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An integrated map of structural variation
in 2,504 human genomes
A list of authors and their affiliations appears at the end of the paper.

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human
genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced
variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks
in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting
population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability
of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by
genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we
uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters
of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through
individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional
impact and disease association.

Structural variants (SVs), including deletions, insertions, duplications
and inversions, account for most varying base pairs (bp) among
individual human genomes1. Numerous studies have implicated
SVs in human health with associated phenotypes ranging from
cognitive disabilities to predispositions to obesity, cancer and other
maladies1,2. Discovery and genotyping of these variants remains chal-
lenging, however, since SVs are prone to arise in repetitive regions and
internal SV structures can be complex3. This has created challenges for
genome-wide association studies (GWAS)4,5. Despite recent methodo-
logical and technological advances6–9, efforts to perform discovery,
genotyping, and statistical haplotype-block integration of all major
SV classes have so far been lacking. Earlier SV surveys depended on
microarrays10 as well as genomic and clone-based approaches limited
to a small number of samples11–15. More recently, short-read DNA
sequencing data from the initial phases of the 1000 Genomes
Project8,9 enabled us to construct sets of SVs, genotyped across popu-
lations, with enhanced size and breakpoint resolution6,7. Previous 1000
Genomes Project SV set releases, however, encompassed fewer indi-
viduals and were largely6 or entirely8 limited to deletions, in spite of the
relevance of other SV classes to human genetics1,2,4.

The objective of the Structural Variation Analysis Group has been
to discover and genotype major classes of SVs (defined as DNA var-
iants $50 bp) in diverse populations and to generate a statistically
phased reference panel with these SVs. Here we report an integrated
map of 68,818 SVs in unrelated individuals with ancestry from 26
populations (Supplementary Table 1). We constructed this resource
by analysing 1000 Genomes Project phase 3 whole-genome sequen-
cing (WGS) data16 along with data from orthogonal techniques,
including long-read single-molecule sequencing (Supplementary
Table 2), to characterize hitherto unresolved SV classes. Our study
emphasizes the population diversity of SVs, quantifies their functional
impact, and highlights previously understudied SV classes, including
inversions exhibiting marked sequence complexity.

Construction of our phase 3 SV release
We mapped Illumina WGS data (,100 bp reads, mean 7.4-fold
coverage) from 2,504 individuals onto an amended version8 of
the GRCh37 reference assembly using two independent mapping

algorithms—BWA17 and mrsFAST18—and performed SV discovery
and genotyping using an ensemble of nine different algorithms
(Extended Data Fig. 1 and Supplementary Note). We applied several
orthogonal experimental platforms for SV set assessment, refinement
and characterization (Supplementary Table 2) and to calculate the
false discovery rate (FDR) for each SV class (Table 1). Callset refine-
ments facilitated through long-read sequencing enabled us to incorp-
orate a number of additional SVs into our callset, including an
additional 698 inversions and 9,132 small (,1 kbp) deletions, com-
pared to the SV set released with the 1000 Genomes Project marker
paper16. As a result, our callset differs slightly relative to the marker
paper’s SV set16 (see Supplementary Table 2). We merged individual
callsets to construct our unified release (Table 1), comprising 42,279
biallelic deletions, 6,025 biallelic duplications, 2,929 mCNVs (multi
allelic copy-number variants), 786 inversions, 168 nuclear mitochon-
drial insertions (NUMTs), and 16,631 mobile element insertions
(MEIs, including 12,748, 3,048 and 835 insertions of Alu, L1 and
SVA (SINE-R, VNTR and Alu composite) elements, respectively).

SV non-reference genotype concordance estimates ranged from
,98% for biallelic deletions and MEI classes to ,94% for biallelic
duplications. 60% of SVs were novel with respect to the Database of
Genomic Variants (DGV)19 (50% reciprocal overlap criterion,
Fig. 1a), whereby 71% of SVs (50% reciprocal overlap) and 60% of
collapsed copy-number variable regions (CNVRs, 1 bp overlap) were
novel compared to previous 1000 Genomes Project releases6,8, reflect-
ing methodological improvements and inclusion of additional popu-
lations. Novel SVs showed enrichment for rare sites, which we
detected down to an autosomal allele count of ‘1’. And while varia-
tions in FDR estimates were evident with SV size and VAF (variant
allele frequency), we consistently estimated the FDR at #5.4% when
stratifying deletions and duplications by size and frequency, including
for rare SVs with VAF , 0.1% (Extended Data Figs 1, 2). A compar-
ison with deep-coverage Complete Genomics (CG) sequencing data
indicated an overall sensitivity of 88% for deletions and 65% for
duplications, with the false negatives driven largely by the relatively
lowered sensitivity for ascertaining small SVs in Illumina sequencing
data (Fig. 1b, Extended Data Fig. 3). The average per-individual
sensitivity was similar for deletions (89%) and slightly lower for
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duplications (50%). For MEI classes, estimated sensitivities ranged
from 83–96% (Table 1) compared to the 1000 Genomes Project pilot
phase where a different MEI detection tool was used20. For inversions,
we estimated an overall sensitivity of 32% based on variants with a
positive validation status recorded in the InvFEST database21, with an
increased sensitivity of 67% for inversions ,5 kbp in size.

We performed breakpoint assembly using pooled Illumina WGS
and Pacific Biosciences (PacBio) sequencing data22, and additionally
performed split-read analysis23 of short reads, to resolve the fine-
resolution breakpoint structure of 37,250 SVs (29,954 deletions, 357
tandem duplications, 6,919 MEIs, and 20 inversions; Supplementary
Table 3). Breakpoint assemblies showed a mean boundary precision
of 0–15 bp for all SV types, with the exception of inversions and
duplications for which we achieved mean precision estimates of
32 bp and 683 bp, respectively (Table 1, Fig. 1c).

Population genetic properties of SVs
We explored the population genetic properties of SVs among five
continental groups—Africa (AFR), the Americas (AMR), East Asia
(EAS), Europe (EUR) and South Asia (SAS). The bulk of SVs occur at
low frequency (65% exhibit VAF , 0.2%) consistent amongst indi-
vidual SV classes (Extended Data Figs 2, 3). While rare SVs are typically
specific to individual continental groups, at VAF $ 2% nearly all SVs
are shared across continents (Fig. 1d, Extended Data Fig. 3). Notably,
we identified 1,075 SVs with VAF . 50% (889 biallelic deletions,
2 biallelic duplications, 90 mCNVs, 88 MEIs and 6 inversions) encom-
passing 5 Mbp, sites of interest for future updates to the human ref-
erence genome. We estimated the mutation rate for each SV class using
Waterson’s estimator of h, for example, ascertaining a mutation rate of
0.113 deletions per haploid genome generation, a threefold higher

estimate compared with previous reports10,24, probably owing to our
increased power for detecting variants , 5 kbp (Supplementary Note).

We found that 73% of SVs with .1% VAF and 68% of rarer SVs
(VAF . 0.1%) are in linkage disequilibrium (LD) with nearby single
nucleotide polymorphisms (SNPs) (r2 . 0.6); however, the propor-
tion of variants in LD highly depends on the SV class (Fig. 1e,
Extended Data Fig. 4). For example, only 44% of all biallelic duplica-
tions with VAF . 0.1% were in LD with a nearby SNP (r2 . 0.6),
in agreement with previous findings10,25,26. Notably, we observed a
striking depletion of biallelic duplications amongst common SVs
(P , 2 3 10216, Kolmogorov–Smirnov test; Extended Data Fig. 5)
with most common duplications classified as multi-allelic SVs (that
is, mCNVs). This behaviour suggests extensive recurrence of SVs at
duplication sites consistent with what was recently observed in a
smaller cohort of 849 individuals27. These LD characteristics suggest
duplications are currently under-ascertained for disease associations
using tag-SNP-based approaches.

Based on our haplotype-resolved SV catalogue, we observed that
individuals of African ancestry exhibit, on average, 27% more hetero-
zygous deletions than individuals from other populations (mean of
1,705 versus 1,342), consistent with SNPs28 (Extended Data Fig. 5).
The relative proportion of deletion- versus SNP-affected sequence,
however, showed a 13% excess in non-African compared to African
populations (ratio 1.64 versus 1.45). Principal component analyses with
different SV classes generally recapitulated continental population
structure and admixture (Extended Data Fig. 6 and Supplementary
Note). Our analysis further allowed us to identify a catalogue of 6,495
ancestry-informative MEI markers of potential value to population
genetics history and forensics research (Extended Data Fig. 5, Supple-
mentary Table 4).

Table 1 | Phase 3 extended SV release
SV class No. sites Median size of SV

sites (bp)
Median kbp

per individual
Median alleles
per individual

Site FDR Biallelic site breakpoint
precision (bp)

Genotype concordance
(non-ref.)

Sensitivity
estimates

Deletion (biallelic) 42,279 2,455 5,615 2,788 2%*–4%{ 15 (650)** 0.7 (69.5){{ 98%" 88%"

Duplication (biallelic) 6,025 35,890 518 17 1%*–4%{ 683 (61,350){{ 94%" 65%"

mCNV 2,929 19,466 11,346 340 1%*–4%{ – NA NA
Inversion 786 1,697 78 37 17%1 (9%){jjjj 32 (647)jjjj 96%1 32%
MEI 16,631 297 691 1,218 4%{ 0.95 (65.93) 98%jj 83# 296%w

NUMT 168 157 3 5.3 10%{ 0.25 (60.43) 86.1%{ NA

FDR estimates are based on intensity rank-sum testing8 using *Affymetrix SNP6 and {Omni 2.5 arrays, {PCR, as well as 1long-read, jjPCR-free (250 bp-read) and "CG sequencing (CG-based estimates used
reciprocal overlaps of 50% and 20% for deletions and duplications, respectively). Estimate by comparing MEIs to all #calls or all wPCR-validated calls from20 (estimates for individual MEI classes are in
Supplementary Table 4). NA, no previous data available. Differences in deletion and duplication counts are driven by size-cutoffs and classification of common duplications as mCNVs27. **Ascertained using
read-pairs or read-depth. {{Ascertained with split-reads23. {{Estimated for tandem duplications. jjjjEstimated for inversions with paired-end support from both breakpoints.
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Figure 1 | Phase 3 integrated SV callset.
a, Novelty based on overlap of our SV set with
DGV19 (upper panel, broken down by SV class), of
collapsed CNVRs with earlier 1000 Genomes
Project releases6,8 (middle panel) and of our SV set
with refs 6, 8 (bottom panel). b, Size distribution
of ascertained SVs (bin width is uniform in
log-scale). DEL, biallelic deletion, DUP, biallelic
duplication, INV, inversion, INS, non-reference
insertion (including MEIs and NUMTs).
c, Breakpoint precision of assembled deletions
stratified by VAF (split-read caller Pindel23 shown
separately). d, SV allele sharing across continental
groups. e, LD properties of biallelic SV classes.
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Since population stratification can be used as a signature to detect
adaptive selection, we additionally identified SVs varying in VAF
amongst different populations. For each SV site we calculated a VST

statistic, a measure highly correlated with FST (the fixation index)29

that can be applied to assess population stratification of biallelic
and multi-allelic SVs29. We observed 1,434 highly stratified SVs
(.0.2 VST, corresponding to 2.9 standard deviations (s.d.) from the
mean; Supplementary Table 5), among which 578 intersected gene
coding sequences (CDSs). Among these were several SVs associated
with regions previously reported to be under positive selection, such
as KANSL1 mCNVs (Extended Data Fig. 6) that tag a European-
enriched inversion polymorphism associated with increased
fecundity30. Most of the population-stratified sites, however, have
not been previously described and are, thus, potential targets for
future investigation of SVs undergoing adaptive selection or genetic
drift. These include, for example, a 14.5 kbp intronic duplication of
HERC2 enriched in East Asians (VST 5 0.62 EAS-EUR).

Functional impact of SVs
We analysed the intersection of deletions binned by VAF with various
classes of genic and intergenic functional elements (Fig. 2a, Extended
Data Fig. 7). The CDSs, untranslated regions (UTRs) and introns of
genes, in addition to ENCODE31 transcription factor binding sites and
ultrasensitive noncoding regions, showed a significant depletion
(P , 0.001; permutation testing in each VAF bin) compared to a ran-
dom background model. In general, these elements are more depleted
(in terms of fold change) in common VAF bins compared to
rarer deletion alleles, in keeping with purifying10 (or in some cases
background32) selection. Genes more intolerant to mutation (as mea-
sured from SNP diversity, residual variation intolerance score

(RVIS)33 , 20) exhibited the most pronounced depletion (P , 0.001;
permutation testing between pairs of RVIS-score categories). All
other SV classes exhibited similar signatures of selection; when com-
pared to deletions these depletions were, however, more attenuated
(Fig. 2b, Extended Data Fig. 7). Additional assessment of the site
frequency spectrum showed that, as deletion sizes increase, these
SVs become rarer (P , 2.2 3 10216; linear model, F-test), evidence
of purifying selection against events more likely intersecting func-
tional elements. Duplications, by comparison, did not exhibit such
trend, consistent with reduced selective constraints (Supplemen-
tary Note).

We additionally analysed 5,819 homozygous deletions to search for
gene knockouts occurring naturally in human populations. Among
these we identified 240 genes (corresponding to 204 individual dele-
tion sites) that, on the basis of the observation of homozygous losses in
normal individuals, seem to be ‘dispensable’ (Supplementary Table 6).
Most of the underlying deletions were found in more than one human
population, and for only one (0.5%) we observed evidence for the
putative involvement of uniparental disomy in the homozygosity
(Supplementary Note). The majority (.80%) of these homozygous
gene losses were novel compared to a previous analysis based on
DGV variants19, or recent clinical genomics studies (Supplementary
Note). As expected, genes affected by homozygous loss were not highly
conserved and were relatively tolerant to other forms of genetic variation
(RVIS 5 0.74 compared to OMIM disease genes showing RVIS 5 0.43;
P 5 9.43 10225; Mann–Whitney test). Moreover, the set was func-
tionally enriched for glycoproteins (Benjamini–Hochberg corrected
P-value 5 1.6 3 1023, EASE (Expression Analysis Systematic Explorer)
score) and genes harbouring immunoglobulin domains (Benjamini–
Hochberg corrected P-value 5 1.0 3 1025, EASE score).
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Figure 2 | SV functional impact. a, Relative
enrichment or depletion of genomic elements
within breakpoint-resolved deletions binned by
VAF. TF, transcription factor binding site; nc,
noncoding. RVIS range from 0–100 (low , 20,
medium 20–50, high $ 50). *no element
intersected. b, Enrichment/depletion of genomic
elements within different SV classes, compared
with breakpoint-resolved deletions. c, Manhattan
plot of DUSP22-eQTL. Inset, boxplots of
association between copy-number genotype and
expression. d, Manhattan plot of ZNF43-eQTL.
e, Enrichment of SV-containing haplotypes at
previously reported GWAS hits (error bars
show s.e.m.).
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We next quantified the functional impact of SVs using expression
quantitative trait loci (eQTL) associations as a surrogate34,35. Based
on transcriptome data from lymphoblastoid cell lines derived from
462 individuals36 (the gEUVADIS consortium), we tested 18,969
expressed protein-coding genes for cis-eQTL associations, considering
1 Mbp candidate regions upstream and downstream of CDSs. A joint
eQTL analysis using SNPs, indels and SVs with VAF .1% identified 54
eQTLs with a lead SV association (denoted SV-eQTL) and 9,537 eQTLs
with a lead SNP/indel association (10% FDR). For an additional 166
eQTLs with lead associations to SNPs or indels, we observed SVs in LD
(r2 . 0.5) seven times more than when using random variants matched
for LD structure, distance to the transcription start site, and VAF,
suggesting that a larger number of eQTLs are probably affected by
SVs (Extended Data Fig. 8, Supplementary Table 7). In proportion to
the number of variants tested, SV classes were up to ,50-fold enriched
for SV-eQTLs (P 5 2.84 3 10239, one-sided Fisher’s exact test;
Supplementary Table 8). Large SVs were associated with increased
effect size; for example, a twofold increase in effect size for genic SVs
.10 kbp versus variants ,1 kbp (P 5 0.0004; t-test; Extended Data
Fig. 8). Taken together, although SNPs contribute more eQTLs overall,
our results suggest that SVs have a disproportionate impact on gene
expression relative to their number.

Among those 220 eQTLs having either an SV-eQTL or an SV in
LD with the lead SNP/indel, most were due to deletions (55% of
associations), followed by mCNVs (19%) (Supplementary Table 8).
Although SV-eQTLs with the largest effect sizes tended to overlap
with CDSs, such as for the dual specificity phosphatase 22 (DUSP22)
gene (Fig. 2c), we also observed several expression-associated SVs
strictly intersecting upstream noncoding sequences, including an
mCNV upstream of ZNF43 (Fig. 2d) possibly mediated through vari-
ation of a cis-regulatory element. We additionally considered the
impact of accounting for SVs when constructing personalized ref-
erence genomes for transcriptome analysis. To illustrate this, we con-
sidered RNA read alignments for the sample NA12878, comparing
the standard reference genome with GRCh37-derived personalized
references constructed using NA12878 SNPs, or using NA12878
SNPs and SVs. Using such an approach, we observed marked changes
in expression for 525 exons (610 reads, $onefold change relative to
the standard reference), 24 of which could be attributed to the inclu-
sion of SVs into the personalized reference (Supplementary Table 9).

The relevance of SVs to eQTLs suggests that a number of disease
associations previously detected by GWAS may be attributable to SVs,
which are difficult to assess directly in GWAS. To test this hypothesis
we compared 12,892 previously reported SNP-based GWAS hits to
SVs identified in our data set, identifying 136 candidate SVs in strong
LD (r2 . 0.8) with GWAS variants, which represents a 1.5-fold
enrichment when compared to a VAF and haplotype size-matched
background set and a threefold enrichment for deletions .20 kbp
(P 5 0.004) (Fig. 2e and Supplementary Note). Approximately a third
of these candidate GWAS associations (39) were novel, impacting
phenotypes such as colorectal cancer and bone mineral density
(Supplementary Table 10). Interestingly, 64% of these novel associa-
tions were mediated by deletions ,1 kbp, a size range for which our
study has improved power over previous surveys, which more than
doubles (from 18 to 40) the number of SVs ,1 kbp in strong LD with a
GWAS lead SNP. Thus, our SV resource could facilitate discovery of
numerous additional disease-linked SVs.

SV clustering and complexity
Advances in Illumina sequencing towards longer read lengths
(,100 bp versus 36 bp)6 in conjunction with the population-level data
allowed us to perform an in-depth investigation of SV complexity and
clustering. We identified 3,163 regions where SVs seemed to cluster
(.2 SVs mapping within 500 bp; Supplementary Table 11). To reduce
redundancy caused by multiple overlapping calls per sample, we cal-

culated distinct CNVRs per cluster by merging calls per sample and
haplotype and then counting the distinct CNVRs produced across
samples (average 6.4 6 7.2 CNVRs per cluster). We identified 30
genomic regions with an excess of CNVRs (.4 s.d. or .36 CNVRs
per cluster). This clustering effect was not correlated with segmental
duplications (r 5 0.02) and only partially explained by SNP diversity
(r 5 0.15; Extended Data Fig. 9). CNVR clusters showed enrichment
near late-replicating origins (P 5 0.013, permutation test) and at cyto-
genically defined ‘fragile’ sites (P 5 0.0017; permutation test).
Although the proportion of gene content in regions exhibiting excess-
ive SV clustering was significantly reduced when compared to a null
distribution (P , 0.000001, permutation test), 1,881 of 3,163 such
regions (59%) intersected one or more genes (Supplementary
Table 11). This includes a region comprised of 47 SVs (ranking 2nd
out of the 30 genomic regions with .4 s.d.) encompassing the preg-
nancy-specific glycoprotein gene family (Fig. 3a), a set of genes
thought to be critically important for maintenance of pregnancy37.
Other SV clusters associated with genes (for example, IMMP2L, CHL1
and GRID2) have been implicated as potential risk factors for disease,
including neurodevelopmental disorders38.

We additionally specifically assessed the complexity of the 29,954
deletions with resolved breakpoints and found that 6% (1,822) inter-
sected another deletion with distinct breakpoints. A larger fraction
(16% or 4,813 of assembled deletion sites) showed the presence of
additional inserted sequence at deletion breakpoints. We grouped
1,651 deletions with mean size of 3.1 kbp and at least 10 bp of addi-
tional DNA sequence between the original SV site boundaries into five
broad classes (Fig. 3b, Supplementary Table 12). The most common
class (n 5 501, 30.3%), termed ‘Ins with Dup and Del’, comprised
deletions exhibiting a recognizable duplicated sequence interval
within the respective inserted sequence. Notably, in many cases
(n 5 191) the inserted sequences comprised two or more apparent
sequence duplications at the deletion boundaries (a class denoted ‘Ins
with MultiDup and Del’). Additional classes commonly observed
include Inv and Del (inversion with adjacent deletion; n 5 9) and
‘MultiDel’—a class where two or more adjacent deletions are sepa-
rated by at least one sequence ‘spacer’ of up to ,204 bp in length
(n 5 370). However, not all complex SVs fit into these classes, with
214 sites forming distinct patterns corresponding to multiple classes
or exhibiting increased complexity. Template-switching mechanisms
could explain the notable complexity of these SVs3. Indeed, micro-
homology patterns were typically present between the breakpoints of
deletions and the respective boundaries of insertion templates at these
sites (Extended Data Fig. 9), consistent with formation through single
mutational events (Supplementary Note). Across the complex sites
assessed, 871 (53%) showed evidence for a local template ($10 bp
match, within 10 kbp), whereas for 41 the insertion was presumably
templated from a distal region ($22 bp match, .10 kbp away),
including 17 sites where the DNA stretch was likely derived from
RNA templates (Supplementary Table 13).

To further characterize SV breakpoint complexity, we employed
two alternative approaches that do not rely on low-coverage Illumina
read assembly. We first examined 7,804 small deletions for breakpoint
complexity using split-read analysis23 (Fig. 3c) and identified 664
(median size 67 bp) exhibiting complexity, 64 of which contained
insertions $3 bp that may be derived from a nearby template
(Supplementary Table 14, Extended Data Fig. 9). We additionally
realigned long DNA reads from a single individual (NA12878)22

sequenced by high-coverage PacBio (median read length 3.0 kbp)
and Moleculo (median 3.2 kbp) single-molecule WGS around dele-
tions from our release set (Fig. 3d). Out of 766 deletions in NA12878
investigated with this approach, 62 exhibited complexity showing
three to six breakpoints (Supplementary Table 12). A deletion of
exon 3 of the serine protease inhibitor SPINK14, for example, was
accompanied by an inversion of an internal segment of the SV
sequence (Fig. 3d, left panel). In contrast to the smaller proportion
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of deletions showing breakpoint complexity, the majority of inver-
sions assessed in NA12878 (19/28) exhibited multiple breakpoints.

To further explore inversion sequence complexity, we performed a
battery of targeted analyses, leveraging PacBio resequencing of fos-
mids (targeting 34 loci), sequencing by Oxford Nanopore Minion
(60 loci) and PacBio (206 loci) of long-range PCR amplicons, and
data for 13 loci from another sample (CHM1) sequenced by high-
coverage PacBio WGS14. Altogether we verified and further charac-
terized 229 inversion sites, 208 using long-read data and 21 by PCR
(Supplementary Table 15), increasing the number of known validated
inversions21 by .2.5-fold. Remarkably, only 20% of all sequenced
inversions characterized in this manner were ‘simple’ (termed
‘Simple Inv’), exhibiting two breakpoints (Fig. 3e), including a 2 kbp
inversion on chromosome 4 intersecting a regulatory exon of the Ras
homologue family member RHOH (Fig. 3d, right panel). The majority
of inversions (54%) corresponded to inverted duplications (‘Inverted
Dup’; Fig. 3d, middle right panel). In nearly all cases, these involved
duplicated stretches ,1 kbp inserted within 5 kbp of the alternate
copy, suggesting a common mechanism of SV formation (Extended
Data Fig. 10). The remaining inversions comprised ‘Inv and Del’
events (14%), ‘MultiDel’ events exhibiting inverted spacers (7%),
and more highly complex sites (5%; Fig. 3d, middle left panel). The
appreciable inversion complexity uncovered here is most likely due to
a mutational process forming complex SVs, potentially involving
DNA replication errors3, rather than due to recurrent rearrangement,
as our analyses failed to detect corresponding intermediate events in
1000 Genomes Project samples.

Discussion
We present what is to our knowledge the most comprehensive set of
human SVs to date as an integrated resource for future disease and
population genetics studies. We estimate that individuals harbour a
median of 18.4 Mbp of SVs per diploid genome, an excess contributed
to a large extent by mCNVs (11.3 Mbp) and biallelic deletions
(5.6 Mbp; Table 1). When collapsing mCNV sites carrying multiple
copies as well as homozygous SVs onto the haploid reference assembly,
a median of 8.9 Mbp of sequence are affected by SVs, compared
to 3.6 Mbp for SNPs. Furthermore, 37,250 SVs have mapped break-
points amounting to .113 Mbp of SV sequence resolved at the
nucleotide-level. By mining homozygous deletions we identified over
two hundred nonessential human genes, a set enriched for immuno-
globulin domains that hence may reflect variation in the immune rep-
ertoire underlying inter-individual differences in disease susceptibility.

We demonstrate that SV classes are disproportionally enriched (by
up to ,50-fold) for SV-eQTLs, although only 220 SVs were found
either as lead eQTL association or in high LD with the respective lead
SNP. While this corresponds to proportionally fewer associations
relative to SNPs compared to a prior estimate based on array techno-
logy34, this may be explained by the reliance of this prior estimate on
bacterial artificial chromosome arrays, which ascertain large SVs
(.50 kbp) that associate with strong effect size, as well as by the
relative scarcity of SNPs tested in an earlier study34 (HapMap
Phase I)39. We further expand the number of candidate SVs in strong
LD with GWAS hits by ,30% (39/136 novel associations implicating
SVs as candidates) and find that GWAS haplotypes are enriched up to
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Figure 3 | SV complexity at different scales. a, PSG locus with clustered SVs.
Population copy-number state histograms are shown for two example SVs.
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threefold for common SVs, which emphasizes the relevance of ascer-
taining SVs in disease studies. The large number of novel SVs smaller
than 1 kbp in length associated with previously reported GWAS hits
highlights the importance of increasing sensitivity for SV detection
and genotyping at this size range. Additionally, the large number of
rare SVs captured by our resource may be of value for disease asso-
ciation studies investigating rare variants.

Our deep population survey has identified hotspots of SV mutation
that cannot be accounted for by deep coalescence or segmental
duplication content. We describe hitherto undescribed patterns of
SV complexity, particularly for inversions. These patterns indicate
that other more complex mutational processes outside of non-allelic
homologous recombination, retrotransposition, and non-homologous
end-joining played an important role in shaping our genome. In spite
of this, it remains difficult to fully disentangle the contributions of SV
mutation rates and selective forces to the observed variant clustering.
The findings presented here leveraged substantial recent technolo-
gical advances, including increases in Illumina read length and devel-
opments in long-read DNA technologies. SV discovery remains a
challenge nonetheless, and the full complexity and spectrum of SV
is not yet understood. Our analyses, for example, are largely based on
7.4-fold Illumina WGS and, thus, are underpowered to capture much
of the complexity of variation, including SVs in repetitive regions,
non-reference insertions, and short SVs at the boundaries of the
detection limits of read-depth and paired-end-based SV discovery4.
Furthermore, while many SVs in our callset are statistically phased,
the diploid nature of the genome is non-optimally captured by current
analysis approaches, which mostly rely on mapping to a haploid
reference. We envision that in the future, the use of technology
allowing substantial increases in read lengths over the current state-
of-the-art will enable genomic analyses of truly diploid sequences to
facilitate targeting these additional layers of genomic complexity.
Until this is realized, our SV set represents an invaluable resource
for the construction and analysis of personalized genomes.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Extended Data Figure 1 | Construction of the SV release and intensity rank
sum validation. a, Approach used for constructing our SV release set.
b, Intensity rank sum (IRS) validation results for deletions in different size bins.
c, IRS validation results for deletions in variant allele frequency (VAF) bins.

d, IRS results for duplications in different size bins. e, IRS validation results
for duplications in VAF bins. Based on Affymetrix SNP6 array probes, the IRS
FDR for all SV length and VAF bins was #5.4%, requiring at least 100 SVs
per bin with an IRS assigned P-value.
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Extended Data Figure 2 | This figure shows the number of SV sites in our
phase 3 release relative to allele frequency expressed in terms of allele count.
SVs down to an allele count of 1 (corresponding to VAF 5 0.0002) are
represented in our phase 3 SV set (with the exception of mCNVs, denoted

‘CNV’ in this figure, which are defined as sites of multi-allelic variation thus
requiring allele count $2, hence no mCNV sites are ascertained for
allele count 5 1).
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Extended Data Figure 3 | Size and population distribution of different SV
classes. a, Variants ascertained in the 1000 Genomes Project pilot phase6 (light
grey) as well as the recent publication of SVs ascertained by PacBio sequencing
in the CHM1 genome14 (grey) are displayed for comparison in this SV size

distribution figure (INS, used as abbreviation for MEIs and NUMTs in this
display item). b, Population distribution of SV allele sharing across continental
groups for different SV classes. c, Cumulative distributions of the number of
events as a function of size by SV class.
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Extended Data Figure 4 | LD properties of various SV classes. a, LD
properties of deletions, broken down by continental group and shown as a
function of VAF. b, LD properties of duplications. c, LD properties of Alu, L1
and SVA mobile element insertions. d, LD properties of inversions (with
breakdown for two independent inversion sets generated with our inversion

discovery algorithm Delly; that is, CINV 5 one-sided inversions with support
for one breakpoint; INV 5 two-sided inversions with support for both
breakpoints; these two sets are combined into the joint phase3 SV group
inversion set).
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Extended Data Figure 5 | Population genetic properties of SVs. a, Deletion
heterozygosity and homozygosity among human populations for a subset of
high-confidence deletions. Populations from the African continental group
(AFR) exhibit the highest levels of heterozygosity and thus diversity among
humans, but show the overall lowest level of deletion homozygosity among all
continental groups. By comparison, East Asian populations exhibited the
lowest levels of deletion heterozygosity and the highest levels of homozygosity.
Het., heterozygous; Hom., homozygous. b, VAF distribution of major SV
classes. Bi-allelic duplications represent a notable outlier, showing a striking
depletion of common alleles, which can be explained by the preponderance of
genomic sites of duplication to undergo recurrent rearrangement (see main
text). As a consequence, most common duplications are classified as multi-
allelic variants (that is, mCNVs). c, The number of base pairs (bp) differing

among individuals within and between continental groups for deletions
(upper panel) and SNPs (middle panel) contrasted with the ratio of deletion bp
differences to SNP bp differences (‘deletion bp/SNP bp’) among groups
(lower panel). Non-African groups exhibit a higher ‘deletion bp/SNP bp’
compared to Africans. d, Neighbour-joining tree of populations constructed
from MEIs (homoplasy-free markers) to provide a (simplified) view of
population ancestry. The tree is labelled with the number of lineage-specific
MEIs (Alu:L1:SVA). e, Classification of ancestry in AFR/AMR and AMR
admixed populations using homoplasy-free ancestry informative MEI markers.
Colour usage follows the same scheme as in Fig. 1d, except in the case of
AFR individuals, which use both the colour in Fig. 1d and another colour that
is unrelated to any other figure to indicate additional substructure within
this group.
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Extended Data Figure 6 | Principal component analysis and population
stratification of SVs. a, Principal component analysis (PCA) plot of
principal components 1 and 2 for deletions. b, PCA plot of principal
components 3 and 4 for deletions. c, PCA plot of principal components 1
and 2 for MEIs. d, PCA plot of principal components 3 and 4 for MEIs.

e, The five most highly population-stratified deletions intersecting protein-
coding genes based on VST. f, The five most highly population-stratified
duplications and multi-allelic copy number variants (mCNVs) intersecting
protein-coding genes based on VST. For abbreviations, see Supplementary
Table 1.
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Extended Data Figure 7 | Enrichment of functional elements intersecting
SVs. a, Shadow figure of Fig. 2a. Overlap enrichment analysis of deletions
(with resolved breakpoints) versus genomic elements, using partial overlap
statistic, deletions categorized into VAF bins. b, Similar to a. The only
difference is that engulf overlap statistic is used instead of partial overlap
statistic. Engulf overlap statistic is the count of genomic elements (for example,
CDS) that are fully imbedded in at least one SV interval (for example,

deletions). *no element intersected observed within data set. c, Similar to a and
b, with the enrichment/depletion analysis pursued for common SNPs as
well as more rare single nucleotide polymorphisms/variants (SNVs). Common
SNV alleles show the highest levels of depletion for investigated genomic
elements. d, Overlap enrichment analysis of various SV types versus genomic
elements, using partial overlap statistic.
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Extended Data Figure 8 | SV-eQTL analysis. a, SV-centric eQTL analysis of
coding SVs. Shown is the proportion of coding SVs that are eQTLs as a function
of the minimum VAF and the expression quartile. b, Total number of
coding SVs for corresponding filters. Common SVs (VAF . 0.2) in highly
expressed genes (.75% quantile) are very likely to correspond to SV-eQTLs
(54%, see also Supplementary Table 8). c, For all genes with significant eQTLs
(FDR , 10%), shown are raw P-values considering only SNPs (x axis) or
only SVs (y axis). Genes with (strict lead) SV-eQTLs are shown in red. Genes

with a SNP lead eQTL that is in linkage with an SV (r2 . 0.5) are shown in
orange. SNP lead eQTLs without an SV in LD are shown in blue. d, Relative
eQTL effect sizes for genetic and intergenic SV eQTLs (n 5 239) either with an
SV-eQTL or an LD tagged SV (in log abundance scale). Shown are regression
trends for both genic and intergenic SV eQTls. For genetic eQTLs, a clear
relationship between SV effect size is found. For example, genic SVs .10 kb
have threefold larger effect sizes compared to genic SVs , 1 kb; P 5 0.004;
t-test.
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Extended Data Figure 9 | SV clustering and breakpoint analysis. a–c,
Extensive clustering of recurrent SVs into CNVRs appears unrelated to the
extent of segmental duplications (a) and is only partially correlating with SNP
diversity (b) and GC content (c). Breakdown of SV mechanism classifications
based on criteria from two earlier studies (refs 6, 40). Shown are results for
deletions with nucleotide resolved breakpoints. BreakSeq was used for
mechanism inference. d, 1KG_P3: breakdown for our 1000 Genomes Project
phase 3 SV callset using classification criteria from ref. 6. e, Conrad_2010:
summary of mechanism classification results published in ref. 40. f, Mills_2011:
summary of mechanism classification results published in ref. 6.
g, 1KG_P3_Conrad: Breakdown for our 1000 Genomes Project phase 3 SV
callset using classification criteria from ref. 40. Mechanism classification was
pursued using four different categories. Blue, non-allelic homologous
recombination (NAHR); green, mobile elements inserted into the reference
genomes (appearing deleted in this analysis); red, non-homology-based

rearrangement mechanisms (NHR), such as NHEJ, microhomology-mediated
end-joining and microhomology-mediated break-induced replication
(involving blunt-ended deletion breakpoints or breakpoints with
microhomoloy); purple, expansion or shrinkage of variable numbers of tandem
repeats (VNTRs). TEI, transposable element insertion (equivalent with MEI).
h, Distribution of lengths of micro-homology (MH) for complex SVs,
measured between deletion and corresponding template sites boundaries.
Simple deletions, which based on BreakSeq were inferred to be formed by a
non-homology-based SV formation mechanism, such as NHEJ and
microhomology-mediated break-induced replication (Supplementary Table 3),
are shown as an additional control (here denoted ‘blunt NH deletions’).
i, Origins of inserted sequences in complex deletions inferred by split read
analysis. This figure depicts examples for each class shown in Supplementary
Table 13.
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Extended Data Figure 10 | Examples of inversions identified in the SV
release. a–e, Five classifications of inversions verified using PacBio and Minion
reads are represented: Simple Inversion (a), inv-dup (b), inv-del (c), MultiDel
with Inv (here abbreviated as inv-2dels) (d) and complex (e). f, Several further
examples of inverted duplications (inv-dup), the most common form of
inversion-associated SV identified in the phase 3 release set. The figure is

depicting DNA sequence alignment dotplots (same arrangement as in Fig. 3),
with the y axis referring to PacBio DNA single molecule sequencing reads and
the x axis referring to the reference genome assembly (hg19). Inverted
sequences are highlighted in red. Sequence analysis suggests that these inverted
duplications are not typically associated with retrotransposition.
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