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Abstract

The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved

in chromatin remodeling. Loss of BAZ2B function has been postulated to cause

neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to

contribute to the pathogenesis of these disorders, we performed bioinformatics

analyses that demonstrated a high level of functional convergence during fetal cortical

development between BAZ2B and genes known to cause autism spectrum disorder

(ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B

loss‐of‐function variants in exome sequencing data from previously published cohorts
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of individuals with neurodevelopmental disorders. We subsequently identified seven

additional individuals with heterozygous deletions, stop‐gain, or de novo missense

variants affecting BAZ2B. All of these individuals have developmental delay (DD),

intellectual disability (ID), and/or ASD. Taken together, our findings suggest that

haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal

features include DD, ID, and ASD.

K E YWORD S

autism spectrum disorder, BAZ2B, developmental delay, intellectual disability,

neurodevelopmental disorder

The bromodomain adjacent to zinc finger (BAZ) gene family consists of

four members: BAZ1A [MIM# 605680], BAZ1B [MIM# 605681], BAZ2A

[MIM# 605682], and BAZ2B [MIM# 605683] (Jones, Hamana, Nezu, &

Shimane, 2000). None of these genes are currently associated with a

specific human disease. However, BAZ1A has been shown to act as a

regulator of cellular senescence in both normal and cancer cells (Li et al.,

2019), BAZ1A and BAZ1B each promote survival after DNA damage

(Oppikofer et al., 2017), and BAZ2A is involved in epigenetic alterations

in prostate cancer and its overexpression predicts disease recurrence (Gu

et al., 2015). BAZ1A may also play a role in neurodevelopment (Zaghlool

et al., 2016), and BAZ1B haploinsufficiency contributes to Williams

syndrome‐related phenotypes through transcriptional dysregulation of

neurodevelopmental pathways (Lalli et al., 2016).

Members of the BAZ gene family encode proteins that are in-

tegral components of chromatin remodeling complexes, which have

been implicated in the disruption and reformation of nucleosomal

arrays resulting in modulation of transcription, DNA replication, and

DNA repair (Clapier & Cairns, 2009). Although the molecular func-

tion of BAZ2B has not been fully defined, it has been postulated to

function similarly to the Drosophila Acf1 protein, which regulates

nucleosome mobilization through the ATP‐dependent chromatin re-

modeling factor ISWI (Eberharter, Vetter, Ferreira, & Becker, 2004).

Additionally, the BAZ2B bromodomain has been shown to bind to

acetylated H3K14 (H3K14ac), whose presence at promoter regions is

generally associated with gene activation (Charlop‐Powers, Zeng,

Zhang, & Zhou, 2010; Philpott et al., 2011; Pokholok et al., 2005;

Wang et al., 2008). This suggests a potential role for BAZ2B in

transcriptional activation.

Data from the genome aggregation database (gnomAD v2.1.1;

https://gnomad.broadinstitute.org/) suggests that BAZ2B is likely to be

loss‐of‐function intolerant (pLI = 0.98) with 109.2 loss‐of‐function variants

expected but only 22 observed (observed [o]/expected [e] score =0.2

[90% confidence interval: 0.14‐0.29]; Karczewski et al., 2019). This is

consistent with BAZ2B's revised residual variation intolerance score

(RVIS) of −1.0079, which places it amongst the top 13.1% of the most

functional–variation–intolerant of human genes (Petrovski et al., 2015;

Petrovski, Wang, Heinzen, Allen, & Goldstein, 2013).

BAZ2B was recently prioritized as a potential candidate gene for

autism spectrum disorder (ASD) by Guo et al. (2019) based on the

analysis of exome sequencing data from large, family‐based, exome

sequencing studies (De Rubeis et al., 2014; Fischbach & Lord, 2010).

Loss of BAZ2B function has also been postulated to contribute to the

development of neurodevelopmental disorders in humans (Deciphering

Developmental Disorders, 2017; Iossifov et al., 2014; Krupp et al.,

2017; Lelieveld et al., 2016) based on the identification of de novo and

mosaic BAZ2B variants in individuals with these disorders.

To further evaluate BAZ2B as a candidate gene for neurodeve-

lopmental disorders, we performed bioinformatics analyses to de-

termine whether BAZ2B is coexpressed with known ASD or

neurodevelopmental disability (NDD) genes (Supporting Information

Materials and Methods; Basu, Kollu, & Banerjee‐Basu, 2009; Stessman

et al., 2017). First, using the developing human brain RNA‐sequencing
data (Kang et al., 2011), we found that BAZ2B exhibits a higher ex-

pression in prenatal cortical samples than in postnatal cortical samples

(fold change = 1.6; p = 2.2e–24; the one‐sidedWilcoxon rank‐sum test),

suggesting that BAZ2B might play a more important role during pre-

natal cortical development than postnatal function (Figure 1a).

We then calculated the Spearman's correlation with genes as-

sociated with ASD for all genes expressed in the prenatal cortex and

found that BAZ2B is highly positively correlated with ASD genes

(Figure 1b and Table S1). Similarly, BAZ2B is also highly positively

correlated with genes associated with NDD (Figure 1c and Table S2).

As expected, ASD genes are highly correlated with each other, NDD

genes are highly correlated with each other, and these gene sets are

distinguishable from the other prenatal cortex‐expressed genes with

area under the receiver operating characteristic curve values of 0.71

and 0.73, respectively (data not shown). These results indicate that

BAZ2B is a highly promising ASD and NDD candidate gene.

To find additional evidence in support of BAZ2B's role in neu-

rodevelopmental disorders, we leveraged data from large‐scale, next‐
generation sequencing studies. Among 10,927 individuals with ASD,

intellectual disability (ID) or developmental disorders, we identified

five individuals with de novo germline mutations affecting the coding

region of BAZ2B; three individuals with loss‐of‐function variants and

two individuals with conserved missense variants (Table S3 and

Figure S1; Deciphering Developmental Disorders Study, 2017;

Iossifov et al., 2014; Lelieveld et al., 2016; Turner et al., 2017). Some

of these individuals carry variants in other genes that may represent

alternative explanations for their neurodevelopmental phenotypes—

particularly the CTCF c.1102C>T, p.(Arg368Cys) [NM_006565.3]
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variant in DDD4K.00342—or modifiers. Using a statistical model

(O'Roak et al., 2012) and denovolyzeR (Samocha et al., 2014; Ware,

Samocha, Homsy, & Daly, 2015), we found an excess of de novo

BAZ2B loss‐of‐function variants within this cohort (p = .00045 and

p = .0032, respectively) based on a single, hypothesis‐driven test.

However, this finding did not meet the criteria for genome‐wide

significance.

As a next step, we searched a clinical database of >80,000 array‐
based copy number variant analyses performed at Baylor Genetics. We

found two individuals (Subjects D1 and D2) who carried small (<1Mb)

deletions involving BAZ2B (Figure 2a and Table S4). The minimal deletion

in Subject D1 affects the entire BAZ2B coding region, and the minimal

deletion in Subject D2 includes exons that code for both the bromodo-

main and zinc finger domain of BAZ2B (Figure 2b). Population data

F IGURE 1 Functional convergence of BAZ2B with ASD and NDD genes during human fetal neocortical development. (a) The expression of

BAZ2B during human neocortical development. The expression values of BAZ2B across cortical samples were grouped and sorted by
developmental time points. (b) Scatter plot shows the distribution of Spearman's correlation with ASD genes in prenatal cortical samples for all
prenatal cortex‐expressed genes. Dots represent individual genes. The dashed horizontal line at 3.2% indicates the top percentile among which

the correlation between ASD genes and BAZ2B is ranked. (c) Scatter plot shows the distribution of Spearman's correlation with NDD genes in
fetal cortical samples for all the prenatal cortex‐expressed genes. Dots represent individual genes. The dashed horizontal line at 3.9% indicates
the top percentile among which the correlation between NDD genes and BAZ2B is ranked. ASD, autism spectrum disorder; BAZ2B,

bromodomain adjacent to zinc finger 2B gene; mos, months; NCX, neocortex; NDD, neurodevelopmental disability; pcw, postconceptional
weeks; yrs, years

F IGURE 2 Molecular changes in
individuals with BAZ2B deletions and

deleterious variants. (a) Schematic
representing the minimum (red) and maximum
(orange) deletions seen in Subjects D1 and

D2. BAZ2B and other genes in the region are
represented by blue arrows whose direction
indicates the direction of transcription. (b)
The predicted locations of domains within

BAZ2B are presented along with the locations
of the BAZ2B changes predicted to occur in
previously reported individuals (black) and

additional subjects described here (D1–D2,
V2–V6; red). BAZ2B, bromodomain adjacent
to zinc finger 2B gene
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suggest that it is unlikely that the effects of these deletions on WDSUB1

and TANC1 expression are contributing significantly to the ASD and ID

documented in these individuals (Table S4), although that possibility

cannot be excluded.

We then used GeneMatcher (Sobreira, Schiettecatte, Valle, &

Hamosh, 2015) to identify six individuals (Subjects V1–V6) who

carry rare, BAZ2B stop‐gain or conserved missense variants with

high Combined Annotation Dependent Depletion (CADD) scores

(26.7–27.7; Table S4 and Figure S1) identified in exome/genome

sequencing studies. All BAZ2B variants in this manuscript are

described based on BAZ2B transcript variant 1 (GenBank:

NM_013450.4). One of these individuals, Subject V1, was pre-

viously reported by Lelieveld et al. (2016) (Patient 418) without

detailed clinical information. All of these individuals had devel-

opmental delay (DD), ID, and/or ASD (Supplemental Information

Case Reports). Developmental regression was clearly documented

in Subjects V4–V6. These subjects were diagnosed with ASD, and

the timing of their developmental regression is consistent with the

regression that has been described in association with ASD

(Ozonoff & Iosif, 2019; Rogers, 2004; Tammimies, 2019).

Individuals carrying heterozygous, high confidence, loss‐of‐function
BAZ2B variants and BAZ2B missense variants with high CADD scores

(NM_013450.4) have also been reported in the gnomAD v2.1.1 data-

base. As subjects included in this database were not assessed for neu-

rological phenotypes, it is possible that these individuals have milder

versions of the phenotypes reported here. Alternatively, the DD, ID, and

ASD associated with BAZ2B haploinsufficiency may be incompletely pe-

netrant. Indeed, it seems likely that genetic, environmental and/or sto-

chastic factors play a role in determining the type and severity of

neurodevelopmental phenotypes seen in individuals with reduced levels

of BAZ2B function. It follows that some of the copy number and se-

quence variants identified in previously published individuals in Table S3

and the subjects described here (Table S4) may be acting as modifiers of

their BAZ2B‐related phenotypes.

Although neurodevelopmental issues were documented in all

subjects, brain anomalies were noted in only one of the four (25%)

subjects who had a brain magnetic resonance imaging (25%). Simi-

larly, no consistent pattern of additional medical problems was seen

among subjects, with the possible exception of vision problems,

which were seen in 5/6 (83%) of the individuals who were fully

phenotyped (Table S4). Epicanthal folds (3/6, 50%) and macrocephaly

(2/6, 33%) were the only recurrently reported dysmorphic features

that were found in subjects from different families. The identification

of additional affected individuals will be needed to determine whe-

ther these features are truly associated with BAZ2B deficiency.

Taken together, our findings suggest that haploinsufficiency of

BAZ2B causes a neurodevelopmental disorder whose cardinal features

include DD, ID, and ASD. The phenotype associated with this disorder is

not sufficiently distinct to be suspected on clinical grounds alone. The

identification of additional individuals with BAZ2B haploinsufficiency

may help to clarify the spectrum of neurodevelopmental phenotypes

and additional medical problems associated with this disorder.
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