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SUMMARY

To further our understanding of the genetic etiology
of autism, we generated and analyzed genome
sequence data from 516 idiopathic autism families
(2,064 individuals). This resource includes >59
million single-nucleotide variants (SNVs) and 9,212
private copy number variants (CNVs), of which
133,992 and 88 are de novo mutations (DNMs),
respectively. We estimate a mutation rate of
�1.5 3 10�8 SNVs per site per generation with a
significantly higher mutation rate in repetitive DNA.
Comparing probands and unaffected siblings, we
observe several DNM trends. Probands carry more
gene-disruptive CNVs and SNVs, resulting in
severe missense mutations and mapping to pre-
dicted fetal brain promoters and embryonic stem
cell enhancers. These differences become more
pronounced for autism genes (p = 1.8 3 10�3,
OR = 2.2). Patients are more likely to carry multiple
coding and noncoding DNMs in different genes,
which are enriched for expression in striatal neurons
(p = 3 3 10�3), suggesting a path forward for
genetically characterizing more complex cases of
autism.
INTRODUCTION

Although the heritability of autism is high (�40% [Hallmayer

et al., 2011] to 80% [Bailey et al., 1995; Steffenburg et al.,

1989]), large copy number variants (CNVs) and de novo muta-

tions (DNMs) in genes account for only a fraction of cases. Es-

timates for their contribution range from �10%–30% of simplex

autism cases (Gratten et al., 2016; Iossifov et al., 2014; Krumm

et al., 2015). Common genetic variants (Gaugler et al., 2014), in-
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herited gene-disruptive mutations (Krumm et al., 2015), and

rare variants of large effect outside of the coding sequence

(Turner et al., 2016) likely play an important role in autism dis-

ease etiology. Our understanding of the genetic properties of

these other sources of genetic variation is currently limited.

Most published studies, to date, have focused on single-nucle-

otide polymorphism (SNP) microarray analysis, targeted

sequencing of genes, or whole-exome sequencing (WES) of

parent-child trios designed to predict large CNVs and variants

within the coding portions of the genome, respectively. There

are relatively few publicly available whole-genome sequencing

(WGS) datasets (Turner et al., 2016; C Yuen et al., 2017) to

begin to address other forms of DNM with respect to autism

etiology.

In order to assess the contribution of variants in the noncod-

ing, putative regulatory portions of the genome, we selected

476 autism families from the Simons Simplex Collection (SSC)

for deep WGS (30-fold coverage). We specifically selected fam-

ilies with blood DNA available from both parents, a proband,

and one unaffected child (termed quads) to facilitate DNM

comparisons for various classes of mutation within the context

of each family. The unaffected sibling in this context serves as a

genetic control to estimate rates of DNM. Probands were

selected that were negative for known pathogenic mutations,

including large CNVs and loss-of-function DNMs as determined

by WES and SNP microarray analyses (see Figure S1 and STAR

Methods). Thus, most high-impact DNMs in coding sequence

were eliminated, allowing us to exclusively focus on more diffi-

cult cases of the disease in which no genetic etiology had

yet been determined. We combined these data with 40 SSC

quad families that were previously genome sequenced and

negative for any known large CNVs or likely gene-disrupting

(LGD) de novo variants (Turner et al., 2016). In total, we

analyzed the pattern of DNM in 516 autism families (2,064 ge-

nomes) to investigate the combined effect of genic and non-

coding mutations underlying autism in addition to generating

one of the largest genome-wide resource for the study

of DNMs.
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Table 1. Summary of DNMs

De novo (n = 516 families)

Category Proband Sibling

Autosomal SNVs/indels 64,060 63,483

X SNVs/indels 3,276 2,914

SNV/indel ratio 12.7 12.7

CpG to TpG (SNVs) 10,412 10,401

Autosomal deletiona 41 36

Autosomal duplicationa 6 5

X deletiona 1 2

X duplicationa 0 0
an = 476 phase 1 families only.
RESULTS

De Novo Single-Nucleotide Variants and Indels
Weapplied twodifferent single-nucleotide variant (SNV) callers—

FreeBayes and GATK—and identified >59 million SNV and small

insertion and deletion (indel) events (see STAR Methods).

Comparing parental genome sequence data and combining

them with previous WES results (Iossifov et al., 2014; Krumm

et al., 2015), we classified 133,992 de novo variants, of which

127,543 were autosomal de novo variants in the 1,032 children

(64,060 in probands and 63,483 in siblings; Table 1). It should

be noted that families were selected to minimize birth-order ef-

fects associated with older fathers and autism probands (Turner

et al., 2011), and as a result, the total number of SNVs and indels

inprobandsdoesnot significantly differ from that in siblings in this

study (SNVMann-Whitney two-sided p = 0.27, indel Mann-Whit-

ney two-sided p = 0.36; Figure 1). Among children for whom we

had information on the father’s age at birth (n = 986), we observe

the expected strong correlation between the number of de novo

SNVs and indels andpaternal age (SNV r = 0.50, p= 1.17310�64,

indel r = 0.27, p =1.75310�17, Pearson’s correlation coefficient).

The linearmodel (SNV adjusted r2 = 0.25, indel adjusted r2 = 0.07)

is identical to the exponentialmodel (SNVadjusted r2 =0.25, indel

adjusted r2 = 0.07). We estimate an increase by 1.49 [1.32, 1.65]

SNVs and 0.16 [0.12, 0.19] indels for each additional year of fa-

ther’s age at birth (Figure 1). Focusing on noncoding de novo

SNVs and indels also reveals the significant correlation of de

novo events and paternal age (Figure S2).

We established an overall 96.4% validation rate (VR) based on

PCR amplification and Sanger or single-molecule, real-time

sequencing of a subset of 687 autosomal variants. Combining

this with previous validation data (Iossifov et al., 2014; Krumm

et al., 2015; Turner et al., 2016) for all chromosomes (n =

1,964), we estimate a VR of 95.4% or 95.5% if restricting to au-

tosomes (n = 1,932). Of these, 1,640 mapped to unique regions

(1,200 Mbp) of the genome (97.6% VR) and 292 mapped to re-

petitive regions (1,484 Mbp) (83.6% VR). Because of the diffi-

culties associated with validating SNVs in repetitive regions,

we further stratified the repeat regions into evolutionarily recent

(<10% divergence from the consensus [see STAR Methods],

362 Mbp) and more ancient repetitive DNA (1,121 Mbp). The

VR for DNMs in ancient repeats was substantially higher
(95.8%; n = 216 DNMs) when compared to recently retrotrans-

posed or duplicated DNA (48.7%; n = 76 DNMs).

Based on these validation results, we estimated �89.4 SNV

and�4.8 indel DNMs per individual (Figure 1) and an overall mu-

tation rate of 1.7 3 10�8 SNVs per site per generation, including

recent and ancient repeats. If we restrict our analysis to only

those regions with the highest validation (>95%), we calculate

the mutation rate as 1.33 10�8 in unique regions of the genome

and 1.53 10�8 in ancient repeats (Figure 1). These two mutation

rates are significantly different from one another (chi-square test

p = 1.73 10�74). It is interesting that the total number of validated

de novo SNVs per individual was higher than that of previous

studies (Kong et al., 2012a), and, concomitantly, we estimate a

higher human mutation rate. We note, however, that the average

age at birth for fathers in our study was 33.4 ± 5.9 years, 3.7

years higher than the previous study (Kong et al., 2012a). If we

adjust our estimates for an average paternal age of 29.7 years,

we still predict a higher overall mutation rate (1.6 3 10�8) but

this difference is driven by DNM in repetitive DNA as opposed

to unique DNA, which is comparable between Kong et al.

(2012a) and this study (1.2 3 10�8).

Coding De Novo SNVs and Indels
Since the DNA of most families had been previously exome

sequenced, we compared the efficacy of detecting DNMs by

WES and WGS. As expected, 98.8% (111,655/113,027) of

DNMs were unique to the WGS data when comparing samples

where both WES and WGS were available (n = 479 probands

and 436 siblings) because most mutations map outside the cod-

ing region. We then compared WES and WGS events mapping

specifically to the coding portion of genes, including splice do-

nors and acceptors. This analysis revealed 1,105 WGS-only

events, 188 WES-only events, and 850 events discovered by

both WES and WGS (Figure S3). The majority of genic mutations

discovered only by WGS (54%, n = 596) were not present on the

WES capture design (NimbleGen EZ-SeqCap [v.2.0] targets,

�36 Mbp). While most portions of the capture regions were

covered well by WES and WGS (R103 depth, n = 189,069 re-

gions), there is a 30-fold difference in the number of genic re-

gions covered well by WGS (n = 3,818) compared to WES (n =

105). Moreover, the de novo VR of the WES-only events is lower

(64.0%, n = 75 tested) when compared to WGS-only mutations

identified in protein-coding sequence (84.4%, n = 64).

We identified and validated 32de novo LGDeventsmapping to

protein-coding genes. Four additional events were identified and

attempted by Sanger but failed sequencing by multiple attempts

thus resulting in unknown validation status. This leads to a total of

36 novel de novo LGD events with 15 in probands and 21 in sib-

lings (Figure 2; Tables S1 and S2). The difference between pro-

band and sibling LGD DNMs is not statistically significant, an un-

surprising result because these families were supposed to have

been pre-filtered for LGD DNMs by WES. Of these 36 DNMs,

one was detected only by WES, five by both WES and WGS,

and 25 byWGS alone (five additional events occurred in samples

not previouslyWES). An examination of thesemissed LGDDNMs

indicates thatmost of the gain in sensitivity is due to themore uni-

form sequence coverage provided by WGS when compared to

WES (Figure S3). To calculate a false negative rate for LGD
Cell 171, 710–722, October 19, 2017 711



Figure 1. Patterns of DNM

(A) There was a strong correlation between the number of de novo SNVs and paternal age (SNV Pearson’s r = 0.50, p = 1.173 10�64) with an estimated increase of

1.49 [1.32, 1.65] SNVs for each additional year of father’s age.

(B) There was a strong correlation between the number of de novo indels and paternal age (indel Pearson’s r = 0.27, p = 1.75 3 10�17) with an increase of 0.16

[0.12, 0.19] indels for each additional year of father’s age.

(C) Histogram of de novo SNVs per individual (red, proband; blue, sibling).

(D) Histogram of de novo indels per individual (red, proband; blue, sibling).

(E) Mutation rate estimates comparing unique and ancient repeat portions of the genome. The overall mutation rate based on experimental validation was 1.73

10�8 substitutions per site per generation with a mutation rate of 1.3 3 10�8 in unique regions (blue arrow) and 1.5 3 10�8 in ancient repetitive DNA (red arrow).

VRs were comparable between unique regions (97.6%, n = 1,640) and ancient repetitive DNA (95.8%, n = 216). The average paternal age was 33.4 ± 5.9 years for

the 1,032 genomes analyzed here.

See also Figures S2 and S3.
discovery in WES data, we assessed the new LGD DNMs identi-

fied in individuals who were previously exome sequenced (n =

479 probands and 436 siblings). Therewere 12 novel LGD events

in probands (false negative rate = 12/479 [2.5%]) and 13 novel
712 Cell 171, 710–722, October 19, 2017
events in siblings (false negative rate = 13/436 [3.0%]) detected

only by WGS. Among these were events in genes previously

associatedwith autism, includingARID1B,PHIP, andCNTNAP3,

highlighting the benefit of WGS over WES.



Figure 2. Proband-Sibling DNM Differences by Functional Annotation

(A–C) Number of autosomal de novo variants by functional category by (A) coding variants (LGD, likely gene-disrupting; MIS30, missense with CADD score >30;

DEL, exonic deletion); (B) putative noncoding regulatory variants (TFBS, putative noncoding regulatory with a TFBS); and (C) ENCODE/ChromHMM putative

regulatory variants (fetal promoters, within a TFBS in a fetal brain transcription start site; embryonic enhancers, within a TFBS in a human embryonic stem cell

strong enhancer). An asterisk indicates nominal significance (p < 0.05) by FET.

(D) One of the three de novo sequence variants identified in autism probands that was tested for in vivo enhancer activity in the CNS (reference allele from

enhancer.lbl.gov) (Visel et al., 2007).We extend the previous assessment for the reference allele in our current study by also testing the variant allele. For the locus,

we show, from top to bottom, the human genome reference allele, the patient variant (red text), the location of a conserved TFBS near the variant, the VISTA

enhancer with hs number (blue bar), and representative transgenic embryonic day 11.5 mouse embryos for the reference and variant alleles, respectively,

displaying the enhancer activity pattern (blue staining). Whole embryos are shown on left, with enlarged images of the forebrain on the right. FB, forebrain; MB,

midbrain; HB, hindbrain.

(E) Results of the enhancer assay identified a novel forebrain enhancer activity pattern being driven by the allele containing the de novo patient variant. Expression

in both the midbrain and the hindbrain were unaffected. p values by FET.

See also Figure S5 and Tables S1, S2, and S3.
We also considered de novo missense mutations and focused

on those representing the top 0.1% of deleterious mutations

(combined annotation dependent depletion [CADD] [Kircher

et al., 2014] scoreR 30; Table S2). In total, we discovered 28 se-

vere de novomissense mutations in probands and 13 in siblings.

Mindful of potential biases that may affect statistical testing due

to paternal age, we applied a Fisher’s exact test (FET) for the

number of events as opposed to the number of individuals

demonstrating a significant enrichment of severe de novo

missense mutations in cases compared to controls (nominal

p = 0.01, OR = 2.1) (Figure 2; Table S1).

De Novo Structural Variants
We also applied a suite of structural variant (SV) callers (see

STAR Methods) to maximize sensitivity for de novo SV mutation

detection of various size ranges. To eliminate false positives, we
assessed sequence read-depth for all putative events, requiring

evidence for increase (duplication) or decrease (deletion) in read-

depth in the child when compared to parental genomes (see

STAR Methods). In total, we detected 9,212 private autosomal

CNVs. Of these, 9,124 events showed evidence of transmission

while 88 were predicted to be de novo in the 476 phase 1 families

analyzed in the present study. We did not include the pilot 40

families in the SV analysis due to technical differences in WGS

and a different complement of callers used previously (Turner

et al., 2016). Using SNP microarray data from the same samples

(see STAR Methods), we estimate a VR of 87.5% for de novo

CNVs (median size 18 kbp). The set included a total of 77 dele-

tions (median 500 bp; mean 3,363 bp) and 11 duplications (me-

dian 13,512 bp, mean 48,894 bp). In probands, we identified 41

deletions and 6 duplications, and, in siblings, we identified 36 de-

letions and 5 duplications. We also identified three de novo SVs
Cell 171, 710–722, October 19, 2017 713
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on the X chromosome: two noncoding events in siblings (6.6 and

2.1 kbp) and one 50-kbp DMD coding deletion in a proband. In

addition to similar autosomal rates of CNVs, a comparison of

the largest CNV per individual in probands and siblings yielded

no significant difference (nominal p = 0.77, deletion nominal

p = 0.53, duplication nominal p = 0.79 log rank test), likely due

to the ascertainment criteria of this cohort, which excluded pro-

bands with large CNV events. However, when we restricted the

analysis to autosomal CNVs that intersect a RefSeq exon, we

observed a significant increase of exon-intersecting deletions

among proband CNVs (20 in probands, 9 in siblings, FET, one-

sided, nominal p = 0.03 OR = 2.8; Figure 2; Table S1). Three of

these genic CNVs in probands are predicted to disrupt genes

(CHD2, UBE3B, and ZNF462) and correspond to autism risk

genes (SFARI845; https://gene.sfari.org) (Basu et al., 2009). No

such events are observed in unaffected siblings.

Noncoding De Novo SNVs and Indels
For the purpose of this study, we limited our analysis to the two

most well-known functional classes of noncoding DNA, namely,

UTRs of genes and putative noncoding regulatory DNA corre-

sponding to promoters and enhancers. Because of the associa-

tion of autism gene networks expressed early in brain develop-

ment (Hormozdiari et al., 2015; Konopka et al., 2012; Pinto

et al., 2014; Voineagu et al., 2011), we defined putative noncod-

ing regulatory (pNCR) DNA as conserved transcription factor

binding sites (TFBSs) mapping to regions of fetal brain DNase I

hypersensitivity.

Combining annotated 50 and 30 UTR sequence, we identified

640 DNMs in probands versus 568 in siblings (Figure 2; Table

S1). We observed an enrichment of DNMs in UTRs in probands

(nominal p = 0.03, OR = 1.1, FET, one-sided; Figure 2; Table S1).

This effect appeared to be driven by the 30 UTR events (nominal

p = 0.04, OR = 1.1, FET, one-sided; Figure 2; Table S1) and not

the 50 UTR events (nominal p = 0.29, OR = 1.1, FET, one-sided),

but this likely reflects differences in length and, thus, reduced

power for 50 UTR.
We initially assessed events within all putative noncoding reg-

ulatory regions of the fetal central nervous system (CNS) as pre-

viously described (Turner et al., 2016). Although no significant

difference was observed overall comparing DNMs in probands

(n = 2,360 events) and siblings (n = 2,313 events), we observed

a difference if we restricted the analysis to evolutionarily

conserved regions (mean GERP++ [Davydov et al., 2010] score

> 2) (254 proband variants, 203 sibling variants; FET, two-sided,

nominal p = 0.02, OR = 1.3). Using the ChromHMM classification

from ENCODE (Ernst and Kellis, 2012) and Epigenomics Road-

map projects (Kundaje et al., 2015), we assessed the potential

functional categories represented in the proband CNS DNase I

TFBS. We found enrichment of DNM variants corresponding to

transcriptional start sites/promoter regions in the fetal brain

(nominal p = 0.03, OR = 1.8, FET, one-sided; Figure 2; Table

S1) and strong enhancers in human embryonic stem cells (nom-

inal p = 0.02, OR = 8.0, FET, one-sided; Figure 2; Table S1).

Although all of these trends are currently nominally significant

and do not withstandmultiple test correction, it is interesting that

the TFBS effects becomemore pronounced as further functional

constraint is applied. Interestingly, a small subset (n = 11) of
714 Cell 171, 710–722, October 19, 2017
these putative regulatory sites had previously been tested using

mouse transgenic enhancer assays (Pennacchio et al., 2006) in

mouse embryos (E11.5). Of the eleven sites, eight corresponded

to regions with DNM in probands (seven confirmed as positive

enhancers by the VISTA assay) with reporter expression in the

midbrain, hindbrain, forebrain, and neural tube (Figure 2). Three

corresponded to regions with DNM in siblings (one confirmed as

an enhancer by the VISTA assay [Visel et al., 2007]). To assess

whether there were any functional differences between refer-

ence and variant alleles identified in patients, we focused on

three proband variants (Figures 2 and S5) within sites that previ-

ously showed enhancer activity based on VISTA. Using the re-

porter assay described previously (Visel et al., 2007), we show

that one of the three variants, hs737 (Figures 2 and S5), demon-

strated a reproducible expression difference. The reference

allele showed enhancer activity in the midbrain and hindbrain,

while the single de novo substitution mutation maintained

expression in midbrain and hindbrain but also showed reproduc-

ible expression in the forebrain (Figure 2).

Gene ontology enrichment analysis of the genes closest to the

variants in TFBS (Table S3) was performed for both proband and

sibling variants (Table S3) considering biological process (BP),

molecular function (MF), and cellular component (CC). Only pro-

band DNMs showedMF enrichment, namely, beta-catenin bind-

ing. The top five significant (binomial test, Bonferroni corrected)

BP proband enrichments, based on fold enrichment (FE),

included positive regulation of nervous system development,

developmental cell growth, positive regulation of neuron differ-

entiation, developmental growth involved in morphogenesis,

and regulation of cell morphogenesis involved in differentiation.

Oligogenic DNM Burden
Several studies have reportedmultiple de novo or private delete-

rious mutation events (Girirajan et al., 2010; Jiang et al., 2004;

Schaaf et al., 2011; Turner et al., 2016) in risk genes among chil-

dren with autism, suggesting that two or more loci (oligogenic)

might contribute to a fraction of autism cases. Based on the

functional classes established above, we specifically tested if

two or more potentially deleterious DNMs were likely to occur

in probands compared to their unaffected siblings. We

compared the total number of de novo variants of interest (VOI)

between probands and siblings (see STAR Methods) defined

here as the total number of LGD, severe missense (CADD score

>30), noncoding pNCR TFBS variants, 30 UTRs and deletions

that disrupted an exon. Comparing probands and siblings, we

observe an excess of multiple VOI in individuals with autism

(nominal p = 0.01, Mann-Whitney test) (Figures 3A and S4).

This trend remains even after correcting for the father’s age at

birth (FET p = 0.05).

This excess of multiple DNMs is observed if either 30 UTR
events (nominal p = 0.01, Mann-Whitney) or coding mutations

(missense and LGD events, p = 0.02, Mann-Whitney) were

excluded from this calculation. Interestingly, the analysis

showed the greatest distinction between probands and unaf-

fected siblings when three or more DNMs were evaluated (Fig-

ure 3A). If we assume that this oligogenic signal contributes to

autism risk, we estimate the attributable fraction for this group

of idiopathic simplex autism (i.e., without LGD mutations and

https://gene.sfari.org
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large CNVs) as 7.28% [2.31, 12.01] (p = 43 10�3). The largest dif-

ferential between probands and unaffected siblings was

observed between individuals with at least one pNCR TFBS

and at least one 30 UTR event (58 probands, 31 siblings, attribut-

able fraction = 5.6% (1.94, 9.06), p = 33 10�3, one-sided FET p =

1.9 3 10�3, OR = 2.0).

In order to gain insight into the biological relevance of variants

in individuals with de novo oligogenic burden (three or more

DNMs), we examined both tissue-specific expression analysis

(TSEA) and cell-type-specific expression analysis (CSEA) for

the associated genes using recently developed tools (Dougherty

et al., 2010; Xu et al., 2014). The tools attempt to identify molec-

ular convergence of groups of genes with respect to tissue or cell

types using recent transcriptomic profiling datasets. We defined

candidate genes based on the location of the variants (UTR,

missense, CNV) or the nearest mapped gene (in the case of non-

coding regulatory DNA as defined by pNCR TFBS). Among pro-

bands with three or more DNMs, genes were enriched for brain

expression (nominal p = 3.8 3 10�4, Benjamini-Hochberg [BH]-

corrected p = 0.009; Figures 3B–3E) and expression in the stria-

tum. The latter was specifically enriched for striatal D2+ spiny

neurons (nominal p = 4.2 3 10�4, BH-corrected p = 0.01) as

well as striatal D1+ spiny neurons (nominal p = 4.0 3 10�3,

BH-corrected p = 0.08) (Figures 3B–3E). If we limit the analysis

to individuals with three ormore DNMs strictly in noncoding, reg-

ulatory DNA, the striatal signal becomes stronger in both the D2+

spiny neurons (nominal p = 1.5 3 10�4, BH-corrected p = 3 3

10�3) and the D1+ spiny neurons (nominal p = 1.9 3 10�4, BH-

corrected p = 3 3 10�3). Unaffected siblings showed no signifi-

cant enrichments by either TSEA or CSEA (Figures 3B–3E).

Significant Enrichment in Autism Genes
If the genomic trends with respect to DNM are relevant to dis-

ease, we would expect the signals to become more pronounced

when we restrict our analysis to genes previously implicated in

autism. We limited our assessment to two sets of genes specif-

ically implicated in disease, namely, a set of 57 genes where an

excess of LGD/missense DNMs have been identified in cases

but not in controls (Turner57) (Turner et al., 2016) and a more

general list of manually curated autism risk genes (SFARI845)

(Basu et al., 2009) (Figure 4). We first considered all DNMs of po-

tential functional interest, including LGD mutations, missense

mutations, UTRs, pNCR regions, and exonic deletions. We

compared the number of events in probands versus the events

in siblings, using a Fisher’s exact test, containing any variant

within the gene set and found significant enrichments of DNMs

in probands for both gene sets (Turner57 nominal p = 1.76 3

10�3, OR = 2.2; SFARI845 nominal p = 1.36 3 10�3, OR = 1.3;

Figure 4A). We highlight the difference in counts for the Turner57
Figure 3. Oligogenic Mutation Burden

(A) The number of individuals carrying 0 or more de novo variants of interest (see

(B) TSEA of genes in probands with 3 or more DNMs shows enrichment in the b

(C) TSEA of genes in siblings with 3 or more DNMs shows no enrichment for any

(D) CSEA of genes in probands with 3 or more DNMs shows enrichment for stria

(E) CSEA of genes in siblings with 3 or more DNMs shows no enrichments. For ea

types (CSEA). For each bullseye image, different stringency thresholds are show

See also Figures S4 and S6.
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dataset between proband and sibling DNMevents using awater-

fall plot (Figure 4B).

Since we also observed a genome-wide signal for multiple (oli-

gogenic) DNMs in probands, we repeated the analysis restricting

to previously identified autism risk genes (SFARI845). Once

again the DNM signal became stronger. We found that probands

were more likely to carry two or more de novo variants within or

near two or more SFARI genes compared to siblings (Figure 4C;

one-sided FET p = 2.63 10�4, OR = 2.3, BH p = 7.93 10�4). This

observation is significant if we restrict to coding (p = 9.33 10�4,

OR = Inf, 10 probands versus 0 siblings) and noncoding (p =

0.018, OR = 1.9, 35 probands, 19 siblings) and survives multiple

test correction, although near the threshold of significance for

multiple noncoding DNMs (BH p = 1.4 3 10�3 and BH p =

0.02, respectively). In addition to the number of individuals, we

also considered these same three analyses at the level of num-

ber of DNM events. Probands with two or more mutations in

autism risk genes show an overall excess of DNMs (coding

and noncoding) (p = 2.1 3 10�7, OR = 2.2, 128 proband events,

58 sibling events, BH p = 7.9 3 10�4) as well as noncoding (p =

2.2 3 10�3, OR = 1.7, 74 proband events, 42 sibling events, BH

p = 0.02) and coding events (p = 1.0 3 10�6, odds ratio = Inf, 20

proband events, 0 sibling events, BH p = 1.4 3 10�3).

Attributable Fraction Estimates
Finally, we calculated attributable fraction estimates for the

different functional classes of DNM and simplex autism (see

STAR Methods). In this analysis, we only focused on quad fam-

ilies from the SSC (n = 1,748; Table 2) in which all familymembers

had been previously assessed by bothWES and SNPmicroarray

(excluding those in the pilot study as selection criteria was

biased). We separated the families into those with ‘‘known’’

pathogenic mutations (n = 588) and those idiopathic cases

studied here, representing a random sampling of the remaining

families (n = 398). By sequential analysis of different classes of

mutation and the subsequent removal of both probands and sib-

lings who carried a specific class of mutation, we ensured no

double-counting of samples. Among the families with ‘‘known’’

mutations, de novo LGD mutations contributed �6%, de novo

CNVs �4%, and individuals with multiple mutations to �1% of

cases, leading to a total contribution of�11% of simplex autism.

Among the idiopathic families, we first computed the attributable

fraction estimates within study and then extrapolated what the

estimateswould be based on all of the simplex families (including

patients with ‘‘known’’ mutations) (see STAR Methods). This re-

vealed a contribution of�2% for each new DNM class, including

small exonic de novo deletions, severe de novo missense muta-

tions, and those individuals with three or more de novo VOI

including noncoding regulatory mutation. This leads to a total
STAR Methods).

rain.

tissue.

tal D2 + spiny neurons and striatal D1 + spiny neurons.

ch plot in (B)–(E), hierarchical clustering is shown for tissues (TSEA) or for cell

n by each hexagon, and the darker the color the more significant the p value.



Figure 4. Autism Gene Enrichment Analysis
(A) Number of DNMs in functional elements compared for two autism gene sets (Turner57 and SFARI845). (Turner57 nominal p = 1.76310�3, OR = 2.2; SFARI845

nominal p = 1.36 3 10�3; OR = 1.3).

(B) Waterfall plots compare DNMs in various classes of ‘‘functional elements’’ for genes implicated for DNM Turner57 (OR = 2.2, p = 1.8 3 10�3). Significance

estimates are calculated using the FET, and although nominal p values are shown, these are multiple test correction significant (n = 2 tests).

(C) Counts of individuals with 2 or more variants within SFARI845 genes.

See also Table S1.
contribution of �6% based on this new WGS data. Overall, we

estimate �17% of simplex autism may be explained by these

various functional categories. Importantly, both the known and

idiopathic cases of autism highlight an enrichment of multiple

DNMs in a fraction of autism cases.

DISCUSSION

The genetic etiology for most children with autism is unknown.

We performedWGS to gain insight into some of themost difficult

cases of simplex autism: families in which no large CNV or de

novo gene-disruptive mutation event had been previously iden-

tified in probands. Such families are likely enriched for environ-

mental and stochastic risk factors for autism and, therefore,
represent some of the most difficult cases to investigate for un-

derlying genetic etiology. Although the study represents a 10-

fold increase in sample size with respect to a previous analysis

on 53 families from the SSC (Turner et al., 2016), most of the pat-

terns we highlight suggest trends for future investigation in a

larger cohort as opposed to being definitive. We developed a

resource that attempts to comprehensively detect SNVs, indels,

and SVs exclusively derived from deep sequencing of blood

DNA. We specifically focused on DNMs, as the SSC was origi-

nally designed to enrich in DNM risk factors (Fischbach and

Lord, 2010).

Other groups have recently analyzed and publishedWGS data

from parent-child trio data from autism families (Yuen et al.,

2016) or are in the process of specifically analyzing these same
Cell 171, 710–722, October 19, 2017 717



Table 2. Attributable Fraction Estimates in Simplex Autism

Set Category

Proband

Counts

Sibling

Counts Odds Ratio

Attributable Fraction

(est) in Exposed (%)

Attributable

Fraction (est) in

Population (%) p Value

Extrapolated

Attributable

Fraction (est)

in SSC (%)

Known

families

(n = 588)

De novo LGD 284 191 1.58 (1.30, 1.93) 36.75 (22.67, 48.35) 5.97 (3.46, 8.42) <0.001 5.97

De novo CNV 96 33 3.02 (2.02, 4.51) 66.88 (50.02, 78.53) 3.67 (2.41, 4.92) <0.001 3.67

Large inherited CNVa 36 32 1.13 (0.70, 1.82) 11.32 (�47.64, 46.95) 0.23 (�0.70, 1.16) 0.624

Multi-hit (2+ of the

3 event types above)

29 8 3.67 (1.67, 8.05) 72.73 (38.66, 89.26) 1.21 (0.53, 1.88) <0.001 1.21

New

families

(n = 398)

Small de novo

deletions

16 6 2.74 (1.06, 7.07) 63.41 (0.27, 88.40) 2.55 (0.23, 4.81) 0.031 1.69

De novo missense

CADD > 30

21 10 2.16 (1.00, 4.65) 53.69 (�4.37, 80.80) 2.84 (0.07, 5.52) 0.044 1.89

3+ de novo VOI 33 19 1.80 (1.01, 3.23) 44.51 (�2.57, 70.75) 3.69 (0.08, 7.18) 0.045 2.45

Known families correspond to SSC quads, where the proband carries a LGD DNMs, de novo CNV, or large inherited CNV based on previous WES and

SNP microarray analysis. New families represent those SSC quads that do not have any known events based on WES and SNP microarray. No pilot

families were included here because of different selection criteria.
aNot stratified by maternal or paternal inheritance as described previously (Krumm et al., 2015).
WGS data from quad families with a focus on assessing noncod-

ing mutations (Werling et al., 2017) or restricting to a more

detailed analysis of CNV mutations (Brandler et al., 2017).

Notably, our validated mutation rate appears significantly higher

than previous and unpublished reports (Werling et al., 2017;

Yuen et al., 2016) possibly because of a more complete ascer-

tainment of repetitive regions of the genome. Surprisingly, Werl-

ing and colleagues do not report the additional 32 validated LGD

variants of which some clearly represent the most likely patho-

genic variant in these patients (e.g., ARID1B or PHIP LGD muta-

tions). In addition, we are not considering all possible classes of

noncoding regulatory elements. Instead, we focus specifically on

those that are most likely to have functional impact (promoters,

UTRs and regulatory elements within the fetal brain). We caution,

however, that we are comparing our results to initial draft ver-

sions of these manuscripts in BioRxiv and we have found that

papers, gene lists, and conclusions often differ substantially

from first drafts to published papers after peer review. Compar-

ison and integration of these data from other labs will further

enhance the quality of this resource, which will represent one

of the most detailed and largest analyses of mutation data

from both affected and unaffected siblings. The availability of

WGS data and a comprehensive mutation analysis from both

an affected individual and a genetically matched unaffected con-

trol from the same family allows for the detection of genetic sig-

nals that cannot be easily recognized fromparent–child trio data-

sets (Yuen et al., 2016).

Our results confirm the well-established increase in de novo

substitutions with paternal age (O’Roak et al., 2012b; Kong

et al., 2012a) and extend this observation to insertion/deletion

events (Figure 1). Based on our validation results, we estimate

a higher mutation rate (1.5-1.7 3 10�8 substitutions per site

per generation) compared to earlier estimates. This increase

cannot be solely explained by differences in the average age of

fathers between the studies. Instead, our data suggest that this

increase is driven by a > 15% higher mutation rate in repetitive

DNA when compared to unique DNA. Similar increases were
718 Cell 171, 710–722, October 19, 2017
observed previously based on comparative sequence analysis

of orthologous sequences derived from BAC inserts from human

and chimpanzee (Liu et al., 2009; She et al., 2006) but have not

been shown before, to our knowledge, at the level of familial

DNM data. There are several possible explanations that might

account for the increased substitution rate, including CpG

bias, gene conversion, and/or relaxed selective constraint

(Chen and Li, 2001). We hypothesize that advances in

sequencing technology are providing increased access to the re-

petitive fraction of our genome and, as a result, early estimates

provided a lower bound to the mutation rate.

Deep sequencing of both an autistic child and its unaffected

sibling also provides a powerful genetic control for dissecting

the relative impact of DNMs with respect to different genomic

functional elements (Fischbach and Lord, 2010; Iossifov et al.,

2014). The comparisons highlight some interesting trends. First,

we observe a 2-fold enrichment of missense variants with high

CADD scores (> 30) in probands (Figure 2). This included autism

risk genes (PTPN11, CACNA1G, TRIP12, and PTK7) as well as

other genes of interest (SUPT16H and SCN3A) giving evidence

for the importance of particularly severe de novo missense mu-

tations (Iossifov et al., 2014) and autism. WGS also discovered

an additional 2.5% of probands and 3.0% of siblings with de

novo LGDmutations missed byWES. For example, we identified

a frameshift variant (Table S2) in ARID1B—a known high-impact

risk factor for autism and developmental disability (Hoyer et al.,

2012). Other variants missed by previous WES analysis included

a splice-site acceptor variant inGLIPR1L2, a frameshift variant in

PHIP, a splice-site acceptor variant in the PCM1—a gene shown

to bind DISC1 (candidate gene for schizophrenia) (Eastwood

et al., 2010), and a stop-gain DNM in CNTNAP3—a gene differ-

entially expressed in the blood of individuals with autism (Kong

et al., 2012b).

Second, our analysis identified putative functional noncoding

DNA that showed amodest but significant excess of DNM in pro-

bands. Specifically, we observe mutation enrichment in 30 UTRs
and DNase I hypersensitivity sites (fetal CNS) that contain a



TFBS and are either human embryonic stem cell strong en-

hancers or fetal brain transcriptional start sites. If the differential

DNM burden between probands and their unaffected siblings is

used as an indicator, we estimate that such events contribute an

important role in �5% of autism cases. These signatures sug-

gest de novo disruption of gene regulation as an important risk

factor. Several additional analyses are consistent with this

model. Functional testing of a small number of these sites in

mouse enhancer reporter assays reveals patterns of expression

consistent with enhancer regulatory function in hindbrain,

midbrain and the developing CNS (Pennacchio et al., 2006) (Fig-

ures 2 and S5). Ontology analysis of the genes mapping closest

to these proband DNMs shows a significant enrichment of vari-

ants for genes associated with nervous system development,

beta-catenin binding, and borderline enrichment for CHD8 bind-

ing. There were a greater number of DNMs intersecting CHD8

binding sites (Cotney et al., 2015) overall in probands when

compared to siblings (nominal p = 0.03, OR = 1.1, FET). These

data reinforce recent functional data regarding the importance

of WNT signaling and suppression and activation of genes by

CHD8 and beta-catenin in autism risk and early in neuronal

development (Dong et al., 2016; Durak et al., 2016; Katayama

et al., 2016; Marchetto et al., 2016).

Third and, perhaps most importantly, these data provide

some of the first evidence for an oligogenic DNM model under-

lying simplex autism. Considering only those functional classes

where we demonstrate an excess of DNMs, we compared the

overall genome-wide burden between siblings and probands

and observe a significant skew in the number of DNMs in pro-

bands. In fact, probands with R 2 DNM events (at least one 30

UTR and another in a putative regulatory region) show even

greater enrichment with an estimated attributable fraction in

the population of 6.92% [1.77%–11.80%] comparable to what

has been observed for de novo LGD mutations alone (Krumm

et al., 2015). This effect becomes more significant as we restrict

to genes previously implicated in autism and is observed both

for coding mutations as well as mutations in putative noncoding

regulatory regions of multiple SFARI autism risk genes. The

effect for noncoding mutations is particularly intriguing but

larger numbers of genomes will be needed to confirm this

observation.

It is striking that genes associated with the oligogenic burden

are particularly enriched for D2+ spiny neurons from the stria-

tum—a circuit that has been implicated in the pathophysiology

of autism (Fuccillo, 2016). Dougherty and colleagues have shown

that this circuit is enriched for autism candidate genes (AutDb)

but not necessarily genes implicated early in development by

de novo LGD events (Xu et al., 2014). Indeed, an examination

of the 22 striatal genes implicated in this studywith other recently

published exomes/genomes (n = 3,505) (De Rubeis et al., 2014;

Hashimoto et al., 2016; Iossifov et al., 2014; Jiang et al., 2013;

Krumm et al., 2015; Lee et al., 2014; Moreno-Ramos et al.,

2015; Tavassoli et al., 2014) showed that only one of the genes

(CACNA2D3) with evidence for a de novo LGD mutation in an

autism proband. Our findings provide further support for this

striatal circuit and suggest that multiple de novo regulatory mu-

tations may be an important risk factor for identification of such

autism risk genes. We also note that oligogenic burden appears
more pronounced in autism females (Figure S6) although the

relative proportion of females studied here was few. Neverthe-

less, our estimates of attributable fraction for both ‘‘known’’

and idiopathic cases of autism both point to a role for multiple

DNMs in autism (Table 2).

In total, the data argue in favor of amultifactorial geneticmodel

as has been proposed previously based on CNV and candidate

gene sequencing (Girirajan et al., 2010; Jiang et al., 2004; Schaaf

et al., 2011; Turner et al., 2016). It is interesting that the effect is

most pronounced in females. Since females are less commonly

affected thanmales (Fombonne, 2003) according to themultifac-

torial model, they require a higher burden of mutations to

become affected than do males. The finding of increased CNV

burden in female probands (Jacquemont et al., 2014) and a

transmission disequilibrium of private LGD events from mothers

to their sons (Krumm et al., 2015) are consistent with our

genome-wide observations of increased mutational burden.

Although many more genomes will need to be sequenced to

replicate these findings, there are two important ramifications.

First, genomes as opposed to exomes should be targeted for

sequencing, especially for female autism probands and for ef-

fects related to differentially expressed genes in the striatum.

Targeted sequencing of candidate genes (O’Roak et al.,

2012a) andWES (De Rubeis et al., 2014) are currently more pop-

ular both clinically and in basic research settings. These ap-

proaches may be missing the true genetic architecture of autism

in favor of an oversimplified monogenic model because once a

‘‘pathogenic’’ mutation is found such patients and their families

are typically excluded from more detailed genetic analysis. Sec-

ond, multiple DNMs may help to explain the apparent discrep-

ancy between the female protective effect and the absence of

the Carter effect (Carter, 1969; Constantino, 2014). The lack of

increased familial aggregation in families with female probands

could be explained, in part, by multiple DNMs in functional ele-

ments in affected females with respect to males. This high-qual-

ity genomic resource provides an important first step toward un-

derstanding the genetics of these more complex cases of

simplex autism.
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Hs737-Hsp68-lacZ vector Visel 2008 Nature Genetics

PMID: 18176564

n/a; Available upon request from LAP

Hs1386-Hsp68-lacZ vector Visel 2009 Nature PMID: 19212405 n/a; Available upon request from LAP

Hs311 variant-Hsp68-lacZ vector This paper n/a; Available upon request from LAP

Hs737 variant-Hsp68-lacZ vector This paper n/a; Available upon request from LAP

Hs1386 variant-Hsp68-lacZ vector This paper n/a; Available upon request from LAP

Software and Algorithms

BWA mem version 0.7.8 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

Picard version 1.83 http://broadinstitute.github.io/picard/ http://broadinstitute.github.io/picard/

GATK version 3.4-0-g7e26428 McKenna et al., 2010 https://software.broadinstitute.org/gatk/

Picard version 1.141 http://broadinstitute.github.io/picard/ http://broadinstitute.github.io/picard/
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KING Manichaikul et al., 2010 http://people.virginia.edu/�wc9c/KING/
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GATK HaplotypeCaller version 3.5-0-

g36282e4

McKenna et al., 2010 https://software.broadinstitute.org/gatk/

FreeBayes version 1.0.1 https://github.com/ekg/freebayes https://github.com/ekg/freebayes

BCFtools version 1.3.1 Danecek and McCarthy, 2017 https://samtools.github.io/bcftools/

bcftools.html

mrsFAST-ultra 3.3.8 Hach et al., 2010 http://sfu-compbio.github.io/mrsfast/

dCGH Sudmant et al., 2010, 2015a, 2015b https://github.com/EichlerLab/

RD_pipelines

GenomeSTRiP v. 2.00 Handsaker et al., 2011 http://software.broadinstitute.org/

software/genomestrip/

Lumpy Layer et al., 2014 https://github.com/arq5x/lumpy-sv

VariationHunter Hormozdiari et al., 2011 http://variationhunter.sourceforge.

net/Home

Wham (version v1.7.0-176-g4431)

and Whamg (v1.7.0-296-gb406)

Kronenberg et al., 2015 https://github.com/zeeev/wham

SVTyper version 0.1.0 Chiang et al., 2015 https://github.com/hall-lab/svtyper

RepeatMasker 3.3.0 http://www.repeatmasker.org/ http://www.repeatmasker.org/

epiR http://cran.r-project.org/web/packages/

epiR/index.html

http://cran.r-project.org/web/packages/

epiR/index.html

Tissue Specific Enrichment Analysis Dougherty et al., 2010 http://genetics.wustl.edu/jdlab/tsea/

Cell-type Specific Enrichment Analysis Dougherty et al., 2010; Xu et al., 2014 http://genetics.wustl.edu/jdlab/csea-

tool-2/

Eichler lab cloud pipelines This paper https://github.com/eichlerlab/aws
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Evan. E.

Eichler (eee@gs.washington.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Autism familial cohort
The SSC (Fischbach and Lord, 2010) contains�2,600 families with 2,194 quads: a father, a mother, a child with autism, and a sibling

without autism. Of these, 40 full quads and 13 trios (pilot study) were previously sequenced (Turner et al., 2016). For the current study

(phase 1), 476 quad families (1,904 genomes) were selected, including three families previously resequenced from the pilot (11729,

13637, and 13825) but upgraded to quad status. Families were selected such that neither proband nor sibling carried the following: (1)

a confirmed de novo CNV that is rare [%0.1 population frequency based on parents and the Database of Genomic Variants (DGV)]

and exonic (Krumm et al., 2015; Levy et al., 2011; Sanders et al., 2011); (2) an inherited CNV that is rare [%0.1 population frequency

based on parents and DGV] and encompassesR 10 genes (Krumm et al., 2015; Sanders et al., 2011); and/or (3) a known, rare [%0.1

population frequency based on EVS] exome LGD event (Iossifov et al., 2014; Iossifov et al., 2012; Krumm et al., 2015; O’Roak et al.,

2011, 2012b; Sanders et al., 2012). Of the�2,600 families, this removed 788 families of which 758 were quads (sex ratio = 5.3, bino-

mial nominal p = 0.04 with female enrichment). A total of 476 quads were randomly chosen from the remaining 1,396 families for this

study (phase 1). Also of note, one family (13314) was missed in the exclusion process and had a published, validated de novo exonic

deletion in CHD2 (b37, chr15:93485051-93487745) (Krumm et al., 2015). In the combined pilot plus phase 1 data there were 54

affected females and 462 affected males (sex ratio of 8.6, binomial nominal p = 0.05 with slight male enrichment with respect to

the overall composition of the SSC). There were also 286 unaffected female siblings and 230 unaffected male siblings (sex ratio

of 0.8). This study was approved for sequencing by the local institutional review board (IRB) at the New York Genome Center

(Biomedical Research Alliance of New York [BRANY] IRB File # 17-08-26-385), for local SSC recontact at the University of Washing-

ton (IRB STUDY00000383 [previously IRB 48785]), and for SSC samples altogether (IRB STUDY00001619 [previously IRB 31249]) at

the University of Washington.
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Mouse IACUC Approval

All animal work was reviewed and approved by the Lawrence Berkeley National Laboratory (LBNL) Animal Welfare and Research

Committee. All mice used in this study were housed at the Animal Care Facility (ACF) of LBNL. Mice were monitored daily for

food and water intake, and animals were inspected weekly by the Chair of the Animal Welfare and Research Committee and the

head of the animal facility in consultation with the veterinary staff. The LBNL ACF is accredited by the American Association for

the Accreditation of Laboratory Animal Care (AAALAC). Transgenic mouse assays were performed in healthy, wild-type Mus mus-

culus FVB strain mice. Sample sizes were selected empirically based on our previous experience of performing transgenic mouse

assays for > 2,000 total putative enhancers. Mouse embryos were only excluded from further analysis if they did not express the re-

porter transgene or if they were not at the correct developmental stage (embryonic day 11.5). The sex of the embryos was not deter-

mined, and minor differences between sexes at the developmental stage examined are not expected to substantially influence

enhancer or transgene activity. All embryo cohorts are expected to be an approximately equal mixture of males and females.

METHOD DETAILS

Sequencing and quality control
Genomes were sequenced at the New York Genome Center (NYGC) using 1 mg of DNA, an Illumina PCR-free library protocol, and

sequencing on the Illumina X Ten platform. Post-sequencing, reads were aligned to the genome (BWA [Li and Durbin, 2010] mem

version 0.7.8), duplicate reads marked (Picard version 1.83), base scores recalibrated (GATK [McKenna et al., 2010] version 3.4-

0-g7e26428), and indels realigned (GATK version 3.4-0-g7e26428); the resulting BAM files were made available on the Amazon

Cloud. Genomes were sequenced to a coverage of 34.8 ± 5.3x and with a median library insert size of 417.8 ± 111.5 bp. Quality

control analysis included WGS metrics (Picard version 1.141), SAMtools (version 1.2-242-g4d56437) flagstat, and insert size

(Wham-Graphening [Kronenberg et al., 2015] version v1.7.0-176-g4431). Mitochondrial haplogroups were determined by extracting

mitochondrial reads from the BAM file, filtering such that only reads with < 10% mismatch were retained, generating a consensus

mitochondrial genome, and running through the MitoMaster (Brandon et al., 2009) API. Full-quality control statistics are available

in Table S4. To assess proper relationships we utilized two methods: (1) the inheritance of mitochondrial genomes from mothers

to their children and (2) kinship coefficients (f) by KING (Manichaikul et al., 2010). By both of these metrics family relatedness

was correct in these families.

SNV calls
SNVs and indels were called using the GATK (McKenna et al., 2010) HaplotypeCaller version 3.5-0-g36282e4 and FreeBayes version

1.0.1 (https://github.com/ekg/freebayes) on a per-family basis. de novo SNVs and indels were called using a custom pipeline using

the family-level VCFs for both FreeBayes and GATK. First, BCFtools (Danecek andMcCarthy, 2017) (version 1.3.1) normwas used to

left-align and normalize indels. Second, candidate sites were chosen where the father’s genotype was 0/0, the mother’s genotype

was 0/0, and the child’s genotype was either 0/1 or 1/1. Third, we applied allele count, read-depth and allele balance filters: the father

alternate allele count = 0, mother alternate allele count = 0, child allele balance > 0.25, father depth > 9, mother depth > 9, child depth

> 9, and either child genotype quality (GQ) > 20 (GATK) or sum of quality of the alternate observations (QA) > 20 (FreeBayes). Fourth,

any sites in low complexity regions (https://raw.githubusercontent.com/lh3/varcmp/master/scripts/LCR-hs37d5.bed.gz) were

removed from further analysis. After applying the above filters, we retained sites called by both FreeBayes and GATK as the final

de novo set. For X chromosome de novo variants, we applied the same procedure with the exception that we excluded variants

in the pseudoautosomal regions (GRCh37: chrX:60001-2699520 and chrX:154931044-155260560) and the X/Y duplicatively trans-

posed region (GRCh37: chrX:88456802-92375509). As part of this analysis, we also analyzed the X chromosome and identified a total

of 3,276 DNM events in probands and 2,914 in siblings. While this difference is significant (nominal p = 1.2 X 10�5) compared to au-

tosomes, it is likely the result of under calling in females versusmales. In support of this, if we limit the comparison to gender-matched

probands and siblings and compare this to autosomes, we observe no significant difference.

SV calls
Read-depth profiles for each individual were generated by taking the BWA-mem aligned BAM files and realigning the reads to the

genome using mrsFAST-ultra (Hach et al., 2010). SVs were detected using a modified implementation of dCGH (Sudmant et al.,

2010), GenomeSTRiP (Handsaker et al., 2011) v. 2.00, Lumpy (Layer et al., 2014), VariationHunter (Hormozdiari et al., 2011), and

two versions of Wham-Graphening—Wham (version v1.7.0-176-g4431) and Whamg (v1.7.0-296-gb406) (Kronenberg et al., 2015).

We applied the dCGH pipeline with the following modifications: All samples were compared to 17 reference parental samples (9 fe-

male and 8male) picked for high GC quality scores (percent of control windows correctly assigned copy number 2) using 500 bp tiled

windows of non-repeat sequence and log2 ratios of copy number estimates. Initial consensus (across reference samples) CNV calls

were generated by an edge detection algorithm as described previously (Sudmant et al., 2010). We then utilized these initial calls

rather than the final genotyped polymorphic CNVs to increase our sensitivity to rare variants. Calls were filtered with estimated

copy number thresholds of < 1.5 and > 2.5 copies and trimmed inward to the first threshold passing 500 bp window. After filtering

we corrected for hypersegmentation from the edge detection algorithm and merged adjacent (within 1 Mbp) deletions and duplica-

tions based onmatching any of the following criteria: copy number for the intercall gap is consistent with a deletion or duplication; gap
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spans a segmental duplication (> 3.5 average copies and < 50 kbp); gap is < 1 kbp (�2 windows); gap is < 1% of the largest flanking

CNV size; gap is > 75% repeat and/or segmental duplication.

AGenomeSTRiP analysis was also performed on 100 genome samples at a time aswell as Lumpy, VariationHunter, andWhamgon

a per-family basis. Some pipelines were run in the Amazon Cloud and the code for those pipelines is available at https://github.com/

eichlerlab/aws. SVs were genotyped with SVTyper (Chiang et al., 2015) (version 0.1.0) using confidence intervals of 75 bp for break-

points in every caller except dCGH. Since dCGH is less accurate at breakpoints, we used a confidence interval of 1000 bp.

To generate a high-quality set of merged SVs, we first genotyped all SVs using SVTyper and assigned copy number estimates to

calls over 1 kbp using the 500 bp windowed copy number estimates generated by the dCGH pipeline. For all read-pair-based SV

callers we first excluded all large (> 1 Mbp) calls without read-depth support (CN > 1.5 and < 2.5). Calls were then merged on a

per-sample basis roughly in order of breakpoint accuracy per caller (Wham, Whamg, Lumpy, VariationHunter, GenomeSTRiP,

and finally dCGH). Beginning with the first caller, we merged one caller at a time by first reducing all overlapping calls and splitting

the intersecting calls from both callers into those that coverR 50% of the merged region and recursively calling the merging proced-

ure on those calls that cover < 50% of the merged region. In the rare case where no calls covered at least 50% of the reduction, we

recursively decreased the threshold by 5% until we could generate clusters of calls for merging. Once we generated a set of calls to

merge, we applied the following procedure to determine which breakpoint to retain. Calls with SVTyper-supported breakpoints were

prioritized followed by calls with 500 bp window copy number support. Ties were broken by retaining the calls from the previously

merged caller, unless none of the calls had support, in which casewe picked the largest call. Finally, we retained a set of merged calls

with 2+ callers or 1 caller with SVTyper or copy number support. We also initially retained all calls with dCGH support only due to the

high accuracy of these calls and increased sensitivity to duplications and segmental duplication flanked events. Our reduced set of

merged calls was then re-annotated with the median per-base copy number data (from the dCGH pipeline) and filtered with more

stringent symmetrical thresholds of estimated copy numbers below 1.5 or over 2.67. Each proband and sibling call was then anno-

tated for the number of overlapping (50% reciprocal) calls in the population of parents and the estimated copy number of each CNV

call in all family members, which was then used to estimate inheritance. High-quality, private de novo CNVs were considered to be

those with no overlapping parental CNVs, no evidence of CNVs in the sibling or parents by copy number, SVTyper support only in the

carrier, > 200 bp non-repeat sequence, and < 50% of the call being a segmental duplication. CRLMM was utilized for orthogonal

validation of events with enough probes on SNP microarrays (method described by Krumm et al., 2015).

Recent and ancient repeat regions
We utilized RepeatMasker 3.3.0 on the b37 human genome using the following settings: -species ‘‘Homo sapiens’’ -s -div 10 -dir

b37_results -xsmall -no_is -e wublast -s –pa 15 to get all sequences with a divergence rate < 10% from the consensus. Segmental

duplications andmicrosatellites were downloaded from the UCSCGenome Browser. These above region categories were the recent

repeats. All repeats generated by RepeatMasker for the UCSC Genome Browser were downloaded and those not in the recent re-

peats were considered ancient.

Validation
We selected 697 total sites for PCR amplification and used Sanger sequencing (450 sites) and PacBio sequencing (322 sites) to vali-

date de novo variants (96.3% overall VR) using previously described methods (Turner et al., 2016). For the PacBio sequencing, we

pooled PCR products from all the probands, fathers, and mothers into three pools and barcoded and prepped them for sequencing

following standard protocols. The sequences were separated by barcode, mapped to the genome, and checked in IGV for the mu-

tation event. In addition, we validated an additional 58 WES-only events by Sanger sequencing (79.3% VR).

Transgenic reporter assays
We used transgenic lacZ reporter assays as described previously (Visel et al., 2007) and tested three proband variants (Figures 2 and

S5) for three sites from VISTA (https://enhancer.lbl.gov) that previously showed enhancer activity. All embryo images for the refer-

ence and variant alleles of hs737 were randomized, the labels removed, and annotation performed by at least three independent re-

viewers blinded to allele type. For each embryo, reviewers scored whether the enhancer activity pattern in each tissue was 1) robust

and in a reproducible pattern, 2) absent, or 3) ectopic (i.e., stainingwas present in that tissue but not in the reproducible pattern, which

can occur because of the random nature of the transgene integration). Final annotations were determined by the staining type with

the most reviewer votes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Wherever possible, standard tests were applied to count data (Fisher’s exact test), differences in medians (Mann-Whitney), and

burden tests (log rank test of CNV size distributions). The relationship between DNM and paternal age was calculated using both

linear and exponential fits and statistics are based on Pearson’s correlation coefficient.
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Oligogenic DNM burden
To model the burden of DNMs in probands and siblings, we created an oligogenic score based on the count of de novo VOI. We

calculated this simple score (S) for each individual as follows:

S= L+M+R+D+U
where L is LGD variant count, M is number of missense variants
 with CADD score > 30, R is count of noncoding CNS DNase I hy-

persensitive TFBS variants, D is coding deletion count, and U is 30 UTR variant count.

Estimated attributable fraction in the population (Table 2) was calculated using the epi.2by2 function with the case.control method

in epiR (http://cran.r-project.org/web/packages/epiR/index.html).

TSEA and CSEA
We used Tissue Specific Expression Analysis (Dougherty et al., 2010) (TSEA, http://genetics.wustl.edu/jdlab/tsea/) and Cell-type

Specific Expression Analysis (Dougherty et al., 2010; Xu et al., 2014) (CSEA, http://genetics.wustl.edu/jdlab/csea-tool-2/) to test

whether individuals with scores (S) of 3 or higher had variants in genes enriched in any tissues or cell types, respectively. We also

tested individuals with scores > = 3 and containing at least one pNCR TFBS and at least one 30 UTR event

Attributable fraction estimates
Weassessed the contribution of the different functional classes to the cases in the SSCby utilization of the epi.2by function (method =

case.control) in the epiR R package. We identified 1,786 quad families (Krumm et al., 2015) that were previously assessed by WES

and SNPmicroarray for all four family members. We removed the pilot families (Turner et al., 2016) in this set (n = 38) since the criteria

used for family selection in the present study were different than in the pilot. This left 1,748 families (Table 2) with 588 families that had

been removed because they had a known event (de novo LGD, de novo CNV, or very large inherited CNV). These 588 were consid-

ered the ‘‘known families.’’ In the phase I data, 398 families were assessed as they had undergoneWES and SNPmicroarray analysis

and represented a random sampling of the remaining families with no known cause. They are referred to as ‘‘new families’’ in the

table. In the category column, for the known families, the different types included de novo LGD (no de novo CNV or large inherited

CNV), de novo CNV (no de novo LGD or large inherited CNV), large inherited CNV (no de novo LGD, no de novo CNV), and multi-hit

(contains one each of at least two of the following categories: de novo LGD, de novo CNV, large inherited CNV). In the category col-

umn for the new families, the different types included small de novo deletion (no de novo LGD, no de novo CNV, no large inherited

CNV), de novomissense CADD score > 30 (no de novo LGD, no de novo CNV, no large inherited CNV, no small de novo deletion), and

3+ de novo VOI (requires at least one de novo pNCRTFBS and at least one de novo 30 UTR) (no de novo LGD, no de novo CNV, no

large inherited CNV, no small de novo deletion, no de novo missense CADD score > 30). The reason for these classifications was to

avoid double counting of individuals. For the known families the odds ratio, attributable prevalence, attributable prevalence in pop-

ulation, attributable fraction (est) in exposed (%), and attributable fraction (est) in population (%), and p value have a denominator of

1,748 as they are representative of the full cohort, whereas the same fields for the new families have a denominator of 398. The last

field (extrapolated attributable fraction (est) in population (%)) contains the percent explained by each of the significant classes

wherein for the new families we treated them as a subset of unexplained cases and therefore calculated their values by the following

equation: (0.664 [fraction of families that had no known variants] * attributable fraction (est) in population [in the 398 families]). The

total for all extrapolated attributable fraction (est) in population (%) values was 16.88% with 6.03% as a result of the new categories

from this current study.

DATA AND SOFTWARE AVAILABILITY

Data availability
Approved researchers can obtain the SSC population dataset described in this study by applying at https://base.sfari.org/. BAM and

VCF files are provided in SFARI Base: SFARI_SSC_WGS_1 and SFARI_SSC_WGS_1a.

Code availability
Code for pipelines that ran in the Amazon Cloud is available at https://github.com/eichlerlab/aws.
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Supplemental Figures

Figure S1. Breakdown of SSC Families, Related to STAR Methods

Those marked as PILOT + PHASE 1 are the focus of this current study. The KNOWN (nominal p = 0.04), PHASE 1 (nominal p = 0.03), and PILOT + PHASE 1

(nominal p = 0.05) families are all significantly enriched for their sex ratio by a two-sided binomial test in comparison to the full dataset. The PILOT (nominal p =

8.2x10�4) and KNOWN (2.7x10�3) families are significantly enriched for having significantly different full-scale IQs than the full cohort by two-sidedMann-Whitney

test and upon visualization they have a lower IQ. There is no statistically significant difference for the social responsiveness scale, ADOS calibrated severity score,

or normalized head circumference.



Figure S2. Noncoding Variants and Paternal Age, Related to Figure 1

(A and B) Noncoding de novo SNVs per individual based on father’s age at child’s birth (A) and noncoding de novo indels per individual based on father’s age at

child’s birth (B) both showing significant correlation of number of variants with father’s age at birth (noncoding SNV p = 1.0x10�94, r = 0.59) (noncoding indel p =

1.6x10�8, r = 0.19).



Figure S3. Exome versus Genome Comparisons, Related to Figure 1

(A) Venn diagram of events found within the exome by WES and/or by WGS.

(B–D) Low sequence depth coverage exons, in WES but with good coverage in WGS, containing novel LGD events. Shown is the average coverage across the

exome capture regions in (B)ARID1B, (C)CNTNAP3, and (D)DNM1 inWES andWGS data. TheWES data was from 9,014 individuals analyzed in the Krummet al.

(2015) paper and the WGS data was from 2,064 individuals in the present study. The capture regions with a black circle around them are those with novel LGD

variants only detected by WGS.

(legend continued on next page)



(E–G) Genes of interest with multiple low-coverage exons based on WES data but covered well in WGS data. Shown is the average coverage across the exome

capture regions in (E and F) HYDIN and (G) SHANK3 in WES and WGS data (E) HYDIN is a gene of interest because it is a human-specific duplicated gene

(Sudmant et al., 2010). In (E) the capture regions are plotted in genomic space but because there are many exons that are close together and visualization is

difficult, we also plotted them with the capture regions equal distance from each other (F). (G) SHANK3 is a gene of interest because of its known role in autism

(Durand et al., 2007).



Figure S4. Breakdown of Event Types within the Different De Novo Score Categories, Related to Figure 3

Shown are LGD = likely gene-disrupting, MIS30 =missense with CADD score > 30, DEL = exonic deletion; UTR = untranslated region, TFBS = putative noncoding

regulatory with a TFBS events.



Figure S5. Two of the Three De Novo Sequence Variants Identified in Autism Probands that Were Tested for In Vivo Enhancer Activity in the

CNS with the Reference Allele from enhancer.lbl.gov and the Visel et al. (2007) Study, Related to Figure 2

(A–C) We extended the previous assessment for the reference allele in our current study by also testing the variant allele. For each locus, we show, from top to

bottom, the human genome reference allele, the patient variant (red text), the location of conserved TFBS near the variant, the VISTA enhancer with hs number

(blue bar), and representative transgenic embryonic day 11.5 mouse embryos for the reference and variant alleles, respectively displaying the enhancer activity

pattern (blue staining). Testing of the variants in (A) hs311 and (B) hs1386 shows no difference between reference and variant alleles. (C) Replication of hs737 data.

http://enhancer.lbl.gov


Figure S6. Barplot Showing the Difference by Gender for Autism Probands and Their Unaffected Siblings, Related to Figure 3

This plot excludes 30 UTRmutations. VOI = variants of interest. Because of the potential for a female protective effect in autism (Jacquemont et al., 2014; Krumm

et al., 2015; Turner et al., 2015), we hypothesized that females with autismmay generally have the higher scores. No significant difference was found considering

all variant types. However, if we excluded the 30 UTR, we found that female probands have higher scores compared to unaffected female siblings (one-sided

Mann-Whitney nominal p = 6.33 10�3). It is striking that while 41% of female probands contain a VOI (scoreR 1); only 24% of unaffected female siblings carry a

VOI. No difference in oligogenic DNM burden was observed comparing male probands and unaffected males (one-sided Mann-Whitney nominal p = 0.35)

suggesting that this oligogenic effect DNM is driven primarily by females.
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