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Genome analysis of the platypus reveals
unique signatures of evolution
A list of authors and their affiliations appears at the end of the paper

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating
combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic
lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the
first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins
have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying
eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding
RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable
resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

The platypus (Ornithorhynchus anatinus) has always elicited excite-
ment and controversy in the zoological world1. Some initially con-
sidered it to be a true mammal despite its duck-bill and webbed
feet. The platypus was placed with the echidnas into a new taxon
called the Monotremata (meaning ‘single hole’ because of their
common external opening for urogenital and digestive systems).
Traditionally, the Monotremata are considered to belong to the
mammalian subclass Prototheria, which diverged from the therapsid
line that led to the Theria and subsequently split into the marsupials
(Marsupialia) and eutherians (Placentalia). The divergence of mono-
tremes and therians falls into the large gap in the amniote phylogeny
between the eutherian radiation about 90 million years (Myr) ago
and the divergence of mammals from the sauropsid lineage around
315 Myr ago (Fig. 1). Estimates of the monotreme–theria divergence
time range between 160 and 210 Myr ago; here we will use 166 Myr
ago, recently estimated from fossil and molecular data2.

The most extraordinary and controversial aspect of platypus bio-
logy was initially whether or not they lay eggs like birds and reptiles.
In 1884, William Caldwell’s concise telegram to the British Association
announced ‘‘Monotremes oviparous, ovum meroblastic’’, not holo-
blastic as in the other two mammalian groups3,4. The egg is laid in an
earthen nesting burrow after about 21 days and hatches 11 days
later5,6. For about 4 months, when most organ systems differentiate,
the young depend on milk sucked directly from the abdominal skin,
as females lack nipples. Platypus milk changes in protein composi-
tion during lactation (as it does in marsupials, but not in most
eutherians5). The anatomy of the monotreme reproductive system
reflects its reptilian origins, but shows features typical of mammals7,
as well as unique specialized characteristics. Spermatozoa are fili-
form, like those of birds and reptiles, but, uniquely among amniotes,
form bundles of 100 during passage through the epididymis.
Chromosomes are arranged in defined order in sperm8 as they are
in therians, but not birds9. The testes synthesize testosterone and
dihydrotestosterone, as in therians, but there is no scrotum and testes
are abdominal10.

Other special features of the platypus are its gastrointestinal
system, neuroanatomy (electro-reception) and a venom delivery
system, unique among mammals11. Platypus is an obligate aquatic
feeder that relies on its thick pelage to maintain its low (31–32 uC)
body temperature during feeding in often icy waters. With its
eyes, ears and nostrils closed while foraging underwater, it uses an

electro-sensory system in the bill to help locate aquatic invertebrates
and other prey12,13. Interestingly, adult monotremes lack teeth.

The platypus genome, as well as the animal, is an amalgam of
ancestral reptilian and derived mammalian characteristics. The
platypus karyotype comprises 52 chromosomes in both sexes14,15,
with a few large and many small chromosomes, reminiscent of rep-
tilian macro- and microchromosomes. Platypuses have multiple sex
chromosomes with some homology to the bird Z chromosome16.
Males have five X and five Y chromosomes, which form a chain at
meiosis and segregate into 5X and 5Y sperm17,18. Sex determination
and sex chromosome dosage compensation remain unclear.

Platypuses live in the waterways of eastern and southern Australia,
including Tasmania. Its secretive lifestyle hampers understanding of
its population dynamics and the social and family structure.
Platypuses are still relatively common in the wild, but were recently
reclassified as ‘vulnerable’ because of their reliance on an aquatic
environment that is under stress from climate change and degradation
by human activities. Water quality, erosion, destruction of habitat and
food resources, and disease now threaten populations. Because the
platypus has rarely bred in captivity and is the last of a long line of
ornithorhynchid monotremes, their continued survival is of great
importance. Here we describe the platypus genome sequence and
compare it to the genomes of other mammals, and of the chicken.

Sequencing and assembly

All sequencing libraries were prepared from DNA of a single female
platypus (Glennie; Glenrock Station, New South Wales, Australia)
and were sequenced using established whole-genome shotgun
(WGS) methods19. A draft assembly was produced from ,63
coverage of whole-genome plasmid, fosmid and bacterial artificial
chromosome (BAC) reads (Supplementary Table 1) using the assem-
bly program PCAP20 (Supplementary Notes 1). A BAC-based phy-
sical map was developed in parallel with the sequence assembly and
subsequently integrated with the WGS assembly to provide the
primary means of scaffolding the assembly into larger ordered and
oriented groupings (ultracontigs; Supplementary Notes 2 and 3 and
Supplementary Table 2). Because there were no platypus linkage
maps available, we used fluorescent in situ hybridization (FISH) to
localize a subset of the sequence scaffolds to chromosomes following
the agreed nomenclature21. Of the 1.84 gigabases (Gb) of assembled
sequence, 437 megabases (Mb) were ordered and oriented along 20 of
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the platypus chromosomes. We analysed numerous metrics of
assembly quality (Supplementary Notes 4–11) and we conclude that
despite the adverse contiguity, the existing platypus assembly, given
its structural and nucleotide accuracy, provides a reasonable sub-
strate for the analyses presented here.

Non-protein-coding genes

In general, the platypus genome contains fewer computationally pre-
dicted non-protein-coding (nc)RNAs (1,220 cases excluded high
repetitive small nucleolar RNA (snoRNA) copies; see below) than
do other mammalian species (for example, human with 4,421 Rfam
hits), similar to observations in chicken19 (655 Rfam-based ncRNAs).
This is probably because of the extensive retrotransposition of
ncRNAs in therian mammals and the apparent lack of L1-mediated
retrotransposition in chicken and platypus. The exception to this is
the platypus family of snoRNAs, which is markedly expanded
(,2,000 matches to the Rfam covariant models) compared to that
for therian mammals (,200). snoRNAs are involved in RNA modi-
fications, in particular of ribosomal RNA, and are often located in
introns of protein-coding genes22. Our investigations revealed a
novel short-interspersed-element (SINE)-like, snoRNA-related
retrotransposon—which we have labelled snoRTEs—that has dupli-
cated in platypus to ,40,000 full-length or truncated copies. It is
retrotransposed by means of retrotransposon-like non-LTR (long
terminal repeat) transposable elements (RTE) as opposed to the
L1-mediated transposition mechanism in therians23. We constructed
a complementary DNA library of small, ncRNAs and identified 371
consensus sequences of small RNAs that included 166 snoRNAs23

(Supplementary Table 3). Ninety-nine of these cloned snoRNAs
are found in paralogous families, and 21 of them belong to the
snoRTE class. The presence of both the structural requirements

known to be important in snoRNA function24 and evidence of their
expression are consistent with these snoRTE elements being func-
tional in the platypus. Similar to other unrelated ncRNAs that have
proliferated in therian mammals (for example, 7SL RNA-derived
primate Alu elements, tRNA-derived rodent identifier (ID) ele-
ments), this recent SINE-like expansion is probably due to chance
events. However, given the RNA modification activity of snoRNAs,
and our increasing awareness of the cellular importance of RNA
molecules, it might be that some of the retrotranspositionally dupli-
cated RNAs were exapted into new functions in this species.
Other small RNAs. Overall, we found commonalities with small
RNA (sRNA) pathways of other mammals, but also features that
are unique to monotremes. Components of the RNA interference
machinery are conserved in platypus, including elements of bioge-
nesis pathways (Dicer and Drosha) and RNA-interference effector
complexes (argonaute proteins; Supplementary Table 4). Of
20,924,799 platypus and echidna sRNA reads derived from liver,
kidney, brain, lung, heart and testis, 67% could be assigned to
known microRNA (miRNA) families. Established patterns of
miRNA expression were generally recapitulated in monotremes.

To determine the conservation patterns of miRNAs in platypus, we
identified platypus miRNAs sharing at least 16-nucleotide identity with
miRNAs in eutherian mammals (mouse/human) and chicken.
Although most conserved miRNAs were identified across these verte-
brate lineages (137 miRNAs), 10 miRNAs were shared only with euthe-
rians (mouse/human) and 4 only with chicken (Fig. 2a). miRNAs can
be classified into families based on identity of the functional ‘seed’
region at position 2–8 of the mature miRNA strand. We identified
miRNA families that were shared between platypus and eutherians
but not chicken (40 families), or between platypus and chicken but
not eutherians (8 families), suggesting that for some miRNAs only

Therapsids
(mammal-like

reptiles)

Primitive
mammals

166 Myr ago

148 Myr
ago

Diapsids

Homeothermy
Lactation

Holoblastic cleavage
Placentation

Viviparity
Testicular descent

Sauropsids

Amniotes

Synapsids
315 Myr ago

Te
rt

ia
ry

C
re

ta
ce

ou
s

Ju
ra

ss
ic

Tr
ia

ss
ic

P
er

m
ia

n

Prototherian
mammals

Therian
mammals

Lep
id

osaurs

A
rchosaurs

M
onotrem

es

M
arsup

ials

E
utherians

V
enom

E
lectrorecep

tion
M

erob
lastic cleavage

Inner cell m
ass

P
rolonged

 gestation

P
ouch

P
rolonged

 lactation

C
en

oz
oi

c
P

al
ae

oz
oi

c
M

es
oz

oi
c

65

146

208

250

290

325

0

M
yr

 a
go

360

Figure 1 | Emergence of traits along the
mammalian lineage. Amniotes split into the
sauropsids (leading to birds and reptiles) and
synapsids (leading to mammal-like reptiles).
These small early mammals developed hair,
homeothermy and lactation (red lines).
Monotremes diverged from the therian mammal
lineage ,166 Myr ago2 and developed a unique
suite of characters (dark-red text). Therian
mammals with common characters split into
marsupials and eutherians around 148 Myr ago2

(dark-red text). Geological eras and periods with
relative times (Myr ago) are indicated on the left.
Mammal lineages are in red; diapsid reptiles,
shown as archosaurs (birds, crocodilians and
dinosaurs), are in blue; and lepidosaurs (snakes,
lizards and relatives) are in green.
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the seed region may have been selectively conserved (Fig. 2a).
Conserved miRNAs tended to be more robustly expressed in the
platypus tissues analysed than lineage-restricted miRNAs (Fig. 2b).

To identify miRNAs unique to monotremes we used a heuristic
search that identifies miRNA candidates in deep-sequencing data
sets25. This method predicted 183 novel miRNAs in platypus and
echidna (Fig. 2a). Notably, 92 of these lay in 9 large clusters, on
platypus chromosome X1 and contigs 1754, 7160, 7359, 8388,
11344, 22847, 198872 and 191065. Physical mapping confirmed that
at least five of these contigs are linked to the long arm of chromosome
X1 (ref. 25). These abundantly expressed clusters were sequenced
almost exclusively from platypus and echidna testis (Fig. 2b). The
expansion of this unique miRNA class and its expression domain
suggest possible roles in monotreme reproductive biology25.

Piwi-interacting RNAs (piRNAs) associate with a germline-
expressed clade of argonaute proteins, known as Piwis26, and have
a role in transposon silencing and genome methylation26. Mono-
treme piRNAs bear strong structural similarity to those in eutherians.
They are ,29 nucleotides in length and arise from large testis-specific
genomic clusters with distinct genomic strand asymmetry, often with
a typical ‘bidirectional’ organization. We identified 50 major platy-
pus piRNA clusters as well as numerous smaller clusters25. In contrast
to piRNAs in mouse, platypus piRNAs are repeat-rich and bear
strong signatures of active transposon defence.

Gene evolution

We set out to define the protein-coding gene content of platypus to
illuminate both the specific biology of the monotreme clade and for
comparisons to eutherians and marsupials, or to chicken, the repre-
sentative sauropsid. Protein-coding genes were predicted using the
established Ensembl pipeline27 suitably modified for platypus
(Supplementary Notes 14), with a greater emphasis placed on simi-
larity matches to mammalian genes. Overall this resulted in 18,527
protein-coding genes being predicted from the current platypus
assembly. The number of platypus protein-coding genes thus is
similar to estimates (18,600–20,800) for human and opossum28,29.

We were interested first in identifying platypus genes that contri-
bute most to core biological functions that are conserved across the
mammals. These will typically be ‘simple’ 1:1 orthologues, genes that
have remained as single copies without duplication or deletion in
platypus, in Eutheria (specifically, in dog, human and mouse) and in
opossum, a representative marsupial. Subsequently, we considered
genes that have been duplicated or deleted in the monotreme lineage,
or that have been lost in eutherian and/or marsupial lineages. Such
genes are proposed to contribute most to the lineage-specific
biological functions that distinguish individual mammals30. These

studies required the use of an outgroup species, here chicken, a rep-
resentative of the sauropsids.

As expected, the majority of platypus genes (82%; 15,312 out of
18,596) have orthologues in these five other amniotes (Supplemen-
tary Table 5). The remaining ‘orphan’ genes are expected to primarily
reflect rapidly evolving genes, for which no other homologues are
discernible, erroneous predictions, and true lineage-specific genes
that have been lost in each of the other five species under considera-
tion. Simple 1:1 orthologues, which have been conserved without
duplication, deletion or non-functionalization across the five mam-
malian species, were greatly enriched in housekeeping functions,
such as metabolism, DNA replication and mRNA splicing (Supple-
mentary Table 6).

We then identified evolutionary lineages that experienced the most
stringent purifying selection. The mouse terminal lineage exhibited
a significantly higher degree of purifying selection (the ratio of
amino acid replacement to silent substitution rates, dN/dS 5 0.105,
P , 0.001) than dog, opossum and chicken terminal branches (values
of 0.123–0.128); human and platypus terminal lineages showed sig-
nificantly reduced purifying selection (both 0.132, P , 0.03). These
values probably reflect the increased efficiency of purifying selection
in populations of larger effective size, such as that of mouse31. We find
that at least one nucleotide substitution has occurred, on average, in
synonymous sites of platypus and human orthologues since their last
common ancestor (Supplementary Notes 17 and Supplementary
Fig. 1). This means that most neutral sequence cannot be aligned
accurately between monotreme and eutherian genomes.

Next, we determined the genetic distance of echidna (Tachyglossus
aculeatus) from platypus. The median dS value of 0.125 for the ortho-
logues of echidna and platypus, when compared to the value for the
monotreme lineage, predicts that platypus and echidna last shared a
common ancestor 21.2 Myr ago. Although similar to previous esti-
mates32, this value seems to be at odds with fossil evidence, perhaps
owing to relatively recent reductions of mutational rates in the
monotreme lineage33.

Monotreme biology

We next investigated whether the ancestral reptilian characters of
monotremes are reflected in the set of genes that have been retained
in platypus, sauropsids and other vertebrates from outside of the
amniote clade (such as frogs and fish), but have been lost from euthe-
rian and marsupial lineages (Fig. 1). These ancestral, sauropsid-like,
characters of platypus include oviparity (egg laying) and the outward
appearances of its spermatozoa and retina. Simultaneously, we
sought genetic evidence within the platypus genome both for chara-
cteristics peculiar to monotremes, such as venom production and
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Figure 2 | Platypus miRNAs. a, Platypus has miRNAs shared with
eutherians and chickens, and a set that is platypus-specific. miRNAs cloned
from six platypus tissues were assigned to families based on seed
conservation. Platypus miRNAs and families were divided into classes
(indicated) based on their conservation patterns with eutherian mammals

(mouse/human) and with chicken. b, Expression of platypus miRNAs. The
cloning frequency of each platypus mature miRNA sequenced more than
once is represented by a vertical bar and clustered by conservation pattern.
miRNAs from a set of monotreme-specific miRNA clusters that are
expressed in testis are shaded in red.
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electro-reception, and for characteristics unique to mammals, in
particular lactation. By investigating platypus homologues of genes
already known to be involved in specific physiological processes (see
Methods), we highlight those platypus genes for which evolution
exemplifies the ancestral or derived physiological characters of
monotremes.
Chemoreception. The semi-aquatic platypus was expected to sense
its terrestrial, but not aquatic, environment by detecting airborne
odorants using olfactory receptors and vomeronasal receptors (types
1 and 2: V1Rs, V2Rs). Nevertheless large numbers of odorant recep-
tor, V1R and V2R homologues (approximately 700, 950 and 80,
respectively) are apparent in the platypus genome assembly, although
for each family only a minority lack frame disruptions (approxi-
mately 333, 270 and 15, respectively)34. Many of these platypus genes
and pseudogenes are monophyletic, having arisen by duplication in
the 166 Myr since the last common ancestor of monotremes and
therians. Although mouse and rat genomes possess greater numbers
of odorant receptors and V2Rs than the platypus genome35,36, the
platypus repertoire of V1Rs, showing undisrupted reading frames,
is the largest yet seen, 50% more than for mouse (Fig. 3b). This is
particularly noteworthy as the Anolis carolinensis lizard (sequence
data used with the permission of the Broad Institute) and the
chicken19 seem to possess no such receptors. The large expansion
of the platypus V1R gene family might reflect sensory adaptations
for pheromonal communication or, more generally, for the detec-
tion of water-soluble, non-volatile odorants, during underwater
foraging.

The platypus odorant receptor gene repertoire is roughly one-half
as large as those in other mammals37. Nevertheless, platypus odorant
receptors fall into class, family and subfamily structures that are well
represented from across the mammals, with a few notable exceptions
such as family 14 (Fig. 3a). Together with the finding that lizard
contains only ,200 odorant receptor genes and pseudogenes, this
indicates that the platypus olfactory repertoire is, as expected, more
akin to other mammals than it is to sauropsids.
Eggs. Fertilization in the platypus exhibits both sauropsid and the-
rian characteristics. Platypus ova are small (4 mm diameter) relative
to comparably sized reptiles and birds, and eggs hatch at an early
stage of development so that most growth of the embryo and infant is
dependent on lactation, as in marsupials. Like all mammals and
many other amniotes, when fertilization occurs the ovum is invested
with a zona pellucida. The platypus genome encodes each of the four
proteins of the human zona pellucida38, as well as two ZPAX genes
(Table 1) that previously were observed only in birds, amphibians
and fish. The aspartyl-protease nothepsin is present in platypus, but
has been lost from marsupial and eutherian genomes (Table 1). In
zebrafish, this gene is specifically expressed in the liver of females
under the action of oestrogens, and accumulates in the ovary39.
These are the same characteristics as of the vitellogenins, indicating
that nothepsin may be involved in processing vitellogenin or other
egg-yolk proteins. We find that platypus has retained a single vitel-
logenin gene and pseudogene, whereas sauropsids such as chicken
have three and the viviparous marsupials and eutherians have none.
Spermatozoa. Orthologues of many of the eutherian sperm mem-
brane proteins related to fertilization40 are present in platypus (and
marsupial) genomes. These include the genes for a number of puta-
tive zona pellucida receptors and proteins implicated in sperm–
oolemma fusion. Testis-specific proteases, which in eutherians par-
ticipate in degradation of the zona pellucida during fertilization, are
all absent from the platypus genome assembly.

Monotreme spermatozoa undergo some post-testicular matura-
tional changes, including the acquisition of progressive motility, loss
of cytoplasmic droplets and aggregation of single spermatozoa into
bundles during passage through the epididymis11. Nevertheless,
maturational changes in the sperm surface that are both unique
and essential in other mammals for fertilization of the ovum have
yet to be identified. Also, the epididymis of monotremes is not highly

adapted for sperm storage as in most marsupial and eutherian mam-
mals. Consistent with these findings is the absence of platypus genes
for the epididymal-specific proteins that have been implicated in
sperm maturation and storage in other mammals. The most abun-
dant secreted protein in the platypus epididymis is a lipocalin, the
homologues of which are the most secreted proteins in the reptilian
epididymis41. Notably, ADAM7, a protease that is secreted in the
epididymis of eutherians, has an orthologue in the platypus. This is
a bona fide protease with a characteristic Zn21-coordinating
sequence HExxH in the platypus, in the opossum and the tree shrew
(Tupaia belangeri). However, loss of its proteolytic activity is pre-
dicted in eutherians42 owing to a single point mutation within its
active site (E to Q).
Lactation and dentition. Lactation is an ancient reproductive trait
whose origin predates the origin of mammals. It has been proposed
that early lactation evolved as a water source to protect porous
parchment-shelled eggs from desiccation during incubation43 or as
a protection against microbial infection. Parchment-shelled egg-
laying monotremes also exhibit a more ancestral glandular mammary
patch or areola without a nipple that may still possess roles in egg
protection. However, in common with all mammals, the milk of
monotremes has evolved beyond primitive egg protection into a true
milk that is a rich secretion containing sugars, lipids and milk pro-
teins with nutritional, anti-microbial and bioactive functions. In a
reflection of this eutherian similarity platypus casein genes are tightly
clustered together in the genome, as they are in other mammals,
although platypus contains a recently duplicated b-casein gene
(Supplementary Fig. 2).

Mammalian casein genes are thought to have originally arisen by
duplication of either enamelin or ameloblastin44, both of which are
tooth enamel matrix protein genes that are located adjacent to the
casein gene cluster in eutherians and, we find, also in platypus. Adult
platypuses, as well as echidnas, lack teeth but the conservation of
these enamel protein genes is consistent with the presence of teeth
and enamel in the juvenile, as well as the fossil platypuses45.
Venom. Only a handful of mammals are venomous, but the male
platypus is unique among them in delivering its poison not via a bite
but from hind-leg spurs. Despite the obvious difficulties in obtaining
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samples, it is now known that platypus venom is a cocktail of at least
19 different substances46 including defensin-like peptides (vDLPs),
C-type natriuretic peptide (vCNP) and nerve growth factor (vNGF).
When analysed phylogenetically and mapped to the platypus genome
assembly, these sequences are revealed to have arisen from local
duplications of genes possessing very different functions (Fig. 4).
Notably, duplications in each of the b-defensin, C-type natriuretic
peptide and nerve growth factor gene families have also occurred
independently in reptiles during the evolution of their venom47.
Convergent evolution has thus clearly occurred during the indepen-
dent evolution of reptilian and monotreme venom48.
Immunity. Although the major organs of the monotreme immune
system are similar to those of other mammals49, the repertoire of
immunity molecules shows some important differences from those
of other mammals. In particular, the platypus genome contains at
least 214 natural killer receptor genes (Supplementary Notes 18)
within the natural killer complex, a far larger number than for human
(15 genes50), rat (45 genes50) or opossum (9 genes51).

Both platypus and opossum genomes contain gene expansions in
the cathelicidin antimicrobial peptide gene family (Supplementary
Fig. 3). Among eutherians, primates and rodents have a single cathe-
licidin gene52,53, whereas sheep and cows have numerous genes that
have been duplicated only recently54. The expanded repertoire of
cathelicidin genes in both marsupials and monotremes may arm their
immunologically naive young with a diverse arsenal of innate
immune responses. In eutherians, with their increases in length of
gestation and advances in development in utero of their immune
systems, the diversity of antimicrobial peptide genes may have
become less critical. The platypus genome also contains an expansion
in the macrophage differentiation antigen CD163 gene family
(Supplementary Notes 18).

Genome landscape

First, we analyse the phylogenetic position of platypus and confirm
that marsupials and eutherians are more closely related than either is
to monotremes (Supplementary Notes 19). We then describe platypus
chromosomes and observe some properties of platypus interspersed
and tandem repeats. We also discuss a potential relationship between
interspersed repeats and genomic imprinting and investigate how the
extremely high G1C fraction in platypus affects the strong association
seen in eutherians between CpG islands and gene promoters.
Platypus chromosomes. Platypus chromosomes provide clues to the
relationship between mammal and reptile chromosomes, and to the
origins of mammal sex chromosomes and dosage compensation. Our
analysis provides further insight with the following findings: the 52
platypus chromosomes show no correlation between the position of
orthologous genes on the small platypus chromosomes and chicken
microchromosomes; for the unique 5X chromosomes of platypus we
reveal considerable sequence alignment similarity to chicken Z and no
orthologous gene alignments to human X, implying that the platypus X
chromosome evolved directly from a bird-like ancestral reptilian sys-
tem55; and the genes on the five platypus X chromosomes appear to be
partially dosage compensated (Supplementary Fig. 5), perhaps parallel
to the incomplete dosage compensation recently described in birds56.
Repeat elements. About one-half of the platypus genome consists of
interspersed repeats derived from transposable elements. The most
abundant and still active repeats are (severely truncated) copies of the
5-kb long-interspersed-element (LINE2) and its non-autonomous
SINE-companion mammalian-wide interspersed repeat (MIR,
Mon-1 in monotremes) that became extinct in marsupials and in
eutherians 60–100 Myr ago. We estimate that there are 1.9 and 2.75
million copies of LINE2 and MIR/Mon-1, respectively, in the 2.3-Gb
platypus genome. DNA transposons and LTR retroelements are quite

Table 1 | Platypus genes that have been lost from the eutherian lineage

Description Platypus Ensembl gene Proposed function

Retinal guanylate cyclase activator 1A ENSOANG00000012043 In zebrafish, expressed in retina
Enoyl-CoA hydratase/isomerase ENSOANG00000012890 Involved in fatty acid metabolism
Ferric reductase/cytochrome b561 ENSOANG00000019725 Absorption of dietary iron
Nothepsin, aspartic proteinase ENSOANG00000005955 Processes egg-yolk proteins
Glutamine synthetase ENSOANG00000008089 Role in nitrogen metabolism
Vitellogenin II Contig 10010 Major egg-yolk protein
Cytochrome P450, CYP2-like ENSOANG00000004537 Toxin degradation
ATP6AP1 paralogue ENSOANG00000004825 Retinal pigmentation
Organic solute transporter alpha (2 genes) Ultracontig 462, Contig 159089 Bile acid transport
Neuropeptide Y7 receptor ENSOANG00000014966 Regulator of food intake
Melatonin receptor 1C ENSOANG00000011638 Circadian rhythm regulation
Epidermal differentiation-specific proteins (3 genes) ENSOANG00000005335,

ENSOANG00000003767,
ENSOANG00000013512

Neural and epidermal differentiation

TRPV7/TRPV8 transient receptor potential cation channels ENSOANG00000015080,
ENSOANG00000015083

Novel epithelial calcium channels

Shortwave-sensitive-2 (SWS2) opsin gene Ultracontig 401 Cone visual pigment
Opsin 5 paralogue ENSOANG00000009478 Light-sensitive receptor
Indigoidine synthase A Contig 29616 Pigmentation
ZPAX, egg envelope glycoprotein ENSOANG00000007840,

ENSOANG00000002187

Egg envelope protein

Galanin receptor ENSOANG00000020606 Neuropeptide receptor
Kainate-binding protein ENSOANG00000007006 Glutamate receptor
Anti-dorsalizing morphogenetic protein ENSOANG00000002980 Patterning of the body axis during gastrulation
Retinal genes (2 genes) ENSOANG00000001054,

ENSOANG00000004065

Unknown function

Uteroglobin-like secretoglobins (3 genes) ENSOANG00000020019,
ENSOANG00000022350,
ENSOANG00000021122

Unknown function

Testis homeobox C14-like proteins (.2 genes) ENSOANG00000020069,
ENSOANG00000022694

Unknown function

Parvalbumin ENSOANG00000000764 Muscle function
Slc7a2-prov protein ENSOANG00000009602 Cationic amino acid transporter
Cystine/glutamate transporter ENSOANG00000005615 Amino acid transporter
SOUL protein ENSOANG00000013998 Retina and pineal gland haem protein, oxygen sensing
Twin-pore potassium channel Talk-1-like ENSOANG00000011839 Potassium channel
Alpha-aspartyl dipeptidase ENSOANG00000009001 Unknown function
Monovalent cation/H1 antiporter ENSOANG00000012961 Unknown function; conserved in other metazoa and in yeast

Sequences without Ensembl nomenclature are found in Supplementary Information.
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rare in platypus, but there are thousands of copies of an ancient
gypsy-class LTR element (all LTR elements previously identified in
mammals, birds, or reptiles belong to the retrovirus clade). Overall,
the frequency of interspersed repeats (over 2 repeats per kb) is
higher than in any previously characterized metazoan genome.
Population analysis using LINE2/Mon-1 elements distinguished
the Tasmanian population from three other mainland clusters
(Supplementary Fig. 4a, b), in good agreement with tree-based
analysis, physical proximity and previous knowledge of platypus
population relationships57.

Cluster analysis of all LINE2 copies revealed a phylogenetic rela-
tionship lacking branches, as if a single-locus, fast-evolving gene has
steadily spread an exceptional number of pseudogenes over time
(Supplementary Fig. 6). This ‘master gene’ appearance is, to a lesser
degree, also observed for LINE1 in eutherians58, but not to the same
extent for MIR/Mon-1 or other retrotransposons in mammals. The
phylogeny of LINE2 and Mon-1 was also supported by a genome-
wide transposition-in-transposition (TinT) analysis59 (Supplemen-
tary Tables 7 and 8). LINE2 density is similar on all chromosomes
(Supplementary Fig. 7); it does not correlate with chromosome
length (and recombination rate) as the CR1 LINE density does in
the chicken genome19, nor is it higher on sex chromosomes than on
autosomes, as LINE1 density is in eutherians (which has led to pos-
tulations on a function in dosage compensation)60.

We compared microsatellites in the platypus genome with those of
representative vertebrates (Supplementary Notes 22). The mean
microsatellite coverage of platypus genomic sequences assembled
into chromosomes is 2.67 6 0.34%; significantly lower than all other
mammalian genomes sequenced so far and most similar to that
observed in chicken (Supplementary Fig. 8). Microsatellites are on
average shorter in platypus than in other genomes (Supplementary
Table 9), but microsatellite coverage surpasses chicken owing to very
long tri- and tetranucleotide repeats (Supplementary Fig. 9). The
platypus has a higher proportion of microsatellites with high A1T
content, in comparison to the other vertebrates examined, an abun-
dance distribution that has more in common with reptiles than with
mammals (Supplementary Fig. 10).
Genomic imprinting. Genomic imprinting is an epigenetic pheno-
menon that results in monoallelic gene expression. In the vertebrates,
imprinting seems to have evolved recently and has only been

confirmed in marsupials and eutherian mammals61,62. The autosomal
localization of some imprinted orthologues in platypus is known63.
However, we examined the conservation of synteny and the distri-
bution of retrotransposed elements in all orthologous eutherian-
imprinted clustered and non-clustered genes in the platypus genome.
A representative cluster is shown in Fig. 5 (see also Supplementary
Fig. 12).

Clusters that became imprinted in therians (with the exception
of the Prader–Willi–Angelman locus64) have not been assembled
recently and reside in ancient syntenic mammalian groups, although
some regions have expanded by mechanisms such as gene duplica-
tion or transposition. There were significantly fewer LTR and DNA
elements across all platypus orthologous regions relative to eutherian
imprinted genes (P , 0.04 and 0.04, respectively), whereas there was
a significant increase in the sequences masked by SINEs (P , 0.03).
The chicken had fewer total repeats and no SINEs or sRNAs.
Comparison of all regions in the platypus with the orthologous
regions in opossum, mouse, dog and human demonstrates that accu-
mulation of LTR, DNA elements, and simple and low complexity
repeats coincides with, and may be a driving force in, the acquisition
of imprinting in these regions in therian mammals.
The CpG fraction. The eutherian and chicken genomes generally
average around 41% G1C content, although many intervals differ
substantially from the average, particularly in humans (Supple-
mentary Notes 23). In contrast, the platypus genome averages
45.5% G1C content and rarely deviates far from the average. The
opossum genome averages only 38% G1C content and also has a
narrow distribution (Supplementary Fig. 13). The source of the ele-
vated G1C fraction in platypus remains unclear. It is explained only
in part by monotreme interspersed repeat elements, as platypus DNA
outside of known interspersed repeats is 44.7% G1C. Furthermore,
tandem repeats of short DNA motifs (microsatellites) in platypus
show an A1T bias, as with other mammals. Recombination-driven
biased gene conversion may be a factor, in agreement with what has
been shown for eutherians65 and marsupials66. This is suggested by
the observation that the six platypus chromosomes where the cur-
rently mapped DNA sequence averages over 45% G1C content (that
is, 17, 20, 15, 14, 10 and 11 in order of decreasing G1C fraction) are
among the 10 shortest (Supplementary Fig. 14), because short chro-
mosomes have a higher recombination rate67. However, a direct test

vCLPs

vCrotasins

vDLPs
Therian β-defensins

β-defensin lineages

Lineage 2
Lineage 1

Lineage 4
Lineage 5
Lineage 6

Lineage 3

Figure 4 | The evolution of b-defensin peptides in platypus venom gland.
The diagram illustrates separate gene duplications in different parts of the
phylogeny for platypus venom defensin-like peptides (vDLPs), for lizard

venom crotamine-like peptides (vCLPs) and for snake venom crotamines.
These venom proteins have thus been co-opted from pre-existing non-toxin
homologues independently in platypus and in lizards and snakes48.
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is currently lacking because platypus recombination rates have not
been measured. A further examination of the CpG fraction, that
associated with promoter elements, is found in Supplementary
Notes 24 and Supplementary Fig. 15.

Conclusions

The egg-laying platypus is a remarkable species with many bio-
logical features unique among mammals. Our sequencing of the
platypus genome now enables us to compare its sequence chara-
cteristics and organization with those of birds and therian mam-
mals in order to address the questions of platypus biology and to
date the emergence of mammalian traits. We report here that
sequence characteristics of the platypus genome show features of
reptiles as well as mammals.

Platypus contains a largely standard repertoire of non-protein-
coding, ncRNAs, except for the snoRNAs, which exhibit a marked
expansion associated with at least one retrotransposed subfamily.
Some of these retrotransposed snoRNAs are expressed and thus
may have functional roles. The platypus has fully elaborated
piRNA and miRNA pathways, the latter including many mono-
treme-specific miRNAs and miRNAs that are shared with either
mammals or chickens. Many functional assessments of these novel
miRNAs remain to be carried out and will surely add to our know-
ledge of mammalian miRNA evolution.

The 18,527 protein-coding genes predicted from the platypus
assembly fall within the range for therian genomes. Of particular
interest are families of genes involved in biology that links

monotremes to reptiles, such as egg-laying, vision and enveno-
mation, as well as mammal-specific characters such as lactation,
characters shared with marsupials such as antibacterial proteins,
and platypus-specific characters such as venom delivery and under-
water foraging. For instance, anatomical adaptations for chemo-
reception during underwater foraging are reflected in an unusually
large repertoire of vomeronasal type 1 receptor genes. However,
the repertoire of milk protein genes is typically mammalian, and
the arrangement of milk protein genes seems to have been pre-
served since the last common ancestor of monotremes and therian
mammals.

Since its initial description, the platypus has stood out as a species
with a blend of reptilian and mammalian features, which is a chara-
cteristic that penetrates to the level of the genome sequence. The
density and distribution of repetitive sequence, for example, reflects
this fact. The high frequency of interspersed repeats in the platypus
genome, although typical for mammalian genomes, is in contrast
with the observed mean microsatellite coverage, which appears more
reptilian. Additionally, the correlation of parent-of-origin-specific
expression patterns in regions of reduced interspersed repeats in
the platypus suggests that the evolution of imprinting in therians is
linked to the accumulation of repetitive elements.

We find that the mixture of reptilian, mammalian and unique
characteristics of the platypus genome provides many clues to the
function and evolution of all mammalian genomes. The wealth of
new findings and confirmation of existing knowledge immediately
evident from the release of these data promise that the availability of
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Figure 5 | Comparative mammalian analysis for a representative eutherian
imprinted gene cluster (PEG1/MEST). a, The gene arrangement is
conserved between mammals. However, non-coding regions are expanded in
therians. Arrows indicate genes and the direction of transcription; the scale
shows base pairs. b, Summary of repeat distribution for the PEG1/MEST

cluster. Histograms represent the sequence (%) masked by each repeat
element within the MEST cluster; black bars represent repeat distribution
across the entire genome. With the exception of SINEs, platypus has fewer
repeats of LINEs, LTRs, DNA and simple repeats (Simple) than eutherian
mammals. Low comp., low complexity; sRNAs, small RNAs.
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the platypus genome sequence will provide the critically needed
background to inspire rapid advances in other investigations of
mammalian biology and evolution.

METHODS SUMMARY
Tissue resources. Tissue was obtained from animals captured at the Upper

Barnard River, New South Wales, Australia, during breeding season (AEEC

permit number R.CG.07.03 to F. Grützner; Environment ACT permit number

LI 2002 270 to J. A. M. Graves; NPWS permit number A193 to R. C. Jones; AEC

permit number S-49-2006 to F. Grützner).

Sequence assembly. A total of 26.9 million reads was assembled using the PCAP

software20. Attempts were made to assign the largest contiguous blocks of

sequence to chromosomes using standard FISH techniques.

Non-coding RNAs. We used the established Rfam pipeline68 and de novo sequen-

cing to detect non-protein-coding RNAs (ncRNAs). Cloning, sequencing and

annotation of sRNAs from platypus, echidna and chicken as well as miRNA

sequences are described in ref. 25.

Genes. Protein-coding and non-protein-coding genes were computed using a

modified version of the Ensembl pipeline (Supplementary Notes 14). Gene

orthology assignment followed a procedure implemented previously69.

Orthology rate estimation was performed with PAML70 using the model of

ref. 71. In all cases, codon frequencies were estimated from the nucleotide com-

position at each codon position (F3X4 model).

Genome landscape. Pairwise alignments between human and dog, mouse, opos-

sum, platypus and chicken were projected from whole-genome alignments of 28

species (http://genome.cse.ucsc.edu/). These alignments were the basis for

phylogeny, chromosome synteny, interspersed repeats, imprinting and CpG

fraction analyses.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Sequence assembly. A total of 26.9 million reads was assembled using the PCAP

software20. Assembly quality assessment accounted for read depth, chimaeric

reads, repeat content, cloning bias, G1C content and heterozygosity

(Supplementary Notes 4–11). We identified a total of ,1.2 million single nuc-

leotide polymorphisms (SNPs) within the 1.84-Gb sequenced female platypus

genome using two independent analyses, SSAHA2 (SSAHA: a fast search method

for large DNA databases72) and PCAP output20 (Supplementary Notes 11).

Non-coding RNAs. snoRNA annotation is as described in ref. 23. miRNAs

sharing a heptamer at nucleotide position 2–8 were defined as a family.
Homology with mouse/human miRNAs was based on annotated miRNAs in

Rfam (http://microrna.sanger.ac.uk/sequences/index.shtml). piRNA sequences

have been submitted to GEO (http://www.ncbi.nlm.nih.gov/geo/). miRNA total

cloning frequency was normalized across tissue libraries by scaling cloning fre-

quency per library by a factor representing total number of miRNA reads per

library.

Genes. Orthologue groups were selected based on whether they contained genes

predicted only from the platypus, and not from the chicken, opossum, dog,

mouse or human genome assemblies (Supplementary Notes 15–17). Other

groups were selected where the number of in-paralogous platypus genes

exceeded the numbers of the other (chicken, opossum, dog, mouse and human)

terminal lineages. Some of these groups represent erroneous gene predictions

where, for example, protein-coding sequence predictions represented instead

transposed element or highly repetitive sequence, or overlapped, on the reverse

strand, other well-established coding sequence. Such instances were discarded.

Lineage-specific gene loss was detected by inspection of BLASTZ alignment

chains and nets at the UCSC Genome Browser (http://genome.cse.ucsc.edu/);

by the interrogation of all known cDNA, EST and protein sequences held in
GenBank using BLAST; and by attempting to predict orthologous genes within

genomic intervals flanked by syntenic anchors.

Genome landscape. To establish phylogeny we extended the basic data sampling

approach described previously73 to protein-coding genes, and used established

techniques to analyse protein-coding indels74 and retrotransposon insertions75

(Supplementary Notes 19).

The population structure of 90 platypuses from different regions in Australia

was determined using Structure software v2.1 (ref. 76) using genotypes of 57

polymorphic Mon-1 and LINE2 loci. Five thousand replications were examined

(Supplementary Notes 21).

Microsatellites were identified across the platypus genome (ornAna1) com-

bining two programs: Tandem Repeat Finder (TRF)77 and Sputnik78 (Supple-

mentary Notes 22).

For the imprinting cluster of PEG1/MEST, comparative maps were complied

from Vega annotations for the mouse and human, and Ensembl gene builds for

other species. Multiple alignments of each region for repeat distribution analyses

were constructed using MLAGAN79 with translated anchoring.

We examined genomic assemblies for human (hg18), mouse (musMus8), dog
(canFam2), opossum (monDom4), platypus (ornAna1) and chicken (galGal3),

downloaded from the UCSC Genome Browser (http://genome.ucsc.edu), and

computed the fraction of G1C nucleotides in each non-overlapping 10,000-bp

window free of ambiguous bases. Bases in repeats were not distinguished and

were counted along with non-repeat bases. For platypus all assembled sequence

was analysed; for the other species only bases assigned to chromosomes were

used.
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Genome analysis of the platypus reveals
unique signatures of evolution
Wesley C. Warren, LaDeana W. Hillier, Jennifer A. Marshall Graves,
Ewan Birney, Chris P. Ponting, Frank Grützner, Katherine Belov,
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Elizabeth P. Murchison, Ravi Sachidanandam, Carly Smith,
Gregory J. Hannon, Enkhjargal Tsend-Ayush, Daniel McMillan,
Rosalind Attenborough, Willem Rens, Malcolm Ferguson-Smith,
Christophe M. Lefèvre, Julie A. Sharp, Kevin R. Nicholas,
David A. Ray, Michael Kube, Richard Reinhardt, Thomas H. Pringle,
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In this Article, Mikhail Nefedov and Pieter J. de Jong were omitted
from the author list.

ERRATUM
doi:10.1038/nature07316

Tumour invasion and metastasis initiated by
microRNA-10b in breast cancer
Li Ma, Julie Teruya-Feldstein & Robert A. Weinberg

Nature 449, 682–688 (2007)

In Fig. 4e of this Article, the two E-box sequences were inadvertently
exchanged. E-box 1, which is near the stem-loop (at 2313 bp),
should be CACTTG instead of CACCTG, and E-box 2 (at
22,422 bp), which is distal to the stem-loop, should be CACCTG
instead of CACTTG.
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