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Tech News 

A full decade after the first human 
genome draft sequences were published, 
much remains unclear about our genetic 
blueprint, and even its very structure.
While single nucleotide polymorphisms 
(SNPs) have been extensively mapped 
and studied through efforts such as the 
International HapMap project, a larger 
group of genetic variants—insertions, 
deletions, duplications, and other copy-
number structural differences that vary 
from individual to individual—are 
another matter entirely. 

To identify and decipher structural 
variation, researchers need a reference 
against which to measure differences. 
Yet such comparative maps are sparse. 
Researchers still don’t know the breadth 
of human genome variation, which 
makes it difficult to assess the novelty 
and thereby significance of any given 
copy-number disparities. Single-copy 
genes are, of course, well charted. But 
the genome is also riddled with repeated 
sequences. From highly repetitive LINE 
and Alu elements to some high–copy 
number protein-coding genes, the 
number, position, and orientation of 
these sequences are difficult to precisely 
pin down. But according to Evan Eichler, 
professor of genome sciences and Howard 
Hughes Medical Institute Investigator 
at the University of Washington School 
of Medicine, these repeated regions are 
also where much of the action is. Regions 
with high sequence homology—those 
with long tandem or interspersed dupli-
cations, for instance—are more prone to 
unequal crossover, and thus are hotspots 
of instability and disease, says Eichler; he 
calls these regions “land mines,” and they 
dot and shape the genomic landscape. 
For instance, over the past five years 
Eichler’s group has used these genome 
features to discover nearly a dozen 
regions associated with autism, devel-
opmental delay and epilepsy, including 
a 520-kb segment on the short arm of 
chromosome 16 associated with severe 
developmental delay (1). 

Ironically, the same next-generation 
sequencing technologies that have been 
driving today’s genomics explosion and 
SNP mapping efforts struggle to map 
and ascribe biology to these land mines. 

Sequencers tend to spit out billions upon 
billions of reads, but since they’re all too 
short to span (and thereby unambigu-
ously map) the variants, this large group 
has been excluded from many genomic 
analyses in the past. 

Today, though, the genomics world is 
changing. Armed with new experimental 
tools and computational approaches, 
researchers are beginning—albeit 
slowly—to tackle copy-number variation. 

Variation in definitions
The first question to consider when 

thinking about structural variants in 
the genome is superficially simplistic: 
what is a copy number variation (CNV)? 
The term is so broad that in theory, a 
CNV could be any sequence difference 
that’s larger than one nucleotide. “The 
grossest example is trisomy,” says Rafael 

Irizarry, professor of biostatistics at the 
Bloomberg School of Public Health at 
Johns Hopkins University. A common 
example is trisomy 21, whose charac-
teristic three copies of chromosome 21 
cause Down’s syndrome.

Most variants are much smaller than 
a whole chromosome, though. The 
Database of Genomic Variants (http://
projects.tcag.ca/variation), with some 
102,000 entries, defines structural 
variation as “genomic alterations that 
involve segments of DNA that are 
larger than 1 kb,” and InDels (inser-
tions/deletions) as variations in the 100- 
to 1,000-bp range. That’s the working 
definition used by Lars Feuk, associate 
professor of immunology, genetics and 
pathology at Uppsala University. He 
estimates that there are on order of 
500 to 1000 CNVs between any two 
individuals’ genomes. 

Copy Number Variants: Mapping the Genome’s ‘Land Mines’ 

Certain genomic regions—those with long tandem or interspersed duplications, for instance—are hotspots of structural instability 
and disease. Evan Eichler, a genome scientist at the University of Washington, calls these regions “land mines.” Photo  credit: 
Clare McLean, University of Washington.
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Jan Korbel of the European Molecular 
Biolog y Laboratory in Heidelberg , 
Germany used a >50-bp working 
definition of structural variants in 
his and colleagues’ survey of 1000 
Genomes Project sequence data on 185 
individuals. They found some 28,000 
CNVs (median size 729 bp) comprising 
deletions (22,025), duplications (501), 
mobile element insertions (5371), and 
novel sequence insertions (128) (2).

Traditionally, techniques including 
f luorescence in situ hybridization and 
G-banded karyotype analysis have 
been used to ferret out these varia-
tions. But these were coarse-grained 
analyses, capable of detecting changes 
on the order of megabases or more. More 
recently, though, researchers have applied 
the finer tools of the genomics trade, 
including chromosomal microarrays 
and even next-generation sequencing to 
catalogue variants. 

Arrays for the masses
The chromosomal microarrays used for 
CNV analysis come in two basic formats: 
SNP arrays f leshed out with nonpoly-
morphic content, and array-compar-
ative genome hybridization (aCGH) 
microarrays, whose oligonucleotide 
probes create a mostly unbiased “tiling 
path” across the genome, with some 
concentration on known CNV hotspots 
thrown in for good measure.

These arrays offer several advantages, 
including speed and lower cost, which 
make them ideal for analyzing large 
patient populations. Another key benefit 

of microarrays experiments is that the 
data analysis pipelines are mature, says 
Feuk. 

Jonathan Sebat, associate professor of 
psychiatry at University of California–

San Diego, has made extensive use of 
aCGH arrays in his research of genomic 
regions associated with neuropsychi-
atric disease. In one 2007 study, his 
lab surveyed 264 families with autism 
spectrum disorders with an 85,000-
probe array offering 35-kb resolution. 

The work identified de novo CNVs 
(that is, mutations present in affected 
individuals but not in unaffected parents) 
in 12 of 118 simplex families and 2 of 77 
multiplex families. The CNVs ranged 
in size from about 100 kb to 12 Mb, 
including one 1.1 million–bp variant 
in a patient with Asperger’s syndrome 
that deleted some 23 genes, including 
oxytocin (3). More recently, Sebat’s 
team identified a new gene associated 
with schizophrenia, VIPR2, based on 
a 362-kb microduplication on the long 
arm of chromosome 7. The variant was 
present in 29 of 8,290 patients (0.35%) 
and just 0.03% of controls. Compelling 
on its own, the work is also indicates 
the need for large samples sizes when 
examining some structural variants. 

Sometimes, though, clearly associ-
ating a disease with a structural variant 
can be difficult. The Genetics Diagnostic 
Laboratory at Children’s Hospital Boston 
runs 200–300 genomic variant assays 
each month using the Agilent platform, 
according to assistant lab director David 
Miller, and has run probably 7,000 overall 
since 2006. “We get reliable data,” he says 
of microarrays, but says that chief among 
the challenges faced is clinical signifi-
cance—that is, assessing whether or not 
a particular CNV is actually causative of 
disease. “There are areas that have gains 
or losses that don’t have many genes, or 
genes that are not known to be associated 
with disease,” Miller explains. If a CNV 
falls in such a region, “it can be difficult 
to be decisive about whether that gain 
or loss is truly related to the clinical 
symptoms.”

Time for a test
“One of the most common questions you get if you work a lot with arrays is, ‘what array should I use and what analysis 
should I use?’ ,” says Feuk. 

To address that question, Feuk and Irizarry independently put different array platforms and data analysis algorithms 
to the test, measuring interexperiment, interlab, and interplatform reproducibility, sensitivity, and accuracy on a series of 
control samples. Feuk’s team tested two arrays each from Agilent, NimbleGen, and Affymetrix, four from Illumina, and a 
bacterial artificial chromosome array developed by the Wellcome Trust Sanger Institute. Irizarry’s group tested six arrays 
— two from Affymetrix, two from NimbleGen, and one each from Illumina and Agilent — and used spike-in controls to 
address accuracy in measuring absolute copy number, as well.

The results suggest that, despite the maturity of the field, no one platform and analysis algorithm can do everything. 
“In our hands, the NimbleGen 2.1M was the array that worked best, but only when using our own analysis pipeline,” 
Irizarry says of his study (Halper-Stromberg, E. et al. 2011. Bioinformatics 27:1052-1060). When using manufacturer-
recommended software, Affymetrix and Illumina arrays won out. But lab-to-lab and technician-to-technician differences, 
not to mention systemic artifacts such as “wave effects” and “batch effects,” all cause data fluctuations. “It’s possible that 
if we sent these samples to other labs, we might have gotten slightly different results,” he says. 

Feuk’s study (Pinto, D. et al. Nat. Biotechnol. 29:512-520) stressed the importance of using multiple platforms and 
analysis tools, he says. The report doesn’t declare an actual winner—Feuk uses an Affymetrix array with the Genotyping 
Console, iPattern, and Birdsuite analysis packages in his own work—yet the conclusion, he says, is quite clear: “Although 
they are getting better and better, there’s still a lot of disparity between different arrays.” -JP

An analysis led by Jan Korbel of data from the 1000 Genomes 
Project identified 28,000 CNVs—mostly deletions—in 185 
individuals. Image courtesy of Jan Korbel.
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To address this cha l lenge, the 
Children’s Hospital ’s lab looks to the 
past, comparing its CN Vs against 
resources like the Database of Genomic 
Variants, DECIPHER, and the ISCA 
database, all of which catalog structural 
variants. Still, even using this approach, 
every so often a new variant pops up that 
they’ve never seen before. 

David Ledbetter, chief scientific 
officer of Geisinger Health System 
(and former Director of the Division of 
Medical Genetics at Emory University), 
who coauthored with Miller a “consensus 
statement” regarding the use of chromo-
somal microarrays in clinical labs, 
estimates that only about 2–3% of 
patient samples that came through 
his lab at Emory exhibited so-called 
“variants of unknown clinical signifi-
cance.” These biologically nebulous 
CNVs lead to inconclusive results, he 
says. By comparison, the technique has a 
“diagnostic yield” of 15–20%, according 
to the consensus statement (compared 
to 3% for karyotyping). The remaining 
80% or so exhibit no apparently patho-
genic CNVs at all. 

The novelty of  
sequencing 
When it comes to CN V analysis , 
different microarray platforms are now 
being tested to determine which, if any, 
is most effective (see “Time for a test,” 
below). But all have their limitations.

Microarrays cannot detect events 
such as novel insertions and balanced 
translocations, nor can they reveal CNV 
breakpoints with anything approaching 
nucleotide accuracy; instead, their 

resolution is a function of the number and 
distribution of their probes. For instance, 
Roche NimbleGen’s newest 4.2 million–
probe array has a median probe spacing 
of 284 bases, using 50- to 75-bp oligos. 
Requiring signal changes on at least 
five probes to confidently call a CNV, 
that means the chip can detect variants 
as small as 1.4 kb, says Rob Brazas, the 
company’s international senior product 
manager for clinical products. These 
smaller variants often are associated with 
disease or serve as markers, says Brazas. 
“The higher-resolution your array is, the 
better you can detect smaller variants, 
or the rare events,” he says. Importantly, 
arrays cannot indicate where a repli-
cated segment of DNA lies: in other 
words, if array data indicate a region 
has been duplicated, is that duplication 
tandem, or did the DNA copy to another 
chromosome entirely?

Whereas microarrays are inherently 
limited by what is on the array itself, 
sequence data is unbiased. In theory, 
it captures al l variation—assuming 
it can be mapped—and can therefore 
better uncover the genetic loci under-
lying many complex phenotypes and 
diseases. “A much bigger piece of the 
iceberg is now captured with whole-
genome sequencing,” explains Sebat, 
“and a significant chunk of the missing 
heritability is sure to emerge.” 

In practice, sequencing and mapping 
have biases of their own, detecting far 
more deletions than insertions or dupli-
cations, for instance. Yet, researchers can 
use sequencing reads to map breakpoints 
to the base pair, enabling them to better 
understand the functional consequence of 
a given CNV (like whether it encroaches 
upon a coding or regulatory region) and 
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Greater microarray probe density provides higher-resolution CNV analysis. The green track represents hypothetical CNVs at 1.5 kb 
and 5 kb. Subsequent tracks represent average probe spacing across the genome for the NimbleGen CGH 4.2M and 3 × 1.4 M 
arrays (blue) and a competiting vendor’s 1 M CGH array (orange). When requiring five consecutive probes to make CNV calls, only 
the highest-density array can detect a 1.5-kb CNV. Image courtesy of Roche/NimbleGen.



Features

www.BioTechniques.com24Vol. 51 | No. 1 | 2011

also probe the molecular mechanisms 
underlying those variants. In one 2010 
study, researchers led by Matthew Hurles 
at the Wellcome Trust Sanger Institute 
sequenced 324 CNV breakpoints from 
three individuals using sequence capture 
and 454 sequencing. Their data suggest 
that several distinct molecular mecha-
nisms underlie deletion events: of 315 
deletion breakpoints, 70% included short 
regions of “microhomology,” and 33% 
included inserted sequences. Just 10% 
of breakpoints included both elements, 
“suggesting that there are at least two 
different mutational mechanisms,” the 
authors wrote (4).

Despite the rich data, CNV analysis 
by next-generation sequencing isn’t easy. 
Says Sebat: “The methods for calling 
CNVs are still not mature.” Even in the 
absence of CNVs, some segments of DNA 
sequence better than others, which is a 
sequence bias that plagues all genome-
sequencing efforts. Plus, when it comes to 
nucleotide-level CNV analysis, the devil 
is in the details. As Eichler explains, it 
isn’t enough to know, for example, that 
a region is duplicated; what matters is 
its precise structure. Once sequences 
duplicate, each copy can evolve indepen-
dently. The biological consequence of 
three tandem duplicated genes of the 
form A–A–A differs, for instance, from 
A–A’–A’’. And both are different than 
A–inverted A’–A’’. 

To solve that problem, Eichler 
says, researchers require high-quality, 
long-read sequence data, similar to what 
was generated as part of the Structural 
Variation Genome Sequencing Project. 
This kind of clone-based work used to 
be the norm with Sanger sequencing, 
but is becoming harder to do using 

next-generation sequencing platforms. 
But even Sanger sequencing, whose reads 
approach a kilobase in size, may not be 
long enough according to Eichler. He 
would like to see reads in the hundreds 
of kilobases, larger than the longest 
repeats and beyond the ranges promised 
by existing third-generation sequencing 
technologies. “The ability to get outside 
a duplicated region gives you the ability 
to anchor and build a robust assembly,” 
he says. 

In the absence of such reads, CNV 
researchers today have devised a variety 
of different strategies to find the signal 
in the sequencing noise. As Eichler 
explained in a 2011 review of array and 
sequencing based strategies for CNVs, 
CNV-calling algorithms can be grouped 
into four basic strategies. For instance, 
“read-pair” approaches use paired-end 
reads to assess whether the distance 
between the paired ends differs from 
that of the reference, while “read-depth” 
approaches exploit the absolute number 
of reads over a given region to identify 
variants (5).

Often, researchers will apply a cross-
section of these approaches to hedge 
their bets. When the 1000 Genomes 
Project team mapped CNVs in a set of 
185 genomes, it used 19 different calling 
algorithms to find them. 

Of course, as in all things ’omic, arrays 
and sequencing really are complementary, 
at least at the moment. Case in point: a 
2010 study by Eichler’s team compared 
structural variants in five individuals 
detected by sequencing, aCGH, and 
an Affymetrix SNP microarray. “A 
comparison of the three studies shows 
that 11–65% of discovered variants 
are unique to a single study and corre-

sponding experimental platform,” the 
authors wrote (6).

And, as in all things ‘omic, sequencing 
wil l l ikely ultimately become the 
dominant technolog y. “Sequencing 
technolog y has left Moore’s Law in 
the dust,” says Sebat, “it’s Moore’s Law 
times two.” Already, the 1000 Genomes 
Project has generated terabases of human 
genomics data. Yet that isn’t nearly 
enough to cover the breadth of human 
sequence variation, says Sebat. To identify 
rare variants and get a feel for their 
prevalence in the general population, 
thousands upon thousands of genomes 
will have be analyzed, he says. 

“It seems like a very daunting propo-
sition to be sequencing tens of thousands 
of genomes at 30× coverage, but it will 
happen, and my lab will never be the 
same again,” he says. “We are swimming 
in data right now, and it’s not going to 
stop.”
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Sensitive and accurate detection of copy number changes on CGH microarrays. Data are displayed as whole-genome “rainbow” 
plots where each chromosome is denoted by a different color. Shown are normal samples, a gain of an entire chromosome (asso-
ciated with trisomy 21), and a large (~4-Mb) deletion in chromosome 22 associated with velocardiofacial syndrome. All research 
samples were referenced against normal genomic DNA. Credit: Roche/NimbleGen


