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Sequence and annotation data 
 
Analyses were carried out using the human genome assembly hg17 (NCBI build35, May 
2004).  All sequence and annotations were obtained from the UCSC genome browser 
(http://genome.ucsc.edu) except where otherwise indicated.  Gene annotations used 
correspond to the ‘Known Gene’ track, and include coding and UTR exons.  Repeats 
were obtained via UCSC but generated by RepeatMasker (www.repeatmasker.org).  Alus 
were identified by by using the “grep” Unix command to identify lines containing ‘Alu’ 
from the RepeatMasker annotation output.    
 
We obtained structural variants (mostly copy-number variants; CNVs) annotated by a 
variety of analyses spanning multiple experimental techniques, populations, and sample 
sizes; details are listed in Table 1 of the main manuscript.  Annotations from the Mills et 
al study were obtained through that paper’s supplemental material (www.genome.org); 
the Wong et al. annotations were obtained directly from the authors (courtesy of Ze 
Cheng), and we used only those variants that were seen in more than 1 individual for the 
subsequent analysis; the Redon et al. annotations were obtained through the Database of 
Genomic Variants (http://projects.tcag.ca/variation).   We then merged all variants > 1 
kbp in size that have any amount of overlap, generating a single, non-redundant feature 
set with 4,131 distinct genomic regions spanning ~613 Mbp; these regions are listed in 
Supplementary Table 1.  This merged set of ‘CNVs’ is used in all subsequent analyses. 
 
Sliding window analyses 
 
Sliding window density calculations were performed in consecutive non-overlapping 1-
Mbp windows with custom perl scripts; we treated the ‘overhang’ at the end of each 
chromosome as a whole window.  We merged all annotations within a given feature set 
with any overlap so that each base is counted at most once.  We excluded Y, M, unk, and 
random chromosomes.  GC% and N% were determined for these same windows by 
counting nucleotides.  Features that span breakpoints between windows were split 
accordingly.  Supplementary Table 2 lists the density values for each feature within each 
window across the genome, totaling 3,030 windows. 
 
 
 



Density correlations 
 
For these and all following analyses, we eliminated from consideration any window that 
contains greater than 50% missing sequence, annotated as ‘N’s in hg17, reducing the total 
number of windows to 2,852; retaining these windows inflates correlations among 
features due to co-occurrence of ‘0’ densities.  Relationships between feature sets were 
then grossly evaluated with simple linear regression models using the R programming 
environment (http://cran.r-project.org/), regressing the per-window CNV density against 
the per-window density of each listed feature (exons, segmental duplications (SDs), and 
Alus).  The p-values reported in the first paragraph under “Distribution of copy-number 
variants in the human genome” correspond to the probability that the per-window 
densities of these feature pairs are uncorrelated genome-wide.  We also regressed CNV 
density against exon, SD, and Alu density simultaneously; each of these variables remain 
significant at p < 0.01.  We note that in truth these relationships are complex and non-
linear, and thus these models should only be interpreted to mean that there exist strong 
relationships rather than that the relationships are truly linear.    Also see Figures 2 and 3 
for more analyses of the relationships between CNVs, genes, and SDs. 
 
Stratification of windows into density deciles 
 
We ranked the per-window density values for each feature set and divided the windows 
into 10 evenly spaced bins (‘deciles’); ties in ranking were broken randomly.  Note that 
we placed all windows with zero density into a separate bin, generating 11 total bins: 10 
equal-sized bins of windows containing at least 1 nucleotide of the feature and a zero-
density bin consisting of all those windows that are devoid of the feature.  This was 
necessary since some features have a zero-density tail that comprises more than 10% of 
all windows.  ‘Rich’ and ‘poor’ fractions of the genome (as in “the most CNV-rich 
fraction of the genome”) correspond to the highest-density bin and the zero-density bin of 
the genome, respectively.  The genome-wide average refers to the average density across 
all bins.  Statistical tests differentiating ‘rich’ vs ‘poor’ or ‘rich’ vs ‘average’, were 
conducted using a t-test comparing the designated sets of bins to each other. 
 
Stratification of segmental duplication annotations 
 
For some of the analyses, we subdivided the annotations of SDs according to the percent 
identities of the paralogous sequence blocks (available in the ‘Genomic SuperDup’ track 
at http://genome.ucsc.edu or http://humanparalogy.gs.washington.edu).  Since SDs of 
varying percent identities often overlap with one another, we nested this subdivision such 
that any base within a segmental duplication was considered to belong to the highest 
percent identity of all the segmental duplications to which it belongs.  In this way, all 
bases within a duplication of 98-100% identity are parsed out first, bases within 95%-
98% are parsed from the remaining nucleotides, and 90%-95% from the regions 
remaining after these two steps.   
 
 
 



Allele frequency comparisons 
 
To compare the ‘allele frequencies’ for variants that do or do not overlap SDs, we 
considered only those variants identified in the Redon et al. study via BAC-CGH; we use 
the ‘frequency’ count as supplied in the annotations in the Database of Genomic Variants 
(http://projects.tcag.ca/variation).  We then performed a t-test comparing the frequencies 
for those variants that do overlap SDs versus those that do not, and also compared those 
variants that overlap 98%-100% identical SDs versus those that do not. 
 
Functional biases in gene content 
 
We used Panther analyses to test for enrichment of functional categories of genes that 
overlap CNVs; we considered CNVs that do not overlap SDs independently from CNVs 
that do overlap SDs.  We identified genes that overlap these two groups using the Table 
Browser at UCSC (http://genome.ucsc.edu), with the ‘Known Gene’ track, mapping them 
to ‘Gene Symbols’ to eliminate some of the redundancy of multiple transcripts mapping 
to the same gene.  These lists were uploaded to a published Panther web-tool 
(http://www.pantherdb.org/; Thomas et al. 2003). We focused on “Molecular Function” 
annotations, using the set of all annotated human genes as the background set, and used 
Bonferroni correction for multiple-testing.  Both CNVs that overlap SDs and CNVs that 
do not overlap SDs were depleted for genes with “Molecular function unclassified” and 
“Ribosomal proteins”.  All other significant associations are enrichments and are shown 
in Figure 3 using the arbitrary threshold of 0.05 (after Bonferroni correction).   
 
To check for consistency with an independent classification system, we also performed 
GO-term analyses using a published web tool (http://gostat.wehi.edu.au/; Beissbarth and 
Speed 2004).  The highest-scoring enrichment categories seen for Panther were largely 
consistent with the GO results, although differences in the number of genes annotated to 
specific categories and the organizational hierarchies (GO-terms are richer and more 
complex), exclude direct correspondence of functional categories in some cases.  
 
For CNVs that overlap SDs, the top-scoring GO-terms (all significant at p < 0.001 after 
correction for multiple testing) indicated enrichment for olfactory receptor activities 
(‘sensory perception of chemical stimulus’, ‘neurophysiological process’, ‘sensory 
perception of smell’, etc), cell adhesion activity (‘cell-cell adhesion’), and the immune 
response (‘response to pest, pathogen, or parasite’, ‘response to wounding’), among 
others.  These are similar to the enrichments seen using Panther in Figure 4 (olfactory 
receptor enrichment can be seen indirectly with Panther in ‘receptor’ and ‘G-protein 
coupled receptor’).   
 
For CNVs that do not overlap SDs, GO-terms strongly confirmed the enrichments seen 
using Panther.  Again using a multiple testing correction and threshold of p < 0.001, GO-
term enrichments include signaling molecules (‘development-morphogenesis’, ‘cell-cell 
signaling’, ‘signal transduction’, ‘embryonic development’, etc), calcium binding 
proteins (‘calcium ion binding’), and kinase activity (‘protein serine/threonine kinase 
activity’), among others.   
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