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Advances in sequencing technologies and the development 
of novel computational assembly algorithms are central to 
the complete characterization of complex genomes. Recent 

developments in long-read sequencing technology have dramati-
cally improved the contiguity and speed at which de novo assemblies 
of complex genomes can be generated1–8. Individual laboratories, for 
example, can now accurately assemble > 90% of a mammal’s euchro-
matin in less than 1,000 contigs within a few months5,6,9,10. Despite 
these recent advances, substantial portions of mammalian genomes 
remain unresolved. This is especially true for large, highly identical 
repetitive regions, including heterochromatin and gene-rich regions 
associated with segmental duplications (SDs), which are larger than 
the majority of long reads11–15.

SDs in most mammalian genomes are organized into complex 
regions typically > 100 kilobase pairs (kb) in length and, by defini-
tion, are present at multiple locations. They contribute to dosage 
imbalance associated with disease16,17 and are ten times more likely to 
contribute to normal copy number variation18. They are also a reser-
voir for gene innovations associated with species adaptations19–21. The 
size, copy number, and sequence identity of SDs means that they are 
usually the last regions of the genome to be sequenced and assembled, 
often using large-insert BAC (bacterial artificial chromosomes)22,23. 
More than half the gaps that remain in FALCON-based genome 
assemblies of single-molecule, real-time (SMRT) sequence data cor-
respond to regions of SD. We estimate that the architecture of only 
29.2% of SD bases is resolved in an assembly of the CHM1 genome 
(Supplementary Fig. 1, Supplementary Table 1, and Methods), with 
most disease-associated regions unresolved (Supplementary Table 
2)16,24. Similarly, an assembly of NA12878 using longer Oxford 
Nanopore Technologies (ONT) ultra-long reads25 shows moder-
ate improvement (32.9% resolved) but leaves most SDs unresolved 
(Supplementary Fig. 1 and Supplementary Table 1).

Here, we develop and apply the Segmental Duplication Assembler 
(SDA) method. This method takes advantage of paralogous 
sequence variants (PSVs) and correlation clustering26 to uniquely 
assemble different paralogs of SDs that were previously collapsed 
in long-read human genome assemblies. We apply it to real SMRT 
and ONT long-read datasets to resolve SDs in recent assemblies and 
generate > 30 Mb of highly accurate, novel human genome sequence 
data. This method is computationally tractable, and its use can be 
extended to resolve collapsed repeat content in de novo assemblies 
of other mammalian genomes.

Results
The problem: unresolved SDs. Although ONT (https://nano-
poretech.com/) and PacBio (https://www.pacb.com/) sequenc-
ing platforms generate long sequence reads, they also typically 
have high error rates of 10–15%. The predominant long-read 
assembly methods for whole-genome shotgun sequence assembly 
(WGSA) are based on read correction and overlapping corrected 
reads to construct larger sequence contigs—for example, Canu and 
FALCON7,8. The high error rate of long-read sequencing platforms 
is particularly problematic for distinguishing paralogous and allelic 
sequences because the duplications are highly identical (> 95%) and 
well within the range of error from long-read sequencing. This leads 
to sequence reads being recruited and merged from both paralogs 
and alleles during the assembly process, creating collapses (Fig. 1) 
in which the assembled sequence and corrected sequence contig 
are in error. To quantify the effect of collapse and misassembly, we 
compared several recent assemblies generated using both ONT and 
SMRT sequence data (Supplementary Fig. 1 and Supplementary 
Note). With the requirement that contigs extend 50 kb into unique 
sequence in order to be considered fully resolved, we estimate that 
only 49.0–51.3 Mb of SDs are fully resolved (Supplementary Fig. 2),  

Long-read sequence and assembly of segmental 
duplications
Mitchell R. Vollger   1, Philip C. Dishuck   1, Melanie Sorensen1, AnneMarie E. Welch1, Vy Dang1, 
Max L. Dougherty1, Tina A. Graves-Lindsay2, Richard K. Wilson3,4, Mark J. P. Chaisson5* and 
Evan E. Eichler   1,6*

We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions 
of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/
SDA) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction 
and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-
molecule, real-time sequence data from three human genomes and recover 33–79 megabase pairs (Mb) of duplications in which 
approximately half of the loci are diverged (<99.8%) compared to the reference genome. We show that the corresponding 
sequence is highly accurate (>99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that are 
absent from the human reference genome. Our method can be applied to other complex genomes to resolve the last gene-rich 
gaps, improve duplicate gene annotation, and better understand copy-number-variant genetic diversity at the base-pair level.

NATuRE METHoDS | VOL 16 | JANUARY 2019 | 88–94 | www.nature.com/naturemethods88

mailto:mchaisso@usc.edu
mailto:eee@gs.washington.edu
https://nanoporetech.com/
https://nanoporetech.com/
https://www.pacb.com/
http://orcid.org/0000-0002-8651-1615
http://orcid.org/0000-0003-2223-9787
http://orcid.org/0000-0002-8246-4014
https://github.com/mvollger/SDA
https://github.com/mvollger/SDA
http://www.nature.com/naturemethods


ArticlesNATure MeThODS

leaving 71% (approximately 125 out of 175 Mb) of SDs associated 
with gaps. We note that even without an extension into unique 
sequence, 59.5–69.8% of SDs remain unresolved (Supplementary 
Fig. 1). We estimate that approximately 50 Mb of the duplications 
correspond to regions for which the assembly algorithm has col-
lapsed highly identical duplications into the same contig. Analysis 
of an ONT assembly generated with ultra-long reads (2.5-fold cov-
erage of reads over 100 kb)25 showed a modest 8% improvement in 
SD assembly; however, most of the SDs still remained unresolved 
(Supplementary Fig. 1). As expected, the largest (> 10 kb) and most 
identical duplications (> 95% identity) were particularly enriched 
in unresolved SDs (Supplementary Fig. 2a) and frequently corre-
sponded to annotated human genes (Supplementary Fig. 2b).

The approach: Segmental Duplication Assembler. SDA identi-
fies high-confidence PSVs ab initio and groups them using corre-
lation clustering with defined attraction and repulsion edges into 
PSV graphs (Fig. 1). The partitioned reads are then assembled inde-
pendently, distinguishing the paralogous copies. Empirically, we 
observe that we are able to assemble large duplications with less than 
0.5% sequence divergence (Supplementary Note). As a measure of 
reproducibility, we apply this method to four human genomes and 
validate the results and accuracy based on targeted BAC sequencing 
and analyses of specific duplicated loci.

We begin by identifying all collapsed duplications within each 
assembly based on an excess of sequencing read depth11,27 (Methods). 
Within the CHM1 assembly9, for example, we identify 283 regions 
of collapse averaging 43 kb in length (Table 1). When the 12.2 Mb 
of collapsed CHM1 duplications are mapped back to the reference, 
they span 52.3 Mb of sequence: 93% (48.6 Mb) are annotated as SDs, 
88% of which (45.9 Mb) overlap with regions of unresolved SDs in 
CHM1. Next, we define PSVs corresponding to each collapsed seg-
ment. We define candidate PSVs by classifying the second-most 
frequent base at every position within the collapsed alignment and 
requiring sequence coverages consistent with a single-copy locus in 
order to distinguish PSVs from allelic variants (Methods). We next 
apply correlation clustering to filter false positive variants arising 
from sequencing errors and uniquely assign each remaining PSV 
to the paralog from which it originates. For each collapsed region, 
we construct a graph in which the PSVs define the nodes and the 
sequence reads define the edges. Attraction edges are formed when 
a read contains two or more PSVs, connecting two or more nodes. 
Similarly, repulsion edges are formed when PSVs are mutually 
exclusive across all of the sequence reads.

With this formulation of the problem, it is possible to address the 
correlation clustering objective, which is to minimize the number of 
repulsion edges within clusters and minimize the number of attrac-
tion edges between clusters. Correlation clustering offers a distinct 
advantage over many other clustering algorithms because it does 
not require the number of clusters as a starting input. It is there-
fore ab initio and defined entirely by the underlying sequence data. 
However, correlation clustering is a nondeterministic polynomial 
complete problem; therefore, we developed a heuristic to approxi-
mate the solution modeling after previous work28. The heuristic ran-
domly assigns PSVs to clusters and then iteratively increases the size 
of the cluster by following positive edges that decrease the score of 
the entire graph (Methods).

Resolving SDs using SDA. We applied correlation clustering to 
each of the 283 collapsed regions in the CHM1 WGSA and gener-
ated a total of 668 distinct groupings. We created separate assem-
blies corresponding to each PSV graph partition using Canu 
followed by Quiver error correction. We successfully generated 590 
assemblies in which a single contig was produced corresponding to 
33.1 Mb of assembled sequence (Table 1 and Fig. 2) with an aver-
age sequence contig length of 60.7 kb. The median assembly length 
was 53.0 kb (mean 60.7 kb), and the maximum assembly size was 
255.5 kb. In general, the length of the assembly correlated (r =  0.67, 
Pearson’s correlation) with the size of the collapse (Supplementary 
Fig. 3). Of the 668 PSV graphs, 59 failed to generate an assembly and 
19 assembled into multiple contigs. An inspection of those clusters 
that failed to assemble showed that the majority did so owing to an 
insufficient number of reads, while clusters with multiple contigs 
were the result of either incomplete PSV separation among multiple 
contigs or variable sequence coverage.

To assess the accuracy and contiguity of the assembled SDs, we 
mapped each sequence contig back to the human reference genome 
(GRCh38). Of these assemblies, 48.5% (286 out of 590) mapped to the 
human reference genome with at least 99.8% sequence identity over 
> 90% of the contig length and accounted for approximately 18 Mb  
of sequence. Interestingly, a similar fraction of assembled contigs 
(51.5% (304 out of 590), corresponding to 15.5 Mb) showed greater 
sequence divergence, ranging from 96% to 99.8% sequence iden-
tity (Fig. 2a). We consider the contigs that ‘match’ at high identity  
to GRCh38 to be correctly assembled and classify those with 
lower sequence identity than expected based on allelic variation  
(< 99.8%)29 to be ‘diverged’. As > 0.2% divergence lies outside of the 
typical range of human allelic variation, such diverged sequences 
may represent different copies of the duplication not yet repre-
sented in the human genome. We examined in detail a few human-
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Fig. 1 | Flowchart of the SDA method. Regions of collapsed SDs are defined 
on the basis of whole-genome shotgun (WGS) sequence read-depth 
profiles using BLASR across sequence contigs generated from a de novo 
WGSA. Regions (> 9 kb in length) with elevated sequence coverage (three 
s.d. plus the mean) and not entirely composed of common repeats are 
considered collapsed SDs. Sequence reads corresponding to the collapsed 
SDs are recovered and examined for variants at each position along the 
collapse. Single-base-pair substitutions that appear at the same threshold 
as unique sequencing depth are identified and flagged as PSVs, effectively 
partitioning reads into PSV clusters (WhatsHap). Sequence reads assigned 
to each PSV cluster are independently assembled using Canu and error-
corrected using Quiver'.
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specific gene families (for example, SRGAP2 and NOTCH2NL) 
associated with neuroadaptation20,30–34 that have been the target of 
detailed BAC-based sequence assemblies (Fig. 3, Supplementary 
Table 3, and Supplementary Fig. 4). Our analysis shows that we 
have successfully resolved the collapsed assemblies, recreating the 
sequence and gene models present in the reference genome. This 
includes the identification and characterization of paralog-spe-
cific structural variation with most sequence assemblies matching 
approximately 99.8–99.9% to their respective paralogs. Among 
these gene families, we estimate that 91–93% of all PSVs have been 
correctly assigned.

We repeated this analysis for three additional long-read human 
genome assemblies, including a second haploid genome (CHM13)9, 
a diploid genome of African descent (YRI19240)35, and a diploid 
genome assembled with ONT (NA12878)25 (Table 1, Supplementary 
Note, and Supplementary Figs. 5–7). The proportion of matched 
and diverged sequence assemblies and of resolved SD regions was 
very similar among the PacBio genomes. For example, 83% (1,772 
out of 2,136) of clusters resolved into single-contig assemblies for 
the African diploid genome assembly. In contrast, an analysis of 
a human genome assembly (NA12878) generated with ultra-long 
ONT reads showed more failed SD assemblies, although we note 
that the coverage of this genome was significantly less than that of 
the PacBio genome assemblies (Supplementary Fig. 7). Combining 

both the ‘matched’ and ‘diverged’ sequences, we estimate that the 
SDA method adds an additional 72.6 and 78.6 Mb of sequence 
corresponding to duplicated regions of the CHM13 and NA19240 
human genomes, respectively.

Characterization of diverged duplications. We focused on 
the diverged duplications and considered two possibilities: the 
sequence could represent misassembled sequence or, alternatively, 
could represent additional copies not yet present in the human ref-
erence genome. The latter may be expected, given that SD regions 
are tenfold more likely to be copy number polymorphic18 than 
unique regions of the genome. If diverged sequences resulted from 
the sequence and assembly of additional copies, we would expect 
a significant increase in the copy number differences for diverged 
sequences compared to duplicated sequences that matched the 
human reference genome (> 99.8% sequence identity). Indeed, a 
comparison of the copy number differences for these two categories 
clearly showed that diverged copies were more likely (P =  2.0 ×  10–5) 
to have a higher copy number in CHM1 (Fig. 2c) than duplicated 
sequences that matched the reference genome assembly.

As a more direct test, we sequenced and assembled 1,253 large-
insert BAC clones (Supplementary Table 4) corresponding to 
regions of SD from a genomic library (CHORI-17) derived from 
CHM1 (refs. 36,37) (Methods). Restricting our analysis to the 304 

Table 1 | SDA assembly statistics

De novo assembly SDA

Sample Assembly accession Contig 
N50 
(Mb)

Sequence 
coverage

Read 
N50 
(kb)

unresolved 
SDs (Mb)

Collapses 
(count, 
Mb)

Matched 
(count, 
Mb)

Diverged 
(count, 
Mb)

Multiple 
assemblies 
(count, Mb)

Failed

CHM1* (ref. 9) GCA_001297185.1 26.9 61 20.5 124.1 283, 52.3 286, 17.98 304, 15.51 19, 1 59

CHM13* (ref. 9) GCA_002884485.1 29.3 67 18.2 126.5 527, 86.6 685, 39.1 755, 35.0 69, 3.1 339

NA19240* (ref. 35) GCA_001524155.4 29.1 61 17.5 124.1 489, 82.4 789, 38.8 983, 40.9 107, 5.8 257

NA12878† (ref. 25) GCA_900232925.1 7.7 35 12.5 117.7 365, 52.5 38, 0.066 792, 22.1 8, 0.21 1,062

Genome summary statistics for four human genomes sequenced and assembled with long-read data. *Sequenced with SMRT and assembled with FALCON. †Sequenced with ONT and assembled with 
Canu. Collapses from the assemblies were subjected to SDA, and the count and Mb of ‘matched’ and ‘diverged’ contig assemblies to the human reference genome GRCh38 are shown.
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Fig. 2 | SDA results of the CHM1 human genome assembly. a, A cumulative distribution of the SDA assemblies and their percent sequence identity to 
their best match in the reference (< 99.8% identity, gray; > 99.8% identity, black). The cumulative number of assembly megabase pairs was calculated 
under the assumption that none of the assemblies overlapped (unlike in Table 1, where alignments to the human reference were used to avoid counting 
overlaps multiple times). b, Density plot of SDs plotted by length and percent identity. Black represents duplications resolved in the CHM1 assembly, red 
shows unresolved duplications in the CHM1 assembly, and blue represents paralogs assembled using SDA. Resolved SDA sequences are ‘content’ resolved 
and not ordered within the genome, whereas SDs in the assembly must extend into unique sequence on both sides to be considered resolved. c, Copy 
number difference (CND) between CHM1 and the reference genome (CHM1 copy number – reference genome copy number) comparing n =  139 SD regions 
that match (> 99.8%) versus n =  158 diverged SD regions (< 99.8% identity). The mean CND of the matched sequence is 1.75, and the mean CND of the 
diverged sequence is 13.82 (black dot) (two-sided Mann–Whitney test; *P <  0.0001). The boxes indicate the range between the first and third quartiles, 
with the bold line indicating the median. The whiskers show the minimum and maximum within 1.5 times the interquartile range extending from the first 
and third quartiles. Copy number was estimated in CHM1, examining k-mer frequency found in Illumina WGS reads (Methods).
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diverged sequences assembled by SDA from CHM1, we identi-
fied 105 diverged duplications that match the CHORI-17 clones. 
Each of these 105 sequences aligned to a clone over at least 90% of 
its length and at > 99.8% sequence identity (mean sequence iden-
tity of 99.97%) (Fig. 4 and Supplementary Table 5). If we assume 
that our method targeted all SDs evenly across the whole genome, 
then we would expect to validate approximately 37.4% of the bases 
across our diverged sequences. Of our diverged sequences, 105 
(or 36.3% of the bases) were validated and showed significantly 
better alignment to the CHM1 clone inserts than to GRCh38. We 
estimated the sequence accuracy for our assembled duplications 
to be 99.989% (quality value (QV) =  38.4) when we considered 
only single-base-pair mismatches, and 99.857% (QV =  28.4) when 
indels and mismatches were counted. We note that many of the 
105 validated assemblies contain sequences associated with gene 
families and, thus, have the potential to recover missing genic 
sequence not yet annotated. For example, we assembled a para-
log of NBPF1 that is 1.2% diverged from the human reference but 
maps with > 99.99% sequence identity to a CHM1 clone (Fig. 4 
and Supplementary Table 6). Similarly, Sudmant and colleagues38 
identified an additional duplication in 16p12.1 that exists in most 
individuals but was absent from the reference. Using SDA, we 
recovered the proposed duplication39 (Supplementary Fig. 8) with 
only one mismatched base pair across a 95-kb alignment to the 
BAC-generated contig.

We analyzed more systematically the utility of these orphan SDA 
contigs to generate more accurate gene models for 37 human-specific 

segmental duplication (HSD) gene families. We selected 213,450 
bulk single-molecule sequencing RNA reads (Iso-Seq) from fetal 
and adult human brain enriched for HSDs40. We aligned Iso-Seq 
data and compared their mapping between SDA contigs and previ-
ous collapsed contigs in the CHM13 assembly. Transcripts showed 
improved mapping to the SDA contigs for 11 gene families to vary-
ing degrees (Supplementary Fig. 9). We identified six gene families 
(Fig. 5a) for which transcripts mapped better to the SDA assemblies 
than the human reference genome. A subset of transcripts from 
the GPRIN2 (G-protein-regulated inducer of neurite outgrowth 2)  
gene family were most striking, with a 1.5% improvement.  
We aligned the second SDA GPRIN2 contig that seemed to be miss-
ing from the reference and found that it spans a gap in GRCh38 
flanked by SDs (Fig. 5b). Moreover, a previous analysis of Illumina 
WGS sequence shows that GPRIN2 is polymorphic with copy num-
ber ranges from three to seven copies, with most humans carrying 
four, in contrast to other apes, which carry only two (haploid copy 
number =  1). Our analysis shows that both copies, GPRIN2A and 
GPRIN2B, are transcribed and encode similar open reading frames, 
although GPRIN2B has a 3-amino-acid insertion as well as sev-
eral amino acid differences compared to the ancestral GPRIN2A 
(Supplementary Fig. 10). Interestingly, these PSVs have been erro-
neously classified as single-nucleotide variants (SNVs; with near 
50% ‘allele’ frequency in dbSNP) because the reference is missing 
this second copy (Supplementary Table 7). Thus, the SDA contig not 
only improves gene annotation but also improves interpretation of 
human genetic variation.
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Fig. 3 | Sequence and assembly of SRGAP2 loci in the CHM13 human genome. SDA sequence contigs from CHM13 aligned to the GRCh38 loci for 
SRGAP2A, SRGAP2B, SRGAP2C, and SRGAP2D using Miropeats47. The length and percent identity of each alignment is shown. Similarly, in CHM1 we found 
that, on average, our sequence was 99.91% identical over all four loci and > 99.999% identical if only mismatched bases were counted as errors, as opposed 
to including indels. Adjacent to each alignment is the corresponding PSV graph, with the relevant PSVs highlighted. Each node represents a PSV, and loci are 
colored and numbered to reflect the grouping determined by correlation clustering. An edge is added between two nodes (PSVs) when a sequencing read 
contains both PSVs. The opacity of each node scales from 25% to 100% to reflect the position of the PSV along the collapse: 25% opacity reflects the first 
position along the collapse, and 100% reflects the final position. For a more detailed view of the opacity of the nodes, see Supplementary Fig. 12. Clusters 3 
and 4 in the PSV graph represent the fourth paralog (SRGAP2D), which carries a large deletion in the middle relative to the other paralogs.
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Discussion
Previously, we developed a computational algorithm26 that could, 
in principle, assemble multi-copy duplications de novo using poly-
ploid phasing41–45 and demonstrated its efficacy using simulated 
datasets. Here, we developed SDA and applied it to WGSA col-
lapsed duplications generated within existing human genome data-
sets. We specifically developed SDA to deal with different long-read 
datasets (Supplementary Note) and the generation of high-quality  
sequence contigs.

There are three strengths to SDA. First, our approach does not 
require PSVs to be predefined and, as a result, can be applied to 
any genome assembly for which long-read data of sufficient depth 
have been generated. A similar concept was recently applied to par-
tition viral quasispecies46. Second, our validation results suggest 
that the paralog-specific assemblies are highly accurate (99.86–
99.99%). Importantly, the approach enables missing paralogs to 
be sequenced, especially within regions of extensive copy number 
variation. This is particularly exciting because it enables previously 
uncharacterized forms of human genetic variation to be sequence-
resolved for the first time. Finally, our analysis of the human 

genome suggests that the majority of collapsed duplications are at 
least partially resolved (Fig. 2). As unassembled SDs typically rep-
resent approximately 70–90 Mb of sequence per genome, recovery 
of 33–79 Mb is equivalent to recovery of an entire chromosome’s 
worth of DNA for which accurate gene models can be constructed 
(Table 1 and Supplementary Table 8). The method that we have 
developed can be effectively applied to any genome for which long-
read WGSA data exist, providing access to the duplicated regions 
and the genes therein.

Notwithstanding these advances, limitations remain. The major-
ity of the sequence contigs that we generated with SDA are small 
(approximately 54 kb) and are not yet commensurate with the 
average contig lengths generated by long-read sequencing and 
assembly of unique regions of the genome. Only a small fraction 
(22%) of SDA contigs transition into unique sequence such that 
overlaps can be unambiguously assigned to the main genome 
assembly (Supplementary Fig. 11). Our new duplicated sequence 
contigs are not yet fully integrated into the genome, and many of 
the resolved duplications remain ‘orphan’ contigs in the absence of 
additional long-range mapping data. Direct integration of our SDA 
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tool into popular long-read assemblers, to create long-range linkage 
information, may not be advisable even if it were possible. Parameter 
optimization for SD assembly would be likely to come with costs for 
the remaining 95% of the genome. There are distinct advantages to 
performing bulk WGSA followed by a second-tier analysis to focus 
on the collapsed regions of the assembly. This is because overlap 
stringency should differ for high-identity duplications, and because 
PSVs provide important information for determining overlaps in 
these more difficult-to-assemble regions.

Although we have shifted the accessible portions of SDs to larger 
(> 50 kb) and more identical regions (approximately 99%), not all 
regions can be resolved by this approach. Duplications that are 
virtually identical cannot be distinguished and will require even 
longer read data, such as the ultra-long reads (> 100 kb) possible 
with ONT25. We have developed and benchmarked SDA primarily 
with PacBio sequence data, but we have also applied it to long-read 
sequence data from other platforms such as ONT (Supplementary 
Note). Our initial analysis of the ultra-long-read genome assembly 
of NA12878 (ref. 25), for example, showed a slight improvement 
of 8% in SD assembly (Supplementary Fig. 1). However, most of 
the high-identity SDs remained unresolved with a similar number 
of collapsed duplications (n =  365) compared to PacBio genome 
assemblies. Application of SDA to the ONT dataset resulted in far 
fewer resolved assemblies (Supplementary Fig. 7), with an overall 
lower accuracy of the assembled sequence contigs. An important 
difference, however, is sequence coverage. The NA19240 PacBio 
assembly was sequenced at 73-fold sequence coverage versus the 
35-fold ONT genome assembly. We note that while ultra-long 
ONT sequence reads were less successful in resolving SDs, they 
were useful as orthogonal data to validate PacBio SDA contigs 
(Supplementary Note). If long reads in excess of 200 kb can be 
routinely generated with sufficient coverage to correct sequence 
error, it is possible that most SDs could be resolved by WGSA. 
The rapid advance of long-read sequencing technology may make 
the routine generation of ultra-long reads from low quantities of 
DNA a reality in the near future. Such advances would open up 
the possibility that other highly repetitive regions, such as cen-
tromeres and acrocentric DNA, could be routinely sequenced and 
assembled for the first time.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0236-3.

Received: 1 June 2018; Accepted: 30 October 2018;  
Published online: 17 December 2018

References
 1. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery 

and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).
 2. Alkan, C., Sajjadian, S. & Eichler, E. E. Limitations of next-generation 

genome sequence assembly. Nat. Methods 8, 61–65 (2011).
 3. Seo, J. S. et al. De novo assembly and phasing of a Korean human genome. 

Nature 538, 243–247 (2016).
 4. Shi, L. et al. Long-read sequencing and de novo assembly of a Chinese 

genome. Nat. Commun. 7, 12065 (2016).
 5. Bickhart, D. M. et al. Single-molecule sequencing and chromatin 

conformation capture enable de novo reference assembly of the domestic goat 
genome. Nat. Genet. 49, 643–650 (2017).

 6. Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 
352, aae0344 (2016).

 7. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive 
k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

 8. Chin, C.-S. et al. Phased diploid genome assembly with single-molecule 
real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

 9. Huddleston, J. et al. Discovery and genotyping of structural variation from 
long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).

 10. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape 
genomes. Science 360, eaar6343 (2018).

 11. Kelley, D. R. & Salzberg, S. L. Detection and correction of false segmental 
duplications caused by genome mis-assembly. Genome. Biol. 11, R28 (2010).

 12. Pop, M. Shotgun sequence assembly. Adv. Comput. 60, 193–248 (2004).
 13. Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to 

DNA fragment assembly. Proc. Natl Acad. Sci. USA 98, 9748–9753 (2001).
 14. Pevzner, P. A., Tang, H. & Tesler, G. De novo repeat classification and 

fragment assembly. Genome Res. 14, 1786–1796 (2004).
 15. Myers, E. W. The fragment assembly string graph. Bioinformatics 21,  

ii79–ii85 (2005).
 16. Stankiewicz, P. & Lupski, J. R. Genome architecture, rearrangements and 

genomic disorders. Trends Genet. 18, 74–82 (2002).
 17. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders 

from the duplication architecture of the human genome. Nat. Genet. 38, 
1038–1042 (2006).

 18. Sudmant, P. H. et al. Global diversity, population stratification, and selection 
of human copy-number variation. Science 349, aab3761 (2015).

 19. Chen, J. et al. Bovine NK-lysin: copy number variation and functional 
diversification. Proc. Natl. Acad. Sci. USA 112, E7223–E7229 (2015).

 20. Dennis, M. Y. & Eichler, E. E. Human adaptation and evolution by segmental 
duplication. Curr. Opin. Genet. Dev. 41, 44–52 (2016).

 21. Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants 
and comparative cellular response to DNA damage in humans. J. Am. Med. 
Assoc. 314, 1850–1860 (2015).

 22. Church, D. M. et al. Lineage-specific biology revealed by a finished genome 
assembly of the mouse. PLoS Biol. 7, e1000112 (2009).

 23. Lander, E. S. et al. Initial sequencing and analysis of the human genome. 
Nature 409, 860–921 (2001).

 24. Emanuel, B. S. & Shaikh, T. H. Segmental duplications: an ‘expanding’ role in 
genomic instability and disease. Nat. Rev. Genet. 2, 791–800 (2001).

 25. Jain, M. et al. Nanopore sequencing and assembly of a human genome with 
ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

 26. Chaisson, M. J., Mukherjee, S., Kannan, S. & Eichler, E. E. Resolving 
multicopy duplications de novo using polyploid phasing. RECOMB 10229, 
117–133 (2017).

 27. Bailey, J. A. et al. Recent segmental duplications in the human genome. 
Science 297, 1003–1007 (2002).

 28. Ailon, N., Charikar, M. & Newman, A. Aggregating inconsistent information. 
J. Assoc. Comput. Mach. 55, 1–27 (2008).

 29. Auton, A. et al. A global reference for human genetic variation. Nature 526, 
68–74 (2015).

 30. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling 
and cortical neurogenesis. Cell 173, 1356–1369 (2018).

 31. Florio, M. et al. Evolution and cell-type specificity of human-specific  
genes preferentially expressed in progenitors of fetal neocortex. eLife 7, 
e32332 (2018).

 32. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by 
incomplete segmental duplication. Cell 149, 912–922 (2012).

 33. Nuttle, X. et al. Rapid and accurate large-scale genotyping of duplicated  
genes and discovery of interlocus gene conversions. Nat. Methods 10, 
903–909 (2013).

 34. Dennis, M. Y. et al. The evolution and population diversity of human-specific 
segmental duplications. Nat. Ecol. Evol. 1, 0069 (2017).

 35. Steinberg, K. M. et al. High-quality assembly of an individual of Yoruban 
descent. bioRxiv Preprint at https://www.biorxiv.org/content/
early/2016/08/02/067447 (2016).

 36. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using 
single-molecule sequencing. Nature 517, 608–611 (2015).

 37. BACPAC Resources. The CHORI-17 BAC library from a hydatidiform 
(haploid) mole. CloneDB https://www.ncbi.nlm.nih.gov/clone/library/
genomic/76/ (2018).

 38. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 
human genomes. Nature 526, 75–81 (2015).

 39. Nuttle, X. et al. Emergence of a Homo sapiens–specific gene family  
and chromosome 16p11.2 CNV susceptibility. Nature 536,  
205–209 (2016).

 40. Dougherty, M. L. et al. Transcriptional fates of human-specific segmental 
duplications in brain. Genome Res. 28, 1566–1576 (2018).

 41. Das, S. & Vikalo, H. SDhaP: haplotype assembly for diploids and polyploids 
via semi-definite programming. BMC Genomics 16, 260 (2015).

 42. Aguiar, D. & Istrail, S. Haplotype assembly in polyploid genomes  
and identical by descent shared tracts. Bioinformatics 29,  
i352–i360 (2013).

 43. Berger, E., Yorukoglu, D., Peng, J. & Berger, B. in Research in Computational 
Molecular Biology: RECOMB 2014 (ed Sharan, R.) 18–19 (Springer, 2014).

 44. Puljiz, Z. & Vikalo, H. Decoding genetic variations: communications-inspired 
haplotype assembly. IEEE/ACM. Trans. Comput. Biol. Bioinform. 13,  
518–530 (2016).

NATuRE METHoDS | VOL 16 | JANUARY 2019 | 88–94 | www.nature.com/naturemethods 93

https://doi.org/10.1038/s41592-018-0236-3
https://doi.org/10.1038/s41592-018-0236-3
https://www.biorxiv.org/content/early/2016/08/02/067447
https://www.biorxiv.org/content/early/2016/08/02/067447
https://www.ncbi.nlm.nih.gov/clone/library/genomic/76/
https://www.ncbi.nlm.nih.gov/clone/library/genomic/76/
http://www.nature.com/naturemethods


Articles NATure MeThODS

 45. Bonizzoni, P. et al. On the minimum error correction problem for  
haplotype assembly in diploid and polyploid genomes. J. Comput. Biol. 23, 
718–736 (2016).

 46. Artyomenko, A. et al. Long single-molecule reads can resolve the complexity 
of the influenza virus composed of rare, closely related mutant variants.  
J. Comput. Biol. 24, 558–570 (2017).

 47. Parsons, J. D. Miropeats: graphical DNA sequence comparisons. Comput. 
Appl. Biosci. 11, 615–619 (1995).

Acknowledgements
The authors thank S. Cantsilieris and D. Gordon for technical assistance, J. Underwood 
for recommendations regarding the analysis of HSDs and Iso-Seq data, and T. Brown 
for help in editing this manuscript. This work was supported, in part, by grants from 
the US National Institutes of Health (NIH) (HG002385 to E.E.E., HG007635 to 
R.K.W. and E.E.E., and HG003079 to R.K.W.). M.R.V. was supported by a National 
Library of Medicine (NLM) Big Data Training Grant for Genomics and Neuroscience 
(5T32LM012419-04). P.C.D. was supported by a National Human Genome Research 
Institute (NHGRI) training grant (5T32HG000035-23). E.E.E. is an investigator of the 
Howard Hughes Medical Institute.

Author contributions
M.R.V., M.J.P.C., and E.E.E. developed the SDA method; R.K.W. and T.A.G.-L. generated 
the PacBio genome sequence; M.S., A.E.W., M.R.V., and V.D. sequenced and analyzed 
the BAC clone insert; P.C.D., M.R.V., and M.L.D. carried out Iso-Seq analysis; M.R.V. 
organized the supplementary material; M.R.V., E.E.E., and M.J.P.C. wrote the manuscript; 
M.R.V. and P.C.D. produced the display items.

Competing interests
E.E.E. is on the scientific advisory board (SAB) of DNAnexus, Inc.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-018-0236-3.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to M.J.P.C. or E.E.E.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018

NATuRE METHoDS | VOL 16 | JANUARY 2019 | 88–94 | www.nature.com/naturemethods94

https://doi.org/10.1038/s41592-018-0236-3
https://doi.org/10.1038/s41592-018-0236-3
http://www.nature.com/reprints
http://www.nature.com/naturemethods


ArticlesNATure MeThODS

Methods
Human genome assemblies. We analyzed three human genome assemblies derived 
from haploid (CHM1 and CHM13)9 and diploid source material (NA1924035) of 
African descent. FALCON genome assemblies were previously generated from at 
least 61-fold SMRT sequence using P6C4 chemistry generated on the PacBio  
RS II sequencing platform. We also analyzed one recent human genome assembly 
(NA12878) generated with ultra-long ONT sequence reads25.

SD characterization. We mapped each human de novo assembly to the human 
reference genome GRCh38 using MashMap 2.0 (default settings)48 and defined 
SD regions on the basis of intersection with annotated SDs in GRCh38. Sequence 
contigs overlapping SDs were defined as resolved if the contig completely 
contained the SD sequence and extended at least 50 kb either side into unique 
sequence. We compared the number of resolved and unresolved contigs (Fig. 1a) 
for each assembly as a function of SD block length and maximum percent identity. 
Scripts are available at https://github.com/mvollger/segDupPlots (as well as a more 
detailed description of the analysis in the ‘README’ file).

Assembly collapse and PSV definition. Within each assembly, we identified 
collapsed SDs by mapping SMRT or ONT sequencing reads back to each genome 
using BLASR49 (version rc46) or minimap250 (version 2.11) for ONT. Using unique 
regions, we computed the read coverage and s.d. across 100-bp windows using 
the following BLASR settings: blasr $READS $ASM -sa $ASMSA / -sdpTupleSize 
13 -sdpMaxAnchorsPerPosition 10 -maxMatch 25 / -minMapQV 30 -bestn 2 
-advanceExactMatches 15 / -clipping subread --sam. We excluded regions with  
> 75% common repeat elements (RepeatMasker version 2004/03/06 –e wublast) 
and regions in the bottom or top two percentiles. We defined collapsed regions as 
those with a mean sequence coverage > 3 s.d. beyond the mean sequence coverage 
of the de novo assembly and that were at least 9,000 bp in length (as smaller regions 
were routinely sequenced and assembled). We examined all regions of collapse 
for the presence of SNVs and catalogued the second-most common base at each 
position within the collapsed region using more sensitive BLASR settings: blasr 
{input.basreads} {input.ref} / -sam -preserveReadTitle -clipping subread / -bestn 
1 / -mismatch 3 -insertion 9 -deletion 9 -minAlignLength 500. We defined these 
SNVs as potential PSVs if the sequence coverage was consistent with the read 
depth of unique regions. Three thresholds were applied to determine whether an 
SNV was also a PSV. First, the total depth at the given position had to be at least the 
mean coverage plus 3 s.d. Second, the frequency of the second-most frequent base 
had to be less than the mean coverage. Finally, the frequency of the second-most 
frequent base had to be greater than the mean coverage minus 3 s.d. or half the 
mean coverage, whichever was greater. This process favors the selection of PSVs 
over allelic variants (Supplementary Fig. 4). We developed a Snakemake pipeline 
for this analysis ProcessCollapsedAssembly.py, which can be found at https://
github.com/mvollger/SDA.

PSV graph construction. We constructed graphs for collapsed regions in which 
each PSV corresponds to a node and sequence reads represent edges. Attraction 
edges are created when two PSV nodes have a substantial number of sequencing 
reads that contain both PSVs. Among reads containing both PSVs, we tested 
whether each PSV was more likely to be real or a sequencing error using the ratio 
of two binomial tests. If at each PSV the log10 ratio of the two binomial tests was at 
least 1.5 (that is, approximately 31 times more likely to be real than error), then an 
attraction edge was formed. Repulsion edges were created between any PSVs for 
which less than 10% of the mean coverage of sequencing reads carried both PSVs.

Correlation clustering. We initially added all nodes to an unclustered set from 
which a node was randomly selected and then expanded upon by iteratively 
searching for neighbors of this node that reduced the overall score of the PSV 
graph (that is, minimized the objective function). As nodes that meet this criterion 
are added to the cluster, they are removed from the unclustered set. This process 
was repeated until there were no unclustered nodes, as described previously26. 
Next, all pairwise clusters are examined to see whether they would improve the 
score of the graph if combined into a single cluster. Clusters are combined starting 
with the pairwise cluster that most improves the score of the correlation clustering 
objective. Clusters of three or fewer nodes are removed. The correlation clustering 
heuristic is run independently 15 times each with different random initializations 
and the clustering that best minimizes the correlation clustering objective is used 
to construct the final PSV clusters. It can be the case that in the construction 
of the PSV graph the PSVs are already clustered appropriately as unconnected 
components in the graph. In this case the application of correlation clustering is 
unnecessary to phase PSVs.

PSV read partition and assembly. To partition SMRT or ONT sequencing 
reads according to the PSV clusters defined by correlation clustering, we apply 
WhatsHap51 (version 0.16) using the following parameters: whatshap haplotag 
$INPUT_VCF $INPUT_BAM -o $OUTPUT_BAM. Phasing was run on the entire 
set of reads for each PSV cluster (that is, if there were five PSV clusters, WhatsHap 
was run five times to create five partitions of reads). After partitioning the reads 
into different paralogs, we independently assembled each correlation cluster 

with Canu version 1.5, and then applied error correction (Quiver v 1.1.0) using 
the same set of reads. Specialized parameters were applied such that Canu could 
execute on such short contigs (https://github.com/mvollger/SDA/blob/master/
SDA.2.snakemake.py).

Illumina copy number estimate. We estimated copy number in CHM1 by 
examining k-mer frequency found in Illumina WGS reads, following methods 
described previously18. We used a similar approach to estimate copy number 
in GRCh38, except we generated simulated reads using the reference and then 
estimated copy number in the same fashion using the simulated reads.

BAC clone insert sequencing. BAC clones from CHORI-17 (CH17) clone 
libraries (http://bacpac.chori.org) were hybridized with probes targeting 
complex or highly duplicated regions of GRCh38 (n =  727) or based on 
previously sequenced clones (n =  526)36,37. DNA from positive clones was isolated 
by a modified alkaline lysis miniprep procedure, as follows: cell pellet was 
resuspended in 200 μ l of Qiagen buffer P1 with RNase and lysed with 200 μ l of 
0.2 M NaOH/1%SDS solution for 5 min. Lysis was neutralized with 280 μ l of 3 M 
NaOAc, pH 4.8. Neutralized lysate was incubated on ice for up to 20 min, collected 
by centrifugation for 30 min at 4,000 r.p.m., concentrated by standard isopropanol 
and then ethanol precipitation, and resuspended in 25 μ l of 10 mM Tris-HCl,  
pH 8.5. We prepared barcoded libraries from clone DNA using Illumina-
compatible Nextera DNA sample prep kits (Epicentre, catalog number GA09115) 
as described previously52 and carried out paired-end sequencing (125-bp reads) 
on an Illumina HiSeq 2500. Reads were then mapped to the reference genome, 
GRCh38, to identify singly unique nucleotide k-mers (SUNKs), defined as 30-
mers that identify a region of the genome and can be used in conjunction with 
short-read sequencing data to genotype highly identical paralogs53. This SUNK 
mapping was used to select a subset of positive clones for PacBio sequencing. BAC 
DNA from selected clones was isolated using a High Pure Plasmid Isolation Kit 
from Roche Applied Science following the manufacturer’s instructions, using 6 ml 
of LB media with chloramphenicol selective marker. We pooled non-overlapping 
BACs at equal molar amounts before library preparation. Approximately 1 µ g of 
DNA per BAC was pooled and sheared using a Covaris g-TUBE. Libraries were 
processed using the PacBio SMRTbell Template Prep kit following the protocol 
“Procedure and Checklist—20 kb Template Preparation Using BluePippin Size-
Selection System.” Libraries were size-selected on the Sage PippinHT with a 
start value of 10,000–12,000 and an end value of 50,000. The DNA/Polymerase 
Binding Kit (P6-C4 chemistry) was used to bind DNA template to DNA 
polymerase, and the MagBead kit was used to capture DNA polymerase–template 
complexes for loading. Libraries were sequenced on the PacBio RS II platform. 
We performed de novo assembly of pooled BAC inserts using Canu v1.5 (ref. 7). 
Reads were masked for vector sequence (pBACGK1.1) and assembled with Canu, 
then subjected to consensus sequence calling with Quiver. Canu is specifically 
designed for assembly with long error-prone reads, whereas Quiver is a multi-read 
consensus algorithm that uses the raw pulse and base call information generated 
during SMRT sequencing for error correction. We reviewed PacBio assemblies 
for misassembly by visualizing the read depth of PacBio reads in Parasight 
(http://eichlerlab.gs.washington.edu/jeff/parasight/index.html), using coverage 
summaries generated during the resequencing protocol.

Statistical information. Statistical information for analysis of copy number 
differences is provided in Fig. 2. The statistical analysis used to link PSVs with 
long-read data is described above in the section ‘PSV graph construction’.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Code for analyzing the resolved and unresolved SDs in a de 
novo assembly can be found at https://github.com/mvollger/segDupPlots. Code for 
processing de novo assemblies to find collapses and running SDA can be found at 
https://github.com/mvollger/SDA.

Data availability
SMRT WGS for CHM1, CHM13, and NA12940 from this study are available at 
the NCBI Sequence Read Archive (SRA) under accession numbers SRP044331 
for CHM1; SRX818607, SRX825542, and SRX825575–SRX825579 for CHM13; 
and SRX1093000, SRX1093555, SRX1093654, SRX1094289, SRX1094374, 
SRX1094388, and SRX1096798 for NA19240. ONT WGS data are available 
at https://github.com/nanopore-wgs-consortium/NA12878/blob/master/
Genome.md. De novo assemblies of CHM1, CHM13, NA12940, and NA12878 
from this study are available at the NCBI Assembly database under accession 
numbers GCA_001297185.1, GCA_000983455.2, GCA_001524155.4, and 
GCA_900232925.1, respectively. Assembled CHORI-17 BACs are available at 
the NCBI Clone DB (https://www.ncbi.nlm.nih.gov/clone/) under the accession 
numbers listed in Supplementary Table 4. Information about length, PSVs, and 
mapping location in GRCh38 can be found for all the SDA contigs generated, in 
Supplementary Table 8. Additional data that support the findings of this study are 
available from the corresponding author upon request.
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Data collection No software was used.

Data analysis Code for analyzing the resolved and unresolved segmental duplications in a de novo assembly can be found at https://github.com/
mvollger/segDupPlots. Code for processing de novo assemblies to find collapses and running SDA can be found at https://github.com/
mvollger/SDA.   
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gephi version 0.9.2 
miniasm version 0.3 
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wtdbg version 1.2.8  
snakemake version 5.2.2 
 
For a complete list software used by the distributed version of SDA see:  
https://github.com/mvollger/SDA/blob/master/ymls/python3.yml, and https://github.com/mvollger/SDA/blob/master/ymls/python2.yml 
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SMRT WGS for CHM1, CHM13, and NA12940 from this study are available at the NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under 
accession numbers SRP044331 for CHM1; SRX818607, SRX825542, and SRX825575-SRX825579 for CHM13; and SRX1093000, SRX1093555, SRX1093654, 
SRX1094289, SRX1094374, SRX1094388, and SRX1096798 for NA19240. ONT WGS data are available at https://github.com/nanopore-wgs-consortium/NA12878/
blob/master/Genome.md. De novo assemblies of CHM1, CHM13, NA12940, and NA12878 from this study are available at the NCBI Assemblies database (Assembly; 
https://www.ncbi.nlm.nih.gov/assembly/) under accession numbers GCA_001297185.1, GCA_000983455.2, GCA_001524155.4, and GCA_900232925.1, 
respectively. Assembled CHORI-17 BACs are available at the NCBI Clone database (Clone; https://www.ncbi.nlm.nih.gov/clone/) under the accession numbers listed 
in Table S4. 
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Sample size We analyzed four genome assemblies using our method (CHM1, CHM13, NA19240, and NA12878). We believe this is a sufficient sample size 
since these samples represent: diverse individuals, different sequencing technologies, and different genomic architectures (hydatidiform 
moles and true diploids), all while still showing the utility and generalizability of the method. 

Data exclusions No data were excluded 

Replication Our method is computational and non-random. Rerunning with the same input always produced the same output.  

Randomization This is not applicable since we make no claims on covariation between the genomes we analyzed. 

Blinding Not applicable, there was no group allocation done during data analysis, so no blinding was required. 
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