gene (exons 2 to 3), which is an established surrogate for evaluating 
mutagen-induced mutation spectra34–37. Since HPRT1 is on the X 
chromosome, each of multiple single long-read sequences of HPRT1 
can be used as a proxy for a single cell in male HD cells (GM09197, 
(CAG)180/21), permitting assessment of the effect of NA on individual 
cells without overlapping alleles. We sequenced up to 2,402 individ-
ual HPRT1 alleles in 3 independent replicates and found no sequence 
differences between NA- and mock-treated cells (Extended Data Fig. 
3a–c). We also assessed whether NA could induce an unsuspected 
mutation signature in HD cells ((CAG)43 or (CAG)180) using whole-
genome sequencing. Environmental and anticancer agents can lead 
to specific mutation signatures38–40. We screened the NA-treated and 
untreated HD cells for mutational signatures shown in COSMIC 
using an established pipeline (SigProfiler version 0.0.5.75 (ref. 41)). 
We were unable to detect a statistically significant mutation signa-
ture. The genome of NA-treated HD cells showed very low numbers 
of single- or double-base substitutions (SBS or DBS) or insertions/
deletions (indels), and no rearrangements (Fig. 3i). The numbers of 
SBS/indels/DBS/rearrangements for the (CAG)43 and (CAG)180 cells 
were 172/29/7/0 and 187/42/5/0, respectively. Similar background 
mutations attributed to DNA damage incurred during cell culture 
(~245 SBS, ~35 indels, ~6 DBS and ~0 rearrangements per genome) 
have been detected42–44. Moreover, cells treated for 24 h with the 
food additive potassium bromate (875 μM) or the anticancer drug 
cisplatin (12.5 μM) showed ~576/~31 and ~926/~65 SBS/indels, 
respectively42, both substantially ‘noisier’ than our experiment treat-
ing HD cells with NA chronically for 40 d (50 μM). The ‘silence’ of  
NA off-target mutagenesis is contrasted by the ‘noisy’ mutational 
burden of the hyper- and ultrahyper-mutated genomes of brain 
cancers of MMR-deficient individuals assessed by the same pipe-
line45–49—a portent of non-specific targeting of the heterodimer 
MSH2–MSH3, MutSβ (Fig. 3i). Together, these results argue against 
NA as a general mutagen.

Effect of NA depends on transcription but not replication 
through the repeat tract. NA could affect repeat instability dur-
ing replication or transcription. NA treatment induced a sig-
nificant shift in repeat population towards contraction of a  
(CAG)850•(CTG)850 tract in human cells, expressing r(CAG)850 (ref. 21)  
(Fig. 4a,b; P = 4.78 × 10−5, Supplementary Table 1), and significantly 
shortened the average size of the repeat tract, with losses of up to 
790 repeats (Fig. 4b; P = 6.44 × 10−3). NA’s effects were independent 
of cell proliferation and DNA replication, as near-complete arrest 
of proliferation using palbociclib, contact inhibition or serum star-
vation had no effect on NA-induced CAG contractions (Fig. 4d,e  
and not shown). This is consistent with NA’s lack of effect on  
cell proliferation (Fig. 3c) or replication fork progression (Extended 
Data Fig. 1). To address the requirement for transcription, we used 
an established cell model, HT1080 non-transcribing (CAG)850, hav-
ing a single (CAG)850 transgene floxed by transcription-terminator 
elements, so that the expanded repeat is not transcribed in either 
direction21,50. We confirmed the absence of transcription (Fig. 4c) 
and treated cells with NA in transcribing or non-transcribing con-
ditions. NA induced contractions of the (CAG)850 tract only when 
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transcription was permissible (Fig. 4b,f). Since NA did not alter 
transcription across the expanded repeat, either in these cells or HD 
patient fibroblasts (Fig. 4g and Extended Data Fig. 4a), this shows 
that NA induces CAG contractions during transcription across the 
expanded repeat, consistent with transcription having a driving role 
in inducing CAG instability and NA-induced contractions16,21,51,52. 
The ability of NA to induce contractions required transcription 
across the CTG repeat, but did not involve arrest of transcription. 
Again, NA did not affect non-expanded CAG/CTG tracts or other 
microsatellite repeats in the HT1080 cell model (Extended Data 
Fig. 2b,c). Thus, NA depends on transcription across the expanded 
repeat to induce repeat contractions, and is effective independently 
of cell proliferation.

NA does not block in  vitro R-loop formation, R-loop stabil-
ity or RNase digestion, but enhances formation of repeat con-
tractions. Transcription-induced R-loops can lead to CAG/CTG 
instability18,21 and may cause the transcription dependency of NA 
on repeat instability. NA did not alter the transcript levels of the 
expanded repeat or the translation of the mutant (m)HTT protein 
in cells (Extended Data Fig. 4a,b), nor did it affect transcription 
in  vitro (Supplementary Fig. 2a–d). NA (120 μM) did not affect 
R-loop formation, or RNaseA or RNaseH processing of pre-formed 
R-loops (Supplementary Fig. 2c,d). At the NA concentrations used 
on cells (50 μM), R-loops remained detectable, suggesting that NA 
does not affect R-loop biophysical stability (Supplementary Fig. 2d).  
However, NA altered the processing of CAG/CTG R-loops in 
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extracts of neuron-like human SH-SY5Y cells, significantly increas-
ing the number of contraction products with a milder effect on 
expansion products (Extended Data Fig. 5a–c, P = 0.002 versus 
P = 0.04). These results suggest that NA causes preferential R-loop 
processing to repeat contractions.

NA alters activity of several DNA repair proteins on long CAG 
slip-outs. NA could block the interaction of DNA repair proteins 
with slipped-DNAs, similarly to its ability to block MBN activity 
on (CAG)20 slip-outs (Fig. 1e). As the proteins involved in large 
(CAG)20 slip-out repair are unknown, we assessed four candidate 
proteins, MutSβ, replication protein A (RPA), polδ and polβ. In 
mice, the MMR MutSβ complex with a functioning ATPase drives 

CAG/CTG expansions2,3,20,53,54. MSH3 is a modifier of age-of-onset 
and disease progression in patients with HD, and a modifier of 
repeat instability in patients with HD and DM1 (refs. 55,56). MutSβ 
is not required to repair long (CAG)10–25 slip-outs23,28,57,58, but may 
be involved in the formation of slipped-DNAs following resolution 
of transcriptionally induced R-loops22,57,59. This process, expected to 
involve MutSβ binding to DNA and ATP-mediated dissociation of 
the MutSβ–DNA complex, may be affected by NA. NA did not block 
the binding of MutSβ to long CAG slip-outs, nor did NA affect the 
ATP-mediated dissociation of this complex (Fig. 5a) that was pre-
viously reported60. Given also that NA does not block the forma-
tion of slip-outs from denatured repeat-containing DNAs (Fig. 1f), 
our data do not support a role of NA in blocking the formation of 
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slipped-DNAs either with or without MutSβ. We further tested pos-
sible overlap of MutSβ and NA pathways. MSH3 knockdown sup-
pressed CAG-repeat expansions in cells, confirming the essential 
role of MutSβ in active repeat instability2,3,53,54,61. MSH3 knockdown 
also blocked the effect of NA on repeat instability (Fig. 5b). Thus, 
NA’s ability to induce CAG contractions depends upon MutSβ, as 
NA depends on active CAG instability.

RPA inhibits the formation of unusual DNA structures, such as 
hairpins, by binding and stabilizing single-stranded regions62,63, and 
enhances DNA polymerase progression through structured DNA 
templates64,65. Polymerase delta (polδ) is implicated in CAG-repeat 
instability66,67 and active in brains in a repair capacity68. Polδ was 
unable to synthesize across a CAG tract, and this was rescued by 
RPA (Fig. 5c). NA competitively blocked the interaction of RPA with 
slipped-CAG repeats (Fig. 5c) and blocked RPA-enhanced progres-
sion of polδ along the CAG template (Fig. 5d). NA was also able to 

block progression of polβ (data not shown). These results support a 
mechanism whereby NA induces CAG contractions by blocking RPA 
from binding slip-outs, which would otherwise facilitate polymerases 
to synthesize through CAG templates (Fig. 5c). NA may disrupt the 
interaction or activity of other repair proteins on CAG slip-outs.

NA induces CAG contractions in the striatum of HD mice. In HD 
mice and patients with HD, the largest somatic CAG expansions and 
most neurodegeneration occur in the striatum1,2,15,69. R6/2 mice har-
bor a single-copy transgene of HTT exon 1 (refs. 70,71). R6/2 is one of 
the best characterized models of repeat instability, with instability pat-
terns and tissue specificity comparable to HD knock-in models1,29,72–75 
and human HD patient brains1,7,29,74–76. CAG expansions are evident 
in the striatum of these mice as early as a few weeks, and continue as 
the mice age15. All HD CAG mouse models assessed show a similar 
pattern of ongoing spontaneous CAG expansions in striatum75, which 
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was quantified in one model to show broadly distributed sizes of addi-
tional repeats gained at a rate of ~3.5 CAG units per month per cell77,78.

Our dosing protocol involved one, two or four stereotactic injec-
tions into the striatum of 6-week-old R6/2 HD mice, each span-
ning a total of 4 weeks, when DNAs were collected (Extended Data 
Fig. 6). Since pups of the same litter inherit different CAG lengths, 
each inheriting around 150–160 CAG repeats, this complicates a 
direct comparison of the effect of NA between mice. Instead, we 
injected the left striatum with NA (in saline) and the right striatum 
with saline alone to serve as an internal control. NA intra-striatal 
injections led to contractions of the expanded repeat relative to the 
saline-only injections in the same mice (Fig. 6). In the absence of 
treatment, the CAG length distributions between the left and right 
halves of the striatum for a given mouse were identical within the 
limits of experimental resolution. Thus, NA specifically induces 
CAG length differences in mice (Fig. 6a).

Continued repeat contractions resulted from additional NA 
administrations over a 4-week period, with the most striking effect 
after the fourth administration. This was highly reproducible for a 
total of 13 mice (1 mouse for 1 injection, 2 mice for 2 injections, 
and 10 mice for 4 injections; Fig. 6a, Supplementary Figs. 3–6 and 
Extended Data Fig. 8). NA injection did not alter brain morphology 
or induce cell death or cell proliferation (Extended Data Fig. 9a–c). 
The effect of NA was similar between mice, regardless of inherited 
repeat length. A bimodal distribution of repeat sizes is present in 
HD patient brains7,29,76. The second peak of larger expansions is evi-
dent in the striatum of most CAG mouse models and was found 
to consist of the most vulnerable HD cells, medium spiny neurons 
(MSNs)1,4,69, and to have greater levels of expanded CAG tran-
scripts75. NA had a greater contracting effect on the larger expan-
sions of the bimodal repeat distribution (Fig. 6d). This portion of 
larger-sized expansions in the striatum may have arisen by mutation 
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events involving large slip-outs, large enough to be bound by NA. 
Instability analyses in HD individuals suggest that the number of 
CAG units gained or lost at each mutation event are predominantly 
changes of one repeat unit, but may include changes of 5–15 repeat 
units, sizes that could be bound by NA79–81. Slipped-DNAs at the 
DM1 locus, isolated from various tissues of patients with DM1, 
including the brain, also presented a bimodal distribution of slip-
out sizes, with peaks of ~30 and <10 repeats14, where the former 
could be bound by NA.

Most alleles in the NA-treated striatum showed contractions 
of CAG repeats, indicating that NA affected most cells (Fig. 6a, 
Supplementary Figs. 3–6 and Extended Data Fig. 8). Notably, con-
tractions were detected by standard PCR and did not require more 
sensitive small-pool (spPCR). Hence, they were robust, seeming to 
occur en masse in most cells. We quantified the somatic ‘instability 
index’77,78: higher indices reflect greater expansions, whereas lower 
indices reflect lower expansions or greater contractions (Extended  
Data Fig. 7). The number of contracted versus expanded peaks (Fig. 6b)  
or the relative composition (%) of contracted versus expanded  
peaks (Fig. 6c) was greater with subsequent NA treatments. The 
repeat size distributions in striatum treated four times with NA 
were significantly different from those of mock saline-treated stria-
tum (Mann–Whitney, P = 0.00034). The effect of NA was local-
ized to the site of injection, as the CAG tract in cerebral cortex and 
cerebellum from the same mice showed identical patterns of CAG 
length heterogeneity between the right and left sides (Fig. 6d,e and 
Supplementary Figs. 3–6).

NA induced contractions rather than only arresting expansions 
because the peak repeat length in the NA-treated striatum was 
shorter than the inherited tract length in the tail of the same mouse, 
which remains constant throughout the mouse’s lifetime (Fig. 6d,e 

and Supplementary Figs. 3–6). For a given mouse, the repeat size 
distributions in the NA-treated half of the striatum shifted towards 
contraction, relative to the inherited length in the tail, while 
the saline-treated half continued to incur expansions (Fig. 6b–e  
and Supplementary Figs. 3–6; see Δ

I
 of the main peaks where  

saline- versus NA-treated versus tail CAG lengths are reduced by 
3–7 CAG units). This suggests that injections of NA into the stria-
tum induced contractions of the expanded CAG tract, and thereby 
countered the expansion bias in that tissue (showing a spontaneous 
expansion rate of ~3.5 CAG units per month per cell, calculated as 
described previously77,78).

The effect of NA in vivo was specific for the expanded repeat, 
having no effect on non-expanded repeats (Fig. 6f and Extended 
Data Fig. 2). Furthermore, analysis of the mouse Hprt1 sequence 
in treated male mice did not show significant sequence changes in 
NA-treated striatum (Extended Data Fig. 3d), indicating that NA 
is not a general mutagen in vivo, but specific for CAG tracts that 
are actively unstable. We also performed TUNEL analyses on HD 
mouse striatum to determine whether NA can induce DNA frag-
mentation and apoptosis82,83. Studies with R6/2 HD mice did not 
show obvious TUNEL signals84–86. Neither NA nor saline treat-
ment (four administrations spanning 4 weeks) induced detectable 
TUNEL staining (Extended Data Fig. 9d).

To identify molecular phenotypes caused by NA-induced CAG 
contractions, we assessed the aggregation of mHTT protein in the 
MSNs of R6/2 mice. mHTT aggregates are a key biomarker of HD: 
the aggregation level and number of MSNs expressing aggregates are 
directly linked to CAG-repeat length and disease progression87–92. 
Furthermore, reductions in mHTT aggregate levels in the striatum 
of HD mice can increase cell viability, decrease neurodegeneration 
and improve behavioral phenotypes93–98. The rapid rate of mHTT 
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aggregate turnover (~39 h (refs. 93,96,98)) coupled with the consider-
able CAG contractions induced by NA over 4 weeks (Fig. 6a) may 
permit detection of NA-mediated alteration of mHTT aggregate 
levels. To test this, we assessed the intensity of fluorescent mHTT 
aggregates and the number of MSN nuclei expressing aggregates in 
NA-treated and saline-treated striatum of R6/2 mice. The intensity 
of mHTT aggregates in NA-treated striatum (four administrations), 
relative to that of the contralateral saline-treated striatum, was sig-
nificantly reduced (P = 0.0002) (Fig. 7a,b). Furthermore, NA-treated 
striata also showed significant reductions (10–20%) in the number 
of MSNs expressing mHTT aggregates (P < 0.0001), with aggre-
gates being smaller and less intense (Fig. 7a,c). Since NA does not 
affect transcription (Extended Data Figs. 4a and 9e) or translation 
of mHTT (Extended Data Fig. 4b), the reduced mHTT aggregation 
is most likely due to NA-induced CAG contractions and hence poly-
glutamine contractions arising from the contracted mRNA tem-
plates. This interpretation is consistent with the CAG/polyQ length 
sensitivity of mHTT aggregate formation87–91,99–101. Together, these 
results suggest that NA can disrupt the accumulation of mHTT 
into aggregates. Thus, NA can improve a pathological molecular  
phenotype by inhibiting the formation of a biomarker associated 
with neurodegeneration and disease progression.

Discussion
Targeting DNA repeats to eliminate or correct the expansion in  
disease cells is of interest2,50,102–108, with a substantial amount of 
mechanistic and human data validating somatic instability as a 
driver of disease age-of-onset, progression and severity8,9,11,20,55,56,109. 
Here we targeted slipped-DNA structures using a small molecule, 
NA, which induced contractions in vivo in patient cells and in the 
striatum of HD mice. Targeting this DNA intermediate permitted 
high specificity for the actively unstable mutant allele and limited 
off-target effects. There are many paths by which repeat instabil-
ity can arise, and various ways through which NA may act, all of 
which involve slipped-DNAs3,4,14. Our data show that the effect of 
NA on CAG instability is independent of proliferation/replica-
tion, yet dependent on transcription through the repeat (Fig. 4d,e), 
consistent with the reported enhanced CAG instability following 
transcription21. Involvement of slipped-DNAs in NA’s mechanism 
of action is supported by their existence in patient cells at disease 
loci14, the ability to form slipped-DNAs during transcription across 
repeats and through R-loop processing18,22, and NA’s ability to block 
repair of slipped-DNAs (Fig. 2b).

We propose a mechanism by which NA enhances contractions 
of expanded repeats, while an expansion bias spontaneously arises 
in the absence of NA (Fig. 8). When mHTT is transcribed along the 
coding CTG DNA strand, the noncoding CAG DNA strand is dis-
placed as single-stranded, which is extended and stabilized through 
the formation of an R-loop. Following removal of RNA from the 
R-loop, which can occur in the presence of NA (Supplementary  
Fig. 2), slipped-DNAs can arise on both strands18,22. Evidence sug-
gests that MutSβ facilitates the formation of slipped-DNAs by 
binding to repeats22,57,59,110, even in the presence of NA (Fig. 5a). To 
resolve these slipped-DNAs, transcription-coupled repair will be 
directed to the coding strand111, which in HTT is the CTG strand, 
using the displaced noncoding CAG strand as a template for repair. 
Correct repair of both slip-outs would leave the tract length stable, 
with removal of the CTG slip-out and retention of the CAG hair-
pin. Repair of the CTG slip-outs in vitro is less efficient than repair 
of CAG slip-outs23,28,57,58,112; therefore, CTG slip-outs will often be 
retained, leading to an expansion bias. Repair would be facilitated 
by RPA-melting of slip-outs63,66 and RPA-enhanced polymerase 
gap-filling across the repeat62,63 (Fig. 5d). Thus, in the absence of 
NA, spontaneous mutations would lead to expansions. In contrast, 
NA binding will drive most of the transcriptionally displaced CAG 
repeats into long hairpins, essentially increasing the size and num-

ber of repeat units forming the NA-bound CAG slip-outs, which 
may be enhanced by MutSβ binding. The poor ability of RPA to melt 
the NA-bound CAG slip-outs would block the ability of polymerases 
to gap-fill113 (Fig. 5c), and ultimately block the repair of NA-bound 
CAG slip-outs, leading to a contraction bias. Since NA bound more 
CAG repeats than were displaced from the CTG strand, this leads to 
fewer repeats incorporated in the repair product and hence contrac-
tions. That NA targets active repeat expansions is consistent with its 
increased efficacy in striatum over cultured fibroblasts, where the 
former displays higher levels of spontaneous expansions. That NA 
binds to and inhibits the repair of long, but not short, CAG slip-outs 
is consistent with NA preferentially affecting repeats in striatum, 
which undergo large saltatory expansions (Fig. 6).

NA efficiently induced contractions of expanded CAG repeats 
in most striatal cells, a tissue in HD individuals that shows selective 
neuronal vulnerability. Our findings over a 4-week period of NA 
treatment in mice with ~150 CAG repeats shows that neurons en 
masse incurred contractions of approximately ~0.5 repeats lost per 
week (on the basis of inherted tail lengths). Repeated administration 
led to continued contractions. Extrapolating this to an HD-affected 
human, we speculate that applying a drug such as NA before rapid 
onset of somatic CAG expansions could effectively block expan-
sions and induce contractions of the inherited expanded allele to 
shorter lengths, where treatments spanning ~1 yr could be esti-
mated to contract the repeat by 5–25 repeats. For an HD allele of 
36–70 repeats, such changes could be clinically relevant.

mHTT-polyQ inclusions are biomarkers of HD, where inclu-
sion size and numbers of neurons expressing inclusions are directly 
linked to CAG-repeat length and disease progression87–92. Reducing 
the levels of mHTT-polyQ aggregates in the striatum of HD 
mice can increase cell viability, decrease neurodegeneration and 
improve behavioral phenotypes93–98. Complete ablation of somatic 
CAG expansions (but no induced contractions) caused by genetic 
knockout of Msh2, Msh3 or Mlh1 delayed the detectable formation 
of mHTT-polyQ aggregates114,115. This effect was detectable after 
repair-deficient mice with (CAG)110–117 had lived 5–10 months with-
out any somatic CAG expansions. Our treatment of mice with NA 
for only 4 weeks was able to induce CAG contractions, and reduced 
both the size and frequency and intensity of mHTT aggregates in 
MSNs (Fig. 7), the cells in which NA is most effective in reducing 
CAG expansions (Fig. 6a).

Other approaches have been used to target expanded repeats 
in  vivo. Targeting the HD locus has a history that predates the 
discovery of the HTT gene or the disease-causing mutation116. 
CRISPR–Cas9 targeting of the mutant HTT allele in HD cells 
deleted ∼44 kilobases of DNA spanning the promoter region, tran-
scription start site and CAG expansion, resulting in haploinsuf-
ficiency with a functional non-mutant allele110. A study using the 
CRISPR–Cas9 nickase that produced single-strand nicks within a 
transgenic repeat led to contractions of the repeat in an artificial 
selectable cell model106. Extension to an endogenous disease locus 
in cells or relevant tissues has yet to be demonstrated. CRISPR–Cas9 
targeting only the expanded repeats at a disease locus proved not 
possible due to the absence of suitable protospacer-adjacent motif 
sequences and a likelihood of targeting other CAG/CTG repeats 
elsewhere in the genome. The inactivation of mutant HTT result-
ing in haploinsufficiency is possible103–105. Preferential targeting 
of fully duplexed expanded repeats by zinc-finger nucleases117 or 
zinc-finger repressors118 has been demonstrated. A small-molecule 
approach may overcome some of the in  vivo hurdles of enzyme-
mediated paths (delivery, editing efficiency, persistent nuclease/off-
targets, immune response, haploinsufficiency and so on)108,119–121. 
Previous studies using cell models of CAG/CTG instability dem-
onstrated that exogenously added compounds, including DNA-
damaging agents, can modulate repeat instability122. However, these 
compounds lack specificity for expanded repeats, and would induce 
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mutations in non-mutant alleles and throughout the genome123. In 
a separate strategy, a (CAG)6 antisense oligonucleotide was able 
to reduce CAG expansions, but did not induce contractions of an 
expanded repeat50. A mitochondria-directed compound, XJB-5-
131, by unknown processes, mildly suppressed CAG expansions 
rather than inducing contractions124. Similarly, an inhibitor of  
histone deacetylase 3 suppressed somatic CAG expansions through 
unknown processes107. A sequence-specific polyamide directed 
to the fully paired duplex GAA/TTC repeat that is expanded in 
patients with Friedreich’s ataxia prevented triple-stranded struc-
ture formation and suppressed GAA-repeat expansions in FRDA 
cells, but did not induce contractions108. The earliest non-enzymatic 
chemical approaches to target the HD locus aimed to modulate gene 
regulation using ligands targeted to fully paired duplex DNAs116,125.

In contrast, NA, through rational design, targets the unusual 
DNA structures formed by CAG repeats that are actively unstable, 
and can induce en masse repeat contractions rather than only sup-
pressing expansions. Moreover, NA is specific for the mutant HD 
allele in a disease-vulnerable brain region. These attributes of NA—
its specificity for CAG-repeat slipped-DNA structures, its pref-
erential effect on disease-causing expanded repeats and its ability 
to induce contractions in  vivo in an affected brain region—make 
it a first-in-class example showing the potential of small-molecule 
DNA-binding compounds to impact somatic CAG-repeat instabil-
ity, which can now be applied to any unstable repeat. Administration 
of such small molecules, once optimized for therapy, to human 
brains might effectively target the root cause of repeat expansion 
diseases and address downstream deleterious effects.
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Methods
NA synthesis. The synthesis of NA is described in the Supplementary Note.

Cell culture. Construction of the HT1080-(CAG)850 cell model was described 
previously21. The HT1080 model cells, the HD primary fibroblasts, GM09197 
(Coriell Biorepository) with (CAG)180/21 (ref. 5), and the HD primary fibroblasts, 
GM02191 (Coriell Biorepository) with (CAG)43/19, were cultured at 37 °C with 5% 
CO2 in DMEM supplemented with 10% fetal bovine serum. Cells were treated 
with or without continuous exposure to 50 μM NA for 30 d (HT1080 cells) or 
40 d (primary fibroblasts). The WST-1 assay was performed according to the 
manufacturer’s instructions (Roche). All cell lines were tested to be mycoplasma 
free. We performed three independent experiments for each cell line.

Proliferation of HT1080-(CAG)850 cells was inhibited by treatment with 0.5 μM 
palbociclib, as described previously126. The degree of proliferation arrest was 
assessed in living cells by counting BrdU-positive cells after a 24-h incubation with 
BrdU in proliferating or palbociclib-treated HT1080-(CAG)850 cells. Sustained 
knockdown of MSH3 by siRNA was as described previously70.

Microscopy. HT1080-(CAG)850 cells were incubated with 50 μM NBD-labeled NA 
for 48 h and Cell Light Plasma Membrane-RFP, BacMam 2.0 (Life Technologies, 
catalogue no. C10608), then fixed for 15 min at room temperature with 4% 
paraformaldehyde and washed twice for 10 min in PBS. Cells were mounted with 
Vectashield hard-set mounting medium that contains DAPI (Vector Laboratories, 
catalogue no. H-1500). Fluorescence images were obtained using an Olympus 
FV1000D confocal laser scanning microscope (Olympus).

Repeat length analysis. The (CTG)•(CAG) repeats were sized by spPCR with 
the input of 1.4–1.7 genome equivalents, followed by Southern blot21. Repeat size 
differences in models are at most 3,000 bp; therefore, being strictly conservative, 
a bias to amplifying shorter alleles can be possible even under optimized PCR 
conditions in our study. For HD primary fibroblasts, spPCR and Southern blots 
were performed as described previously21 where DNA was diluted to 1.0–1.6 
genome equivalents. Amplified products (PCR primers, Supplementary Table 2) 
were detected by Southern blot using a digoxigenin-labeled (CAG)7 locked nucleic 
acid probe127. We analyzed at least 50 alleles for each of the three experiments 
(more than 150 alleles per experiment). The repeat analyses are summarized in 
Supplementary Table 1. The percentage of repeat population was calculated by 
determining the proportion of >50 individual spPCR reactions across the CAG-
repeat tract that harbored a certain size of repeat product19. A χ2 test was performed 
to compare the frequencies of expanded, unchanged and contracted alleles in 
each set of experiments21,50. The trinucleotide and dinucleotide tract lengths of the 
HTT, CASK, ATXN8, Mfd15, TBP and mouse Mapkap1, Fgd4 and Tbp loci were 
PCR-amplified (primers listed in Supplementary Table 2) following amplification 
conditions described elsewhere31,32,128–132. Human TBP CAG length variability was 
assessed by spPCR.

Messenger RNA quantification. RNA was collected using the RNeasy Plus 
Micro Kit (Qiagen). Total RNA was primed with random hexamers and reverse 
transcribed with Superscript III (Life Technologies), followed by RNAseH 
treatment. Quantitative PCR with reverse transcription was performed using 
TaqMan Gene Expression assays or PrimeTime qPCR assays on an ABI PRISM 
7900HT (Life Technologies). The level of transgene-derived mRNA was 
normalized to 18S rRNA. Results were statistically analyzed using a paired t-test. 
Primer sequences are listed in Supplementary Table 2.

Western blot analysis. Lysates were prepared from HD patient fibroblasts in RIPA 
buffer. A 20 μg quantity of lysate was electrophoresed at 100 V for 4 h at room 
temperature in 1× MOPS buffer (Thermo Fisher Scientific, catalogue no. NP0001) 
in 3–8% Tris-acetate pre-cast protein gel (Invitrogen, catalogue no. EA0375BOX), 
and transferred to PVDF western blotting membranes (Sigma-Aldrich, catalogue 
no. 3010040001) overnight at 4 °C at a constant voltage of 20 V. Membranes were 
blocked in 10% milk in TBS + 0.1% Tween-20, incubated with primary antibody at 
room temperature for 2 h, and with secondary antibody at room temperature for 
1 h, and then detected with ECL (GE Healthcare, catalogue no. RPN2232). Primary 
antibodies: anti-HTT protein antibody amino acids 181–810 clone 1HU-4C8 
(1:1,000, mouse) (Millipore Sigma, catalogue no. MAB2166), anti-actin protein 
antibody (C4 clone, 1:30,000, mouse) (BD Transduction, catalogue no. 612657). 
Secondary antibodies: peroxidase-AffiniPure sheep anti-mouse IgG H+L (1:2,000) 
(Cedarlane Labs, catalogue no. 515-035-062).

NA–DNA binding. Homoduplex slipped structures of 50 repeats and 
heteroduplexes with long (CAG)20 or (CTG)20 slip-outs were formed by alkaline 
denaturation/renaturation, as described previously17. Briefly, plasmids containing 
human DM1 genomic (CTG)n•(CAG)n repeats (n = 30 or 50) were linearized by 
HindIII digestion. DNAs of (CAG)50 and (CTG)30 repeats, or DNAs of (CAG)30 and 
(CTG)50 repeats, were mixed in equimolar amounts and then heteroduplexed by 
alkaline denaturation/renaturation. Repeat-containing fragments were released by 
EcoRI digestion and electrophoretically resolved on a 4% polyacrylamide gel. Gel-
purified fragments were radiolabeled with [α-32P]deoxynucleoside triphosphates 

on both strands by a fill-in reaction, the radioactivity of each structure was 
determined using Cerenkov counting, and an equivalent radioactive concentration 
of each structure was incubated with an increasing concentration of NA for 30 min 
at room temperature with 1× hypotonic buffer. Binding products were resolved by 
electrophoresis on a 4% (w/v) polyacrylamide gel in 1× TBE buffer at a constant 
200 V for 2.5 h.

Replication assay. In vitro replication templates containing (CTG)79•(CAG)79  
were previously described133,134. The SV40 origin of bidirectional replication was 
placed 103 or 98 bp 5ʹ or 3ʹ of the CAG repeat for pDM79EF and pDM79HF, 
respectively. These templates and an SV40-ori template with no repeats (pKN16) 
were replicated in vitro by HeLa cell extract, adding [α-32P]dCTP and T antigen,  
as described previously133,134. Replication was performed in the presence or 
absence of NA (7.5 μM or 15 μM). Radioactive replication products were purified, 
linearized (BamHI) and treated with DpnI. Equal amounts of unreplicated 
pKN16 DNA were treated with DpnI to show the complete digestion of 
unreplicated plasmid DNA. Equal quantities of reaction products were resolved by 
electrophoresis on a 15-cm 1% agarose gel run for 16 h at 4 V cm−1 in TBE buffer, 
dried and exposed to Kodak film.

Repair assay. To determine the effect of NA binding on slipped-DNA repair, a 
series of circular slipped-DNA substrates were prepared with an excess of repeats 
with a nick located 5ʹ or 3ʹ of the slip-out23,57. G–T mismatched substrate was 
prepared as described previously23,57. All DNA substrates were processed in vitro 
by HeLa extracts. Analysis of repair products was performed by Southern blotting, 
comparing with starting material. Each repair assay has been performed in three 
independent experiments.

R-loop formation and processing. Plasmids bearing a (CAG)79•(CTG)79 tract with 
convergent T3 and T7 RNA polymerase promoters were described previously18,135. 
Transcription reactions were performed as described previously18. Briefly, 500 ng of 
template DNA in 1× transcription buffer (Roche) and 1× bovine serum albumin 
(New England Biolabs) were mixed for 1 h with 20 U of the appropriate RNA 
polymerase: T7, T3 or T7 + T3 (Roche), with or without NA (120 μM). Products 
were purified and treated with either 1 g of RNaseA (Roche) alone or mixed  
with 1 U of Escherichia coli RNaseH (Roche), at room temperature for 30 min, 
in the presence or absence of NA (120 μM). All in vitro transcription reaction 
products were analyzed on 1% agarose gels run in 1× TBE buffer at 80 V for 3 h. 
Gel-borne products were visualized with ethidium bromide (0.5 mg ml−1) under 
ultraviolet light.

R-loop templates prepared from in vitro transcription and RNaseA treatments 
were incubated with NA and then processed by extracts of HeLa or SH-SY5Y 
neuroblastoma cells, where the latter were terminally differentiated by retinoic 
acid57. Nucleic acids were purified and transformed into bacteria for STRIP analysis 
as described previously18. Briefly, products of human cell extract processing 
were transformed into E. coli XL1-MutS (Agilent). Individual bacterial colonies 
(each representing one processed template) were picked and cultured for 6 h. 
The magnitudes of the repeat length changes were determined by electrophoretic 
sizing of the repeat-containing fragments on 4% polyacrylamide gels relative 
to the starting length material and a size marker. Data are derived from three 
independent in vitro transcription and human cell extract processing reactions 
with ∼150 colonies (∼50 colonies per replicate) representing 150 individual 
products of cell extract treatment analyzed for each R-loop configuration. 
Individual experiments were compared using the χ2 test.

MutSβ binding assay. MutSβ was purified from baculovirus-infected Sf9 cells 
expressing His-tagged hMSH2 and hMSH3 as described previously23. Binding 
reactions were performed at room temperature. Slipped-DNA with long (CAG)20 
was prepared and end-labeled as described above. Protein was incubated with 
DNA for 30 min in a buffer containing 10 mM HEPES-KOH pH 7.5, 110 mM 
KCl, 1 mM EDTA and 1 mM dithiothreitol with or without ATP in the buffer, as 
indicated. Reactions were loaded onto a 4% native polyacrylamide gel with non-
denaturing loading dye (20 mM Tris-HCl pH 7.4, 4% glycerol, bromophenol blue). 
Gel was run in 1× TBE buffer for 2 h.

MBN footprinting. The experimental conditions used were single-hit kinetics, as 
described previously17.

RPA DNA-binding. Recombinant RPA protein was expressed in BL21(DE3) cells 
and binding was performed as described previously136.

Polymerase extension assay. Recombinant human polδ was prepared in 
insect cells using a baculovirus vector and purified by immunoaffinity column 
chromatography, as described previously137. The polδ extension assay was 
performed as described previously138, using an oligonucleotide containing (CAG)10 
repeats, as described earlier25. Briefly, 0.1 µM primer and 0.1 µM oligonucleotide 
were denatured at 95 °C for 3 min, annealed for 30 min at room temperature, and 
incubated with NA for 30 min at room temperature. RPA and/or polδ were added 
and the reaction was started by adding 0.1 mM deoxynucleoside triphosphates in 
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10 µl reaction volume, and incubated at 37 °C for 15 min. The reaction was stopped 
by adding 20 mM EDTA and purified by extraction with phenol/chloroform/
isoamyl alcohol (25:24:1, v/v/v) followed by ethanol precipitation. Pellets were 
resuspended in formamide buffer, denatured at 95 °C for 10 min, and run on a 6% 
sequencing gel at 2,000 V and 90 W for 40 min.

Stereotaxic injections into R6/2 mice. Mouse handling and experimental 
procedures were conducted in accordance with the Osaka University guidelines for 
the welfare of animals. A single NA application involved six separate stereotactic 
injections (three injections of NA or saline into three different striatal regions of 
either the left or right striatum, respectively). Under sterile conditions, 13 male 
R6/2 mice (B6CBA-Tg(HDexon1)62Gpb/1J, Jackson Laboratory, catalogue no. 
002810), 6-week-old, were anesthetized, and stereotaxically injected with 5 μl of 
saline (PBS solution) (right side) or 500 μM NA dissolved in saline (left side). 
The control for NA treatment is therefore the contralateral side of the striatum 
of each mouse. Mice received injections once or twice bi-weekly, or weekly for 
four consecutive weeks. Stereotaxic injections were delivered to three sites within 
the striatum with the following coordinates: (anterior–posterior (AP) = 0.0 mm, 
medial–lateral (ML) = 1.5 mm from the bregma, dorsal–ventral (DV) = 2.5 mm 
below the dural surface; AP = 1.0 mm, ML = 1.5 mm, DV = 2.5 mm; and 
AP = 0.5 mm, ML = 1.5 mm, DV = 2.5 mm), using a 10-μl Hamilton microsyringe at 
a rate of 0.5 μl min−1. Both the right and left striata were assessed for repeat length 
at the HD CAG transgene and at endogenous CAG tracts. For the mice treated 
four times, DNAs from the tail before and following NA administration, as well 
as left and right frontal cortex and cerebellum, were collected. Coronal sections 
of the striatum were cut serially at 20 μm thickness using a cryostat (CM1850UV; 
Leica Microsystems). Striatum sections of 0.62, 1.10 and 1.58 mm posterior from 
the bregma were washed in PBS containing 0.05% Triton X-100 (PBS-T). They 
were then immersed in a solution of 3% H2O2, 10% methanol in PBS for 10 min. 
After washing three times with PBS-T, the sections were incubated with primary 
antibody (mouse anti-NeuN, 1:100, Millipore; rabbit anti-doublecortin, 1:200, 
Abcam) diluted in 10% Block-Ace blocking solution (Yukijirushi Co.) overnight at 
4 °C and then with biotinylated secondary antibody (1:500, VECTOR Laboratories) 
in PBS-T for 1 h at room temperature followed by VECTASTAIN ABC reagents 
(1:100, VECTOR Laboratories) in PBS for 1 h at room temperature. The sections 
were washed three times with PBS-T in between the steps. The bound complex was 
visualized with 3,3ʹ-diaminobenzidine (Sigma).

Genescan analysis. At 4 weeks after the first injection, DNA was isolated from 
mouse brain tissue as described previously127. PCR was performed as described 
previously139, and PCR products were sized on an ABI310 Gene Analyser using 
GENESCAN 3.1 software (Life Technologies).

Instability index calculation. The instability index was calculated as described 
previously77,78 with modifications as outlined in Extended Data Fig. 7.

Immunofluorescence. MSN-specific mHTT aggregates were assessed using a 
multiplexed immunofluorescence approach that stains for HTT protein (EM48 
antibody, catalogue no. MAB5374, Millipore-Sigma) and anti-DARPP-32 (19A3 
antibody, catalogue no. 2306S, New England Biolabs—expressed almost exclusively 
by striatal MSNs), as described previously140. After rehydration, slides were 
subjected to antigen retrieval in 10 mM sodium citrate for 20 min in a steamer and 
cooled to room temperature for 1 h. Slides were washed twice in 1× PBS + 0.05% 
Tween-20 (1× PBST) (2 min, 2 times). Slides were blocked in 10% normal goat 
serum for 1 h at room temperature and incubated with primary antibody overnight 
at 4 °C. Secondary antibody incubation was performed for 1 h at room temperature. 
Slides were mounted with Hardset VectaShield with DAPI. Aggregates were then 
blindly assessed in two ways, as follows.

The first method was a whole striatal assessment of the red pixel intensity 
(mHTT aggregates) via ImageJ. The intensity was measured from ×20 images 
obtained via a 3DHistech Pannoramic 250 Flash II slide scanner. Each individual 
striatal intensity per slice was normalized to the total striatal intensity of the slice 
and then plotted. Three separate brain slices were assessed per mouse, assessing a 
total of four mice (each treated four times over 4 weeks).

The second method was quantification of MSN nuclei containing mHTT 
aggregates from confocal images obtained from a Quorum spinning-disk confocal 
(Olympus IX81) microscope. Ten ×40 (water) confocal images were taken at 
10 different locations per striatum with ~100 cells per image (~1,000 cells per 
striatum, or ~2,000 cells total per brain slice) being assessed. Three striatal slices 
were assessed per mouse (4 mice total, ~3,000 cells assessed per striatum per 
mouse). The percentages of cells containing mHTT aggregates were taken relative 
to the total number of cells in the image.

Whole-genome sequencing, alignment and variant calling. Whole-genome 
sequencing was performed using established protocols on Illumina instruments 
and paired-end FASTQ files were aligned to the human genome (hg19/GRCh37) 
using BWA-MEM (v.0.7.8), with Picard MarkDuplicates (v.1.108) being used to 
mark PCR duplicates. Indel realignment and base quality scores were recalibrated 
using the Genome Analysis Toolkit (v.2.8.1). Somatic mutations were detected 

using MuTect2 (part of GATK v.3.5)141. Mutations present only in treated cells (as 
opposed to non-treated cells) were retained. For substitutions, we also removed 
common single-nucleotide polymorphisms as described previously45. To remove 
common germline variants, we used an in-house panel of controls and removed 
any putative substitutions present in two or more controls. Putative substitutions 
were also removed if they were overlapped with a highly repetitive sequence (using 
DUST142 with score >60) or were located in excessively high-depth alignments 
in difficult-to-align regions of the genome, as described previously143. We apply a 
maximum depth threshold of d þ 4

ffiffiffi
d

p
I

, where d is the average normal mean read 
depth of the chromosome in the corresponding untreated cell.

Mutational signatures shown in COSMIC were screened for using a further 
elaborated version (v0.0.5.75 (ref. 41)) of an established non-negative matrix 
factorization-based method, SigProfiler144–146. This framework works in two 
steps: de novo extraction of signatures on the catalogue of substitutions using a 
non-negative matrix factorization approach; and comparing deciphered de novo 
signatures to a set of previously described mutational signatures (COSMIC 
Mutational Signatures v3) using cosine similarity to identify the etiology of the 
underlying mutagenic process. It is common practice to consider only mutational 
signatures with >100 mutations as reliable.

HPRT1 sequence analysis by single-molecule real-time circular consensus 
sequencing. DNAs were extracted from three independent NA or saline treatments 
of the HD primary fibroblasts (GM09197) and three independent NA-treated 
and control striata of three R6/2 mice. The details of the sequencing results are 
described in the Supplementary Note. Mutation rates were not significantly 
different between NA- and saline-treated sequences (two-sample Kolmogorov–
Smirnov test).

MSI assay. MSI was assessed as per Gallon et al.33. Briefly, >20 mononucleotide 
repeats were amplified from 50 ng of template DNA using single-molecule 
molecular inversion probes, and sequenced to a median (Q1–Q3) depth of 1,007 
(733–1,515) reads per marker per sample using a MiSeq (Illumina) sequencer. 
Sequencing reads were aligned to the human reference genome (build hg19) using 
BWA147. Frequencies of microsatellite length variants were extracted for each 
marker in each sample, and converted to a probability by comparison to a reference 
distribution generated from 40 microsatellite-stable, peripheral blood leukocyte 
controls. A sample score is calculated by combining probabilities from each marker 
using Fisher’s method, and multiplying the decadic logarithm of this combined 
probability by −1. Scores >1.3 are therefore equivalent to a >95% probability that 
the observed frequency of microsatellite length variants for a sample is greater 
than for the reference set, and is used as a classification threshold. Residual 
samples from Gallon et al.33, comprising peripheral blood leukocyte DNA of three 
constitutional MMR-deficiency and eight control patients, were used as controls.

TUNEL assay. The TUNEL assay was conducted using the Click-iT Plus TUNEL 
Assay for In Situ Apoptosis Detection, Alexa Fluor 488 dye (Invitrogen, catalogue 
no. C10617), multiplexed with anti-DARPP-32 (19A3 antibody, catalogue no. 
2306S, New England Biolabs), according to the manufacturer’s instructions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing data have been deposited at the Sequence Read Archive (SRA) 
under accession numbers SRR10532698, SRR10532697, SRR10532700 and 
SRR10532699. Source data for Figs. 1–8 and Extended Data Figs. 1 and 4 are 
provided online.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | NA does not affect replication efficiency or replication fork progression. Three circular plasmids containing the SV40 origin of 
replication, and an expanded (CAG)79•(CTG)79 repeat tract (pDM79eF and pDM79HF) or no repeats (pKN16), were replicated in vitro by human (HeLa) 
cell extracts without or with NA (7.5 µM or 15 µM) treatment. The location of SV40-ori determines the replication direction and which strand will be used 
as the leading or the lagging strand template. pDM79HF uses the CAG strand as the lagging strand template, while pDM79eF uses the CTG strand as 
the lagging strand template (schematic on the top of the gel panel). Replication products were purified and linearized with BamHI. An equal portion of the 
reaction material was also digested with BamHI and DpnI as DpnI digests un-replicated and partially-replicated material, as shown in the schematic (top 
figure). The digestion products were electrophoresed on a 1% agarose gel to resolve completely replicated and un-replicated material (bottom figure). 
equal amount of unreplicated plasmid DNA was digested with DpnI and stained with ethidium Bromide to show the complete digestion of unreplicated 
plasmid DNA (Bottom panel). Panel I, ethidium bromide stained, Panel II, autorad: marker (lane 1); DpnI undigested plasmid DNA (lane 2); DpnI digested 
unreplicated plasmid DNA (lane 3-4); replicated plasmid DNA, DpnI resistant (lane 5). No difference in DpnI resistant material is observed between 
replication in the presence or absence of NA, in all the three templates tested (panel III, IV, V). Blots have been cropped and the corresponding full blots 
are available in the Source Data files.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | NA does not affect non-mutant genetically stable repeats. a, b, Representative data showing small-pool PCR (spPCR) for the 
non-expanded CAG/CTG repeat length of CASK and Mdf15 in HD primary fibroblast cells (a) and spPCR for the non-expanded CAG/CTG repeat length 
of CASK, Mdf15, ATXN8 and the non-expanded HTT allele genes in HT1080-(CAG)850 cells (b). even under the sensitive mutation detection capacity of 
spPCR, length variation was not observed in either NA treated- and untreated-cells. Notably, some reactions did not show any product as is typical of the 
low genomic DNA template dilutions used in spPCR. c, The repeat-tract lengths of the CASK, ATXN8, and Mfd15 loci in HT1080-(CAG)850 cells (initial 
clone and cells after 30 days incubation with or without NA). Length variation was not observed at any of these repeats of normal length loci in HT1080-
(CAG)850 cells (after 30 days incubation with or without NA). Three independent experiments were performed. d, spPCR for the non-expanded CAG 
tracts in TBP alleles in HD patient fibroblasts treated with or without NA for 40 days. e, spPCR for the non-expanded CAG tracts in TBP alleles in HD 
R6/2 mouse striatum with four injections of NA or saline. f, Microsatellite instability assay. Assay scores >1.3 indicate increased MSI relative to a control 
sample set from peripheral blood leukocytes. Both NA positive and NA negative HD cells with (CAG)43 or (CAG)180 scored <1.3, indicating no effect of 
treatment on MSI. eight known CMMRD-negative controls and 3 known CMMRD-positive controls were included in the assay.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | NA is not a general mutagen. Towards assessing whether NA-treatment acted as a general mutagen to sequences other than CAG 
slip-outs, we harnessed the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS). Single-molecule 
sequencing was done on the HPRT1 gene – widely used as a surrogate indicator of the global effect of induced genetic variation. For each replicate, we 
calculated the relative mutation rate between NA- and saline-treated cells as the mutation rate for NA-treated cells minus the rate for saline-treated cells 
and identified excess mutation rates based on an absolute relative rate >0.5%. a, Schematic of HPRT1 sequencing for mutation detection. Briefly, cells 
were grown under identical conditions differing only by the addition of NA (50 μM) or saline, DNAs were isolated, HPRT1 exons 2 and 3 PCR amplified and 
sequenced. b, Quality control for our analysis. c,d, Comparison of sequence variations between NA-treated and saline treated is presented. We chose to 
compare the single-molecule sequence reads of individual X chromosome-linked HPRT1 alleles (exons 2 and 3) from our male HD patient-derived cells (c), 
and our male R6/2 mice (d), that had been NA- or saline-treated. each read represents a single cell (Supplementary Note). Graphs show the distribution 
of sequence variants by relative mutation rate between three experimental replicates of NA-treated and saline-treated cells sequenced with PacBio single-
molecule long reads.
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Extended Data Fig. 4 | NA does not affect HTT transcription or translation. a, NA does not affect transcription across expanded repeats in HTT in HD 
patient cells, determined by quantitative real-time reverse transcriptase (qRT)-PCR and normalized to U6 RNA. Data are indicated as the mean ± s.d. of 
independent triplicates. b, Western blot showing that NA does not affect HTT translation in HD patient cells with (CAG)43. Western blots were repeated 
4 times with similar results. Blots have been cropped and the corresponding full blots are available in the Source Data files. c, extraction of NA from DNA 
by solvents.Source data

NATuRE GENETiCS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATuRE GENETICSArticles NATuRE GENETICS

Extended Data Fig. 5 | NA induces contractions during R-loops processing. a, Schematic of R-loop formation, processing, and analysis. Pre-formed 
double-R-loops were processed by terminally differentiated (retinoic acid) human neuron-like cell extracts (SH-SY5Y) in the absence or presence of 
NA (50 μM), as described and DNA repeat lengths scored as expansions, contractions, or stable, by the STRIP assay (Methods). b, Representative 
example of STRIP analysis. Transcription products were isolated, processed and transformed in e. coli cells, previously shown to stably maintain the 
(CAG)79•(CTG)79 lengths (Methods). Plasmids isolated from individual bacterial colonies were digested with restriction enzymes to release the 
repeat containing fragment, resolved on 4% polyacrylamide gels and scored for instability. c, Graphical analysis of STRIP results. Two-sided χ2 test was 
performed to compare 191 untreated colonies vs. 100 NA-treated colonies.
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Extended Data Fig. 6 | Dosing regimen. A single drug administration involved six separate stereotactic injections (three injections of drug in saline or 
saline into three different striatal regions of either the left or right striatum, respectively). At the onset mice were 6-weeks old.
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Extended Data Fig. 7 | instability index calculation. Instability index determination was as described77,78, using a relative peak height threshold, with 
modifications. To quantify the levels of instability from GeneMapper traces peak height was used to determine a relative threshold of 20% based upon the 
main peak in the shorter mode of the control striatum (see points 1 & 2 in the figure). We used a conservative threshold factor (20%) as this detects peaks 
with good signal intensity and is more resistant to amplification variation than lower thresholds. Lower thresholds (10%, 5%) can provide more sensitive 
quantification. Peaks falling below his threshold were excluded from analysis. Peak heights were scored (see point 3) and normalized to the total of all peak 
heights in a given scan (see point 4). Since we are comparing the effect of NA versus saline upon instability in the striatum, the CAG length distribution in 
tail is not a factor in this comparison, but is for determining absolute instability, as in previous studies62,66. So as to facilitate comparison between NA and 
saline-treated striatum, these were normalized by multiplying the values by the change in CAG length of each peak relative to the highest peak in saline-
treated striatum (see point 5), as opposed to the highest peak in the tail, as previously done77,78. These normalized values (see point 6) were summed to 
generate the instability index (see point 7). Striatum analysis for mouse vi is shown as an example R6/2, 6-weeks treated with four injections spanning 4 
weeks of saline (red) or NA (blue). Peaks of the main allele in the saline-treated striatum, NA-treated striatum and tail of the same mouse, are indicated 
by triangle-brackets at the top (see point 1).
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Extended Data Fig. 8 | A total of ten HD mice revealed consistent NA-induced contractions of expanded CAG repeats. Instability Indices in striatum of 
ten mice (iv-xiii) treated four times with saline in the right striatum and NA in the left striatum. Indices in NA-treated striatum were significantly different 
from the control saline-treated striatum (Mann-Whitney, P = 0.00035). Instability Indices for mouse v and xi are positive for both NA and saline as there 
are less data points to the left of the highest peak compared to the points to the right. Still, after NA treatment there is a reduction in the index.
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Extended Data Fig. 9 | NA does not induce cell death in the CNS and cell proliferation, and does not affect transcription across the Htt locus.  
a, Histological study, mouse striatum with saline, NA in saline, or no injection, followed by H&e staining. Three independent experiments were performed. 
b, NeuN staining showing that NA does not induce cell death. Quantification of NeuN positive cells below. Data are indicated as mean ± s.d. of triplicates. 
c, Doublecortin staining showing that NA does not induce cell proliferation. Three independent experiments were performed. d, The effect of NA on 
TUNeL signal as assessed via fluorescent microscopy and immunohistochemistry. Representative 40x magnification confocal images of striatal medium 
spiny neurons (MSNs) of R6/2 mice treated with saline (right striata) and 50 μM NA (left striata) stained for TUNeL (red, staining apoptotic cells), and 
DARPP32 (green, staining MSNs). Panel locations (i-vi) correspond to the locations outlined in Fig. 7 (middle panels). e, NA does not affect transcription 
across expanded repeats in HTT in HD patient cells and mouse striatum, determined by quantitative real-time reverse transcriptase (qRT)-PCR and 
normalized to U6 RNA, expressed as the ratio of NA-treated vs. PBS-treated R6/2 striatum. Data are indicated as mean ± s.d. of independent triplicates.
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Data collection No software used for Data Collection

Data analysis WGS was performed using established protocols on Illumina instruments and paired-end FASTQ files were aligned to the human genome 
(hg19/GRCh37) using BWA-MEM (v.0.7.8), with Picard MarkDuplicates (v.1.108) being used to mark PCR duplicates. Indel realignment 
and base quality scores were recalibrated using the Genome Analysis Toolkit (v.2.8.1). Somatic mutations were detected using MuTect2 
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Sample size Sample size was chosen based on preliminary experimental results and previous published analyses for similar experiments (Methods section).

Data exclusions No data were excluded from the study

Replication A minimum of 3 independent experiments was done for each experiment (indicated in the Methods section for each figure), and the required  
statistical test was performed. All the replicate were successful. For repeat length analysis >50 individual small-pool PCR reactions across the 
CAG repeat tract were performed. Results were analyzed using χ2-tests. For HPRT gene SMRT-sequencing, an average of 1,343 consensus 
sequences per replicate/treatment pair was analyzed. Mutation rate was evaluated using a two-sample Kolmogorov-Smirnov test

Randomization NO randomization was necessary for the experiments described in the manuscript. All the experiments have internal controls.

Blinding Blinding was applied for repeat length analysis (fragment analysis) and HTT foci analysis. When performing the experiment, the researcher did 
not know which side of the striatum (treated or untreated) the samples came from.
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Antibodies
Antibodies used Anti-Huntingtin Protein Antibody a.a. 181-810 Clone 1HU-4C8 (Millipore Sigma, Cat #MAB2166), Anti-Actin Protein Antibody (BD  

Transduction Laboratory, Cat #612657). Secondary antibodies: Peroxidase-AffiniPure Sheep Anti-Mouse IgG H+L (Cedarlane Labs, 
Cat #515-035-062).  
mouse anti-NeuN antibody (Millipore, Cat # MAB377), rabbit anti-doublecortin antibody (Abcam, Cat # ab18723). 
For IF:  
α-mutant HTT: clone mEM48, 1:250 dilution, mouse monoclonal, Millipore-Sigma, cat number: MAB5374 
α-DARPP-32: clone 19A3, 1:250 dilution, rabbit monoclonal, New England Biolabs, cat number: 2306S

Validation For validation details please refer to the manufacturer's website:  
-Anti-Huntingtin: http://www.emdmillipore.com/CA/en/product/Anti-Huntingtin-Protein-Antibody-a.a.-181-810-clone-1HU-4C8,
MM_NF-MAB2166#overview  
- Anti-actin: http://www.bdbiosciences.com/ca/applications/research/stem-cell-research/mesoderm-markers/human/
purifiedmouse-anti-actin-ab-5-c4actin/p/612657  
-Anti NeuN: http://www.merckmillipore.com/JP/ja/product/Anti-NeuN-Antibody-clone-A60,MM_NF-MAB377  
-Anti doublecortin: https://www.abcam.co.jp/doublecortin-antibody-ab18723.html  
- α-mutant HTT: https://www.sigmaaldrich.com/catalog/product/mm/mab5374?lang=en&region=CA 
- α-DARPP-32: https://www.neb.ca/detail.php?id=2306 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HT1080 and Sf9 cells were purchased from ATCC. HD primary fibroblast cell lines GM09197 and GM02191 were purchased 
from Coriell Biorepository. The human SH-SY5Y neuroblastoma cells were purchased from the American Type Culture 
Collections and cultured in recommended medium. HeLa cells were from National Cell Culture Center, National Centre for 
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Resources, National Institute of Health.  

Authentication All the cell lines were authenticated by the respective Biobank

Mycoplasma contamination All cell lines were tested for micoplasma contamination and were proved to be free of mycoplasma

Commonly misidentified lines
(See ICLAC register)

The cell lines used are not in ICLAC database

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals In this study we used R6/2 mice (B6CBA-Tg(HDexon1)62Gpb/1J, Jackson Laboratory, cat# 002810), 6-week-old, males

Wild animals No wild animals used in the study

Field-collected samples No field-collected samples used in the study

Ethics oversight Mouse handling and experimental procedures were conducted in accordance with the Osaka University guidelines for the 
welfare of animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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