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Given a long string of characters from a constant size alphabet we present an algorithm
to determine whether its characters have been generated by a single i.i.d. random source.
More specifically, consider all possible n-coin models for generating a binary string S,
where each bit of S is generated via an independent toss of one of the n coins in the
model. The choice of which coin to toss is decided by a random walk on the set of coins
where the probability of a coin change is much lower than the probability of using the
same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model
for given S, subject a uniform prior distribution over the parameters of the model (that
represent mutation rates and probabilities of copying events). In the absence of detailed
prior knowledge of these parameters, the algorithm can be used to determine whether
the a posteriori probability for n = 1 is higher than for any other n > 1. Our algorithm
runs in time O(�4 log �), where � is the length of S, through a dynamic programming
approach which exploits the assumed convexity of the a posteriori probability for n.

Our test can be used in the analysis of long alignments between pairs of genomic
sequences in a number of ways. For example, functional regions in genome sequences
exhibit much lower mutation rates than non-functional regions. Because our test pro-
vides means for determining variations in the mutation rate, it may be used to distin-
guish functional regions from non-functional ones. Another application is in determining
whether two highly similar, thus evolutionarily related, genome segments are the result
of a single copy event or of a complex series of copy events. This is particularly an issue
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in evolutionary studies of genome regions rich with repeat segments (especially tandemly
repeated segments).

Keywords:

1. Introduction

The human genome consists of numerous segments “repeated” with various degrees
of similarity.3,17,27 Long repeat sequences are more likely to be generated as a
result of segmental copies during evolution rather than by chance.a Approximately
60% of the human genome appears to be repeated.b

Repeat segments are commonly classified into three main categories. Over 45%
of the human genome comprises common repeats; one example is the ∼300 bp
alu element, occurring more than 1M times within a divergence rate of 5%−15%.
Another ∼5% consists of the centromeric repeats, particularly the alpha satellite
and microsatellite DNA. A final ∼7% is made up of much longer repeat segments
(which include partial or complete genes) exhibiting small divergence rates (≤10%).
These figures support the theory that copying followed by point mutations provide
the main process underlying genome evolution.16

Several biochemical mechanisms underlying segmental copies have been identi-
fied in the last 30 years (e.g. unequal cross over,23 replication slippage and retro-
transposition); potentially many more are waiting to be discovered. The task of
identifying all copying mechanisms in the genome for a better understanding of
the genome evolution process poses a number of algorithmic and computational
challenges. First and foremost, one needs to identify a posteriori all pairs of repeat
sequences which were generated as a result of a single copy event during evolution.
Note that a repeat can be a result of multiple complex copy events: for example a
long tandemly repeated sequence S, S, S, S may be a result of tandemly copying the
first S three times or copying the first S once to obtain S, S and copying this whole
segment again to get S, S, S, S; there are many other possibilities. We address the
problem of identifying these copying events and the order in which they occurred.

1.1. Contributions

In this paper we present a probabilistic test for identifying whether a pair of genome
sequences with a high similarity score are indeed a result of a single copy event. For
this purpose we employ the “neutral hypothesis”; i.e. that point mutations occur
independently at random with a fixed probability (1.5–3 × 10−9 per base pair per
year for non-functional segments of humanoids and old world monkeys).

aGiven a sequence of size 3×109 bp (the size of the human genome) generated by an i.i.d. random
source on the four letter DNA alphabet, the probability of having a pair of 100 bp segments with
Hamming distance of 5 or less is smaller than 2−75 (practically nil).
bThe chance that an arbitrary 1Kbp segment in the human genome to have a corresponding
segment with 30% divergence is 60%.
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As mentioned above, a high similarity score between two sequences is an indi-
cation of an evolutionary relationship. One possible relationship between two such
sequences is that one may have been copied from the other in a single copy event.
Because after a copying event both copies would be subject to independent point
mutations, a number of edit errors would be observed in their alignment. However,
these mutations would have been applied to each character in an i.i.d. fashion; as
a result, the normalized similarity score between the two sequences is expected to
be uniform (allowing for the statistically expected amount of variation) throughout
their alignment.

A common strategy for identifying copies between two genome regions is to iter-
atively locate pairs of sequences with the highest similarity score (e.g. via Smith–
Waterman method). Shortcomings of this strategy in terms of “signal strength” are
discussed in Arslan et al.,2 where an alternative “normalized” similarity measure
based on Marzal and Vidal’s work20 is described along with an efficient algorithm
for computing it. This approach is designed for identifying pairs of sequences with
higher functional relationship rather than providing a tool for studying the evo-
lution of repeat segments. As mentioned at the beginning of this section, a pair
of sequences with a high alignment score may be a result of a number of complex
copy events occurring at different points of evolutionary time. They may also involve
segments with varying degrees of functionality which are subject to different rates
of mutation; this is due to evolutionary pressures for conserving highly functional
segments. As a result, a high overall alignment score (absolute or normalized) can-
not be used (due to its consolidation of the individual alignment scores of smaller
segments in the sequences) to measure the evolutionary time passed since the sepa-
ration of two such sequences. For instance, in satellite DNA, which contains a large
number of tandem repeats of the same subsequence, there are many possibilities
as to the actual progression of the copying events, including their order, as well
as the source and destination subsequences.15 Assuring that the sequences have
been subject to independent point mutations only, rather than a complex series of
copying events, is critical to the accuracy of phylogenetic analysis, especially based
on distance comparisons (e.g. Thompson et al.24) involving these sequences.

To address the above issue we propose a new method for pairwise sequence
comparison in the form of a probabilistic test to determine whether a given pair of
sequences with high similarity score have been generated as the result of a single
copy event. More specifically, we consider n-state Hidden Markov Models (HMMs)
for generating the alignment sequence S (on which a 0 may represent a correct align-
ment and a 1 may represent a misalignment) between two highly similar sequences.
In the models that we consider, the bit values of S are generated by independent
tosses of biased coins (with output 0/1) which are fixed for each state of the HMM in
consideration. (Thus each state represents a random process which imposes a fixed
mutation rate on the segment it is applied upon.) The sequence of states which
are responsible for the generation of S is decided by a random walk where the
probability of a state change is much lower than that of remaining at a given state.
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We present an algorithm which determines a posteriori for any given S, whether
among all possible n-state Hidden Markov Models, those for which n = 1 are more
likely than any other for which n > 1 (we compare the aggregate likelihood of all
1-state HMMs with that of n-state HMMs for n > 1). Our algorithm runs in time
O(�4 log �), where � is the length of S, through a dynamic programming approach
which exploits the convexity of the probability function for n.

Similar problems have been considered earlier in Refs. 9, 11, 14, 26. In fact
Ref. 9 considered a two state HMM for identifying the cutoff point between one
mutation rate and another for a given alignment sequence S. The most likely HMM
is constructed through standard expectation maximization (EM) techniques. In
contrast we focus on the aggregate effects of all possible 1 or 2 state HMMs rather
than focusing on a single model for robustness purposes as it does not require
specification of a cut-off point for differentiating one coin and two coin models.
Furthermore our approach need not consider a single alignment between the pair
of sequences considered: it is possible to generalize our method to aggregate over
all possible alignments according to the likelihood of their occurrence.

2. Preliminaries

For the purposes of this paper, the genome is a long string of characters from
the DNA alphabet {a, c, g, t}. A genome segment is a substring of the genome.
We assume that we are given the correctly assembled genome (partially or as a
whole) as part of the input.

Throughout the paper R and S denote genome segments, R[t] denotes the char-
acter in position t of segment R, and R[t : u] the substring between the characters
in positions t and u (inclusive) of R. |R| denotes the length of the segment R.

An alignment between two genome segments R and S is a pair (R′, S′), where
R′, S′ ∈ {a, c, g, t,−}� for some � = |R′| = |S′|, such that R and S are obtained if
all “−” are removed from R′ and S′ respectively. Furthermore, there should be no
t such that R′[t] = S′[t] = −.

Given two characters x and y, x ⊕ y denotes the character-wise exclusive-OR
(XOR) function; it evaluates to 1 if x �= y and to 0 otherwise. Given an alignment
(R′, S′), where |R′| = |S′| = �, let al(R′, S′), denote the alignment sequence of
(R′, S′) whose position t is R′[t] ⊕ S′[t]. We denote by h(R′, S′) the normalized
Hamming distance between R′ and S′, i.e. the number of 1’s in al(R′, S′) divided
by �.

3. A Probabilistic Test for Detecting Simple Copies

The sequence comparison problem we consider can be formally described as follows.
We are given two genome segments R, S and their alignment (R′, S′) for which
h(R′, S′) ≤ δ for some predetermined threshold value 0 ≤ δ ≤ 1. Our goal is to
determine whether the alignment sequence al(R′, S′) is more likely to have been
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generated by a single i.i.d. random source or a combination of n i.i.d. random
sources, for some n > 1.

The underlying motivation for the above problem is the need to test whether the
sequences R and S have been generated by a single copying event, followed by inde-
pendent point mutations only. Alternatively they could either be a result of more
complex sequence of multiple copying events, where the segments involved were
subjected to mutations for different periods of time, or a result of a single copying
event after which different subregions have been subjected to different mutation
rates. When the latter possibility is indeed the case, one expects to observe varying
mutation rates throughout the sequences, resulting in measurable variation in the
normalized distance between aligned segments of R′ and S′. Thus a probabilistic
test for determining whether the edit errors between R′ and R′ are more likely to
have been generated by a single i.i.d. random source than by multiple sources can
be used as a tool for identifying pairs of sequences that have been a result of a
single copying event. For such sequences an overall similarity score can be used to
determine the evolutionary time passed since their separation.

3.1. Comparing single and multiple coin models

Given the alignment sequence T = al (R′, S′) = (T [1], . . . , T [�]) of length �, we
would like to compute the a posteriori probability that T has been generated by
independent tosses of a single coin or by a procession of multiple, coins selected by
performing a random walk in the set of coins. More formally, we define an n-coin
model as an n-state Hidden Markov Model similar to many other applications of
HMMs.4 Note that employing HMMs in the context of this paper is quite natural.
Without any a priori information about which positions in the alignment sequence
a coin switch is more likely, it is plausible to assume independent and identical
distributions for the coin switch probabilities; this in turn defines a HMM.

Let C = {C1, . . . , Cn} denote a set of n coins, each with 0/1 outcome. Let
pi(b) denote the probability of outcome b, b ∈ {0, 1} on a flip of coin Ci. Thus,
pi(0) + pi(1) = 1. If n = 1, we will denote C1 as C and p1(1) as p. We denote
by qt, the coin used in generating T [t], 1 ≤ t ≤ �. Note that for any t = 1, . . . , �,
Pr(T [t] = 1 | qt = Cj) = pj(1), since the outcome does not depend on the location
itself but only on the “active” coin. Furthermore, let ai,j denote the transition
probability Pr(qt+1 = Cj | qt = Ci) that coin Ci is replaced by Cj between locations
t and t + 1. Note that ai,j does not depend on the location t. Let πj = Pr(q1 = Cj)
for 1 ≤ j ≤ n (the probability that the first location is generated by coin Cj).

Letting A be the n×n matrix with A(i, j) = ai,j , P be the n-dimensional vector
with P (j) = pj(1) and π be the n-dimensional vector with π(j) = πj , an n-coin
model λ is now defined by the triple (A, P, π). For n ≥ 1, let Λn denote the set of
all n-coin models. Denote by Λ =

⋃
n≥1Λn the set of all coin models.

Let Ω = {0, 1}� × Λ denote our probability space. Hence, an elementary event
is an ordered pair (B, λ) where B is an �-bit binary string, and λ a coin model.
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An experiment consists of the following steps. First select a coin model (by first
choosing the number of coins n, then fixing the parameters (A, P, π)), next, use this
model to generate an alignment sequence B (a bit string of length �).

For convenience, we define the following probabilities. For some coin model
λ, let Pr(λ) = Pr

(⋃
B∈{0,1}�(B, λ)

)
. Similarly, for B ∈ {0, 1}�, let Pr(B) =

Pr
(⋃

λ∈Λ(B, λ)
)
. Note that

∑
B∈{0,1}� Pr(B) =

∑
λ∈Λ Pr(λ) = 1.

Let Wi denote the event that an i-coin model was chosen, i.e., Wi = Ω ∩
({0, 1}�×Λi). We are interested in the quantities Pr(Wi | T ) = Pr

(
Wi |

⋃
λ∈Λ(T, λ)

)
for all i ≥ 1. By Bayes’ rule:

Pr(Wi | T ) =
Pr(Wi ∧ T )

Pr(T )
=

Pr(T | Wi) · Pr(Wi)
Pr(T )

,

where, as above, Pr(T | Wi) = Pr(
⋃

λ∈Λ(T, λ) | Wi) and Pr(Wi ∧ T ) = Pr(Wi ∩⋃
λ∈Λ(T, λ)). Without any prior information, we use the non-informative prior with

Pr(Wi) = Pr(Wj) for all i, j ≥ 1. Hence, we need to compute and compare all
Pr(T | Wi) in order to compute the most probable number of coins to generate the
sequence.

Single-coin model. Let λp denote the single-coin model where p is the probability
that a 1 is generated by the coin. For discrete valued p,

Pr(T | W1) =
∑

p

Pr(T | λp ∧ W1) × Pr(λp | W1).

For continuous valued p for which Pr(λp | W1) is uniform over p ∈ [0, 1],

Pr(T | W1) =
∫ 1

0

Pr(T | λp ∧ W1)dp =
∫ 1

0

Pr(T [1] · T [2] · · ·T [�] | λp, W1)dp

=
∫ 1

0

pk(1 − p)�−kdp

=
k+1∑
i=0

(
� − k

i

)
1

� − i + 1
,

where k is the number of 1’s in T . Hence, in a single-coin model, provided that the
number of 0’s and 1’s is given, their specific locations have no effect on Pr(T | W1),
and thus on the likelihood of W1 given T .

Multiple coin models. For coins qi, qi+1 let aqi,qi+1 be the transition probability
for moving from qi to qi+1; let pqi(b) be the probability that coin qi outputs b (for
b = 0 or 1), and let πq1 denote the probability πk for k such that q1 = Ck. Then
for any n-coin model λ and for any sequence T ,

Pr(T | λ) =
∑

q1...q�

πq1 · pq1(T [1]) · aq1,q2 · pq2(T [2]) · · ·aq�−1,q�
· pq�

(T [�]),

which can be computed by dynamic programming using the following recurrence
relationship.
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Let αt(i) = Pr(the coin model λ generates T [1 : t] ∧ qt = Ci | λ ∧ Wn). Then

α1(i) = πi · pi(T [1]) for all i, and

αt+1(j) =

[
n∑

i=1

αt(i) · ai,j

]
· pj(T [t + 1]).

One can then write

Pr′′(T | λ ∧ Wn) =
n∑

i=1

α�(i).

To give an example, if λ is a two-coin model, S = {C1, C2}. Let A = {a1,2 =
u, a1,1 = 1−u, a2,1 = v, a2,2 = 1−v} and let P = {p1(0) = r, p1(1) = 1−r, p2(0) =
s, p2(1) = 1 − s}. Under a non-informative prior, π = {π1 = 1/2, π2 = 1/2}. Thus

Pr(T | λ ∧ W2) = α�(1) + α�(2)

= [α�−1(1) · (1 − u) + α�−1(2) · v] · (1 − r)T [�] · r1−T [�]

+ [α�−1(1) · u + α�−1(2) · (1 − v)] · (1 − s)T [�] · s1−T [�].

Iteratively, we can express the terms involving αi(t) in terms of those involving
αi−1(t), finally replacing terms involving α1 with the above definition of α1, to
obtain a multi-variate polynomial on u, v, r, s of total degree 2� with 1

4 (�2−�)2 ≤ �4

4

terms as follows.
Let

V0 =
[

(1 − u) · r u · s
v · r (1 − v) · s

]

and

V1 =
[

(1 − u) · (1 − r) u · (1 − s)
v · (1 − r) (1 − v) · (1 − s)

]
.

Then one can simply write

Pr(T | u, v, r, s, W2) =
[
1/2 1/2

] ·
(

�∏
i=1

VT [i]

)
·
[

1
1

]
,

which can be evaluated by successive multiplications in O(
∑�

i=1 i4) = O(�5) time.
Thus for uniform Pr(λ | W2),

Pr(T | W2) =
∫ 1

v,u,r,s=0

Pr(T | v, u, r, s, W2)dv dr du ds

=
∫ 1

v,u,r,s=0

n∑
i=1

α�(i)dv dr du ds

and thus

Pr(T | W2) =
∫ 1

v,u,r,s=0

[
1/2 1/2

] ·
{

�∏
i=1

VT [i]

}
·
[

1
1

]
dv dr du ds.
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Notice that one can impose bounds on coin transition probabilities by simply
changing the range of integration. It is quite straightforward to determine and per-
form the symbolic integration of the above multivariate polynomial for Pr(T | W2)
which involves O(�4) terms in O(�5) time.

We now show how to conclude whether the single coin explanation is the likeliest.

Assumption 1. Knowledge of Pr(T | W1) and Pr(T | W2) is sufficient to con-
clude whether a single-coin model W1 has the highest a posteriori probability among
all Wn for creating the binary sequence T .

The assumption is derived from an observation in Bishop5 (Chapter 10) regard-
ing model order selection in the Bayesian setting; that the likelihood of the
data as a function of model complexity typically increases to a peak and then
decreases monotonically. For our purposes this suggests that Pr(T | Wn) as a
function of n has at most one local maximum; hence for any n-coin model, if
Pr(T | Wn) ≥ Pr(T | Wn+1) then Pr(T | Wn+1) ≥ Pr(T | Wn+2). Thus if
Pr(T | W1) ≥ Pr(T | W2), then for any n Pr(T | W1) ≥ Pr(T | Wn), and thus
W1 is the most likely model for generating T .

The above assumption implies that our test needs to compute and compare
Pr(T | W1) and Pr(T | W2), which can be performed in O(�5) time. We notice that
the multivariate polynomial evaluation in this step can be performed faster than
O(�5) time via a divide and conquer approach: The multiplication of two k-variate
polynomials where the degree of each variable in a term is bounded above by i

can be done in O(k · ik · log i) time using FFT. It is not difficult to see that the
running time of the divide and conquer algorithm is dominated by that of the final
step, which requires multiplying two 2× 2 matrices where each entry is a 4-variate
polynomial and the degree of each variable is at most �. This leads to an overall
running time of O(�4 · log �) for our test, which we state in the corollary below.

Corollary 1. Given an alignment sequence T of length �, it is possible to deter-
mine in O(�4 log �) time whether a posteriori probability that T has been generated
by a 1-coin model is higher than that for any other k-coin model for k > 1.

3.2. Examples

For T = 1 1 (or T = 0 0),

Pr(T | W1) =
∫ 1

0

(1 − r)2 dr =
8
24

, and

Pr(T | W2) =
∫ 1

0

1
2
[(1 − r)2(1 − u) + (1 − r)u(1 − s) + (1 − u)(1 − s)2

+ (1 − r)v(1 − s)]dr du dv ds

=
1
2
·
(

1
3
· 1
2

+
1
2

3)
· 2 =

7
24

,
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thus it is more likely that T has been generated by a single coin model. This is quite
intuitive as a very likely model for generating this sequence consists of a single coin
with high bias.

For T = 1 0 (or T = 0 1),

Pr(T | W1) =
∫ 1

0

r(1 − r)dr =
∫ 1

0

r − r2dr =
4
24

, and

Pr(T | W2) =
∫ 1

0

1
2
[ru(1 − r) + r(1 − u)(1 − s) + s(1 − u)(1 − r)2

+ sv(1 − s)]dr du dv ds

=
1
2
·
(

1
6
· 1
2

+
1
2

3)
· 2 =

5
24

,

thus it is more likely that T has been generated by a two-coin model. This is also
intuitive as such a sequence can only be a result of a single coin which is not very
biased; however one can think of both biased and unbiased two-coin models that
could be responsible of its generation.

We programmed our algorithm to test the likelihood of Pr(T | W1) and
Pr(T | W2) on a number of alignment sequences T .

The first table below provides some intuition on the likelihood of models on short
sequences. It is interesting to note that the last sequence is much more likely to be
generated by a two-coin model due to its periodic nature. The most likely model
to generate this sequence would involve two coins which are highly and oppositely
biased; the transition probabilities from one coin to the other should also be very
high.

T Pr(T | W1) Pr(T | W2) Likely Model

101 0.0833 0.104 W2

11100 0.0166 0.0208 W2

111111 0.142 0.0822 W1

1110111 0.0178 0.0156 W1

1010101010 0.000360 0.00149 W2

Here are some sequences which were generated with two coins of opposite biases
switched exactly in the middle of each sequence. The test was able to successfully
identify bias differences of 10% or more.

% 1’s in % 1’s in Likely
T 1st Half 2nd Half Pr(T | W1) Pr(T | W2) Model

111011111111110000001000000 93 7 1.780 · 10−9 2.980 · 10−8 W2

1101011011111000010101000 77 25 7.396 · 10−9 1.117 · 10−8 W2

0100101101100100101110 55 45 6.163 · 10−8 8.450 · 10−8 W2
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3.3. Extensions

It is possible to extend our probabilistic test by using a slightly larger alphabet
{0, 1,−} rather than the binary, where the character “−” represents a gap in only
one of the sequences in the alignment. This increases the complexity of the problem
as two new variables, r′ and s′, for representing the probabilities of generating a
gap for each coin need to be incorporated into the algorithm. The corresponding
increase in the number of variables in the multivariate polynomial from 4 to 6 leads
to an O(�6 log �) running time.

We also note that an alternative test, which compares Pr(T | W1, λ1) and
Pr(T | W2, λ2), where λ1 and λ2 are the most likely one-coin and two-coin models
respectively can be of use. It is easy to verify that obtaining λ1 and λ2 requires a
differentiation of the respective univariate and multivariate polynomials and eval-
uating them at local maxima. This can be done in O(�) time for the univariate
polynomial, and in O(�4 log �) time for the 4-variate polynomial.

3.4. Identifying all copies of a pattern in a long sequence

Given a long sequence S and a pattern Q, it is possible to extend our test to find
all segments R of S for which the alignment (Q′, R′) obtained by an alignment
algorithm of choice satisfies (1) h(Q′, R′) ≤ δ for some threshold value 0 ≤ δ ≤ 1,
and (2) the alignment sequence al(Q′, R′) passes our probabilistic test. This gen-
eralizes available pattern matching algorithms for identifying segments of S that
satisfies condition (1) only (the literature contains some of the better known results
in this direction8,10,18,22,25). A simple implementation which slides Q through S

takes O(|S| · |Q|4 log |Q|) time.

4. Open Problems and Discussion

An immediate open problem is whether it is possible to improve the running time
of the pattern identification algorithm described above to O(|S| · |Q|3 log |Q|) for
certain alignments. This raises the issue of generalizing our test, which considers a
single alignment between a pair of sequences, to one which considers multiple possi-
ble alignments. Another important problem is how to apply this test to “discover”
all repeats in a long genome segment, extending the work on sequence discovery
algorithms available for non-tandem repeats,1 and other motifs6,7,21 under conven-
tional measures of sequence similarity. One particularly interesting testbed is the
identification of the exact boundaries of multi-layered tandemly repeated DNA seg-
ments. A practical approach to this problem is to slide a fixed size window across
the sequence of interest, measuring the percentage similarity score of every window
position wi with every other wj . It is expected that for those wi and wj for which
j − i +1 is a multiple of a period size, the percentage similarity score will be higher
than other window positions; thus one can view each wi, wj pair whose similarity
score is higher than a threshold as evidence that k = j − i+1 is a candidate period
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size (usually on a 2-D plot). If the candidate period size k is supported by sufficient
evidence, one may conclude that k is indeed the size of a period. Although this
approach has been used in a number of applications, it raises a few issues.

(1) The widely accepted hypothesis for high order tandem repeat evolution (e.g. the
high repeat alpha-satellite DNA) maintains that some early tandem copies at
the monomeric level are followed by a k-mer copying event, after which almost
all copying events occur at k-meric level.19,23 In other words copying events
occur hierarchically in time, and “larger period” sizes are always multiples of
“smaller period” sizes.

However, one can imagine copies occurring in a number of different block
sizes scattered over the sequence; this may lead the above strategy to fail to
correctly identify the high order in the repeat pattern.

(2) Different window sizes may lead to different conclusions.
(i) if the window size is smaller than the size of a period, the method will

not compare full periods against each other and the results derived can be
misleading;

(ii) if the window size is much larger than the size of a period, then the varia-
tions in similarity between wi, wj pairs will be insignificant.

(3) The thresholds for (i) the similarity score and (ii) the number of evidences for
identifying a potential period as an actual period play a significant role in the
method. If the threshold values are too small, there will be too many periods
to report; if they are too large, some of the periods may be ignored.
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